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Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human
behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition
performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting
the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the
inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a
simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and
later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially
than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented
similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower
response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly
diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of
information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.
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Introduction way these components are integrated is still a controver-

sial issue (2). However, available studies have looked for

Knowledge of which visual features are used for the
recognition of different types of objects is crucial for under-
standing human visual processing and can indicate useful
features for automatic face recognition systems. On the
otherhand, biologically motivated computational algorithms
may be explored as test platform for modeling human
visual mechanisms. Face recognition is one of the best
understood cognitive tasks (1), due in part to the identifica-
tion of several critical spatial components, although the
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Cartesian-defined spatial components, usually employing
Fourier-filtered face images (see, e.g., Ref. 3). These
studies and the resulting theoretical models did not take
into account physiological and psychophysical evidence
that suggests the existence of mechanisms for visual
analysis in polar coordinates (4,5). In order to fill this gap,
a computationally successful biologically inspired approach
to face recognition using polar domain representation has
been recently reported (6).
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In the current study, we investigated the possibility that
spatial polar-defined components are selectively used in
human face processing. Moreover, we compared the per-
formance of human observers to that of a polar frequency-
based face recognition model. The main motivation for this
study was to improve the predictability value and increase
the biologically inspired content of high-level visual tasks
such as human object recognition models (7). The main
contributions of this study were a) demonstrating for the
first time that human visual face processing could involve
the selective use of polar frequency components (8), and
b) reporting direct empirical support for a recently pro-
posed computational face recognition model (6).

In the next section, we present a brief review of the
literature relevant to face recognition and spatial frequency
analysis. We then describe the Fourier-Bessel (FB) trans-
formation and detail our experimental design and stimulus
generation. Finally, we describe our results and discuss
their implications.

Selective spatial frequency usage in face recognition

In classical studies of the human visual system, the
luminance of test stimuli is modulated by a sine function in
Cartesian coordinates (9). This choice is based on the
shape of the receptive fields and on the sensitivity of retinal
ganglion cells and of the cells in area V1 of the brain (10).
In accordance with this view, all previous studies (to the
best of our knowledge) searched for the fundamental
components of human face processing in the Cartesian
frequency domain. Such experiments typically employed
face images whose spatial frequency content was manipu-
lated using band-pass Fourier filters. Most of these studies
confirmed that face recognition is sensitive to the spatial
frequency content of the images and concluded that the
mid-range spatial frequencies, between 10 and 20 cycles
per face, are the mostimportant for this task (3,11-13). This
knowledge was essential for a comprehensive understand-
ing of cognitive function since it delimited the quantity of
information available in higher level stages.

However, more recent physiological and psychophysi-
cal studies have provided evidence about the tuning of
visual cells to stimuli defined in coordinate systems other
than the Cartesian ones. Sensitivity to complex shapes,
like stars, rather than to simple Cartesian stimuli, like bars,
was observed in several cells in the visual area V4 of
macaque monkeys by Kobatake and Tanaka (14). At the
same time, Gallant et al. (4,15) probed cells in area V4 with
Cartesian, polar, or hyperbolic gratings and showed speci-
ficity for these types of stimuli. A few years later, Mahon
and De Valois (5) extended the study to lower processing
levels of the visual pathway and found that populations of
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cellsinareas LGN, V1 and V2 are also tuned to these types
of stimuli. The physiological evidence about the specificity
of cells to non-Cartesian stimuli was further supported by
psychophysical experiments using Glass patterns. The
stimuli used by Wilson et al. (16,17) consisted of a pattern
of random dots presented within a circular window that
generated a percept of global structure of Cartesian, con-
centric, radial, and hyperbolic patterns. Detection thresh-
old was measured by degrading the patterns by the addi-
tion of noise. It was found that threshold decreases from
Cartesian to hyperbolic, radial and concentric patterns.
Measurements of the thresholds as a function of the stim-
ulated area showed a 3 to 4 visual degrees global pooling
of orientation information in the detection of radial and
concentric patterns, but only local pooling in the detection
of parallel patterns. Similar results were obtained when
subjects had to judge which of two square arrays of Gabor
contained global structures, with higher sensitivity found in
concentric than to radial patterns (18).

Stimulated by these latter studies, we first determined
the contrast sensitivity functions to fundamental patterns
defined in polar coordinates (19) and later developed an
automatic face recognition system based on polar fre-
quency features, as extracted by FB transformation and
dissimilar representation (6,20). This representation sys-
tem was thoroughly tested on large data sets and achieved
state of the art performance when compared to previous
algorithms (21). In the current study, we propose a compu-
tational model based on a simplification of an automatic
system and validate it by comparing its performance in a
classical face recognition task with that of humans.

Fourier-Bessel transformation

This section briefly reviews the FB approach intro-
duced by Zana and Cesar-Jr. (6). The reader is referred to
the original paper for more details. Let f(x,y ) be the region
of interest in the image. FB transform analysis starts by
converting the image coordinates from Cartesian (x,y)
to polar (r, ) domain. Let (x, y,) be the origin of the
Cartesian image. The polar coordinates necessary to ob-
tain the new image representation f (,0) are defined as
0 = tan"! (y-ypx-xp) @nd , = J(x—x,] +(y—y,) -

The f (r,0) function, r<1, is represented by the two-
dimensional FB series as (6)

f(r,0)= i i A, (amir) cos(nf)+ i i B,.J, (amr) sin(né)

i=l n=0 i=1 n=0

(Equation 1)

where J, is the Bessel function of order n and ¢,,; is the i
root of the J, function, i.e., the zero crossing value satisfy-
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ing J, (e,;) = 0 is the radial distance to the edge of the
image. The orthogonal coefficients 4, ; and B,,; are given by

27 1

4, = m [ j 1,0 (a, r)drdd

(Equation 2)

if Bp;=0and n=0;

A ) 2z 1 9 4

Bn’l_ —” T (@) . H‘f (r,0)rJ (a,, ){cczgzn;() )}drde
’ (Equation 3)

if n> 0.

Images can be FB transformed up to any Bessel order
and root with any angular and radial resolution. Each ex-
tracted coefficient (or Bessel mode) is described by a Bessel
order and a Bessel root number. FB modes are represented
by two coefficients, except those of order zero that are
represented by a single coefficient!. In the polar frequency
domain, the Bessel root is related to the radial frequency
(number of cycles along the image radius) while the Bessel
order is related to the angular frequency (number of cycles
around the center of the image). Figure 1 shows plots of a
few FB patterns. In the proposed model, the extracted FB
components are related to the output of the cortical neurons
tuned to radial and angular spatial patterns (4,5,15).

Subjects and Methods

Psychophysical experiments

Observers and equipment. Two of the authors partici-
pated in the tests. Observer S2 had no previous experi-
ence in psychophysical experiments, while observer S1
had a few years of experience. However, both were famil-
iarized with the non-manipulated stimuli prior to data col-
lection until recognizing with ease all the images. The
stimuli were generated on a Philips 2020p color monitor
and the graphics board was set at a resolution of 1024 x
768 pixels with a frame rate of 85 Hz. Viewing was binocu-
lar from a distance of 75 cm. The average luminance of the
display was 10 cd/m? in an otherwise dark environment. To
increase the number of luminance levels available from
256 to 4096, the red and blue color channels of the graph-
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ics board were combined in a resistance network (22). The
combined signal was connected to the green input in the
monitor and gamma was corrected to produce a linear
luminance-modulated image. The experiments were pro-
grammed in the LabView® environment.

Stimuli. We used eight face images from the FERET
face database (23). The criteria for the selection were:
male gender, age between 20 and 40 years, neutral ex-
pression, Caucasian race, and absence of any special
marks such as beard, eyeglasses, etc. Using the ground-
truth eye coordinates, we translated, rotated, and scaled
the images so that the eyes were registered at specific
locations. Next, the images were cropped to a 130 x 150-
pixel size and a mask (zero value) was applied to remove
most of the hair and background. The unmasked region
was histogram equalized and normalized to zero mean
(Figure 2). From the viewing distance, each image sub-
tended 2.9° of horizontal visual degrees. Signal strength
was defined as the image contrast variance (12). Signal
strength was manipulated by multiplying the image data by
an appropriate constant and converting the contrast val-
ues to luminance values.

Test stimuli were generated by first FB transforming

Figure 1. Spatial representation of Fourier-Bessel modes. The
pairs of numbers indicate the Bessel root and order, respectively.

1The number of coefficients that results from i Bessel order and j? Bessel root FB transformation is j(i+1) *2-i. Notice that the lowest Bessel order is 1,
while Bessel orders start from 0. We multiply by 2 since every Bessel mode is represented by 2 (4 and B) coefficients, except for Bessel modes of order

0 (thus, we subtract 7).
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A. Unmanipulated

B. FB radial filtering

4.0 5.6 8.0
11.3 16.0 22.6

C. FB angular filtering

4.0 5.6 8.0
11.3 16.0 22.6
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Figure 2. Face stimuli used in the experiments. All images are
set to the same mean luminance and contrast variance. A, The
original normalized face images in the spatial layout displayed to
the observers. B, Radial and C, angular filtering of the image
defined by a black contour line in A. Numbers below the images
indicate the respective central frequency of the filters.
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the original images from the spatial domain, as described
in the Fourier-Bessel transformation Section. The resulting
coefficients were filtered by three-octave-Gaussian band-
pass filters centered at frequencies of 4, 5.6, 8, 11.3, 16,
and 22.6 (half-octave steps). The final images were ob-
tained by taking the inverse FB transformation of the
filtered coefficients. Radial and angular filtering was
achieved by multiplying the Gaussian filters along the
Bessel root or Bessel order dimension, respectively. Ex-
amples of radially and angularly filtered images are shown
in Figure 2. Unfiltered FB inverse transformed images
were tested to establish a reference performance.

Procedure. |dentification thresholds were determined
using a two-interval eight-alternative forced-choice para-
digm. Observers were thoroughly familiarized with the
non-manipulated images. At the start of a trial, a brief tone
indicated the presentation of the test stimulus. The test
image was exposed for 1000 ms and followed by a 2500-
ms presentation of a set of eight non-manipulated images.
The images were arranged around the region where the
testimage had been displayed (see Figure 2 for the image
layout) and included the targetimage. Observers identified
the target image by pressing one of eight keys on the
computer keypad. Decision time was not limited (usually
less than 2 s). The intertrial interval was set at 1000 ms.
After three consecutive correct responses, the contrast of
the target stimulus was decreased by a factor of 0.1 log
units, and after each incorrect response the contrast was
increased by the same factor. Auditory feedback was
given for an incorrect response (a short low-frequency
“beep” tone emitted whenever the subject chose the wrong
alternative). A threshold estimate was obtained as the
mean of the last 5 reversals of a total of 6. Each threshold
point was measured five times.

Face recognition models

The computational model was implemented in the
Matlab® environment and consisted of two main stages: a)
local Cartesian filtering and b) FB coefficient extraction.
Thus, an inputimage is sequentially processed and its final
representation is the vector of FB coefficients. In our
implementation, image processing and learning of a single
face from =2000 subjects requires approximately 4 h (PC
Pentium 1V, 2.8 GHz CPU). Recognition of a test image is
performed in approximately 5 s. It is important to empha-
size that all simulations were carried out using Matlab®,
which is a programming environment for rapid prototyping,
but not to create efficient implementations.

Local Cartesian filtering
Visual polar analysis supposedly occurs after the initial
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processing by V1 cells (4,16) (see Ref. 5), hence it is reason-
able to precede the global FB pattern extraction with a local
Cartesian filtering. Moreover, the contrast sensitivity func-
tions of the human visual system favors spatial frequencies
of approximately four cycles per visual angle (24), while the
FB transform weight patterns of different frequencies equally.

We simulated local Cartesian filtering using a conven-
tional neural model of V1 area cells. The model is based on
a filtering stage, followed by full-wave rectification (16). In
the first stage, images were convolved with spatial filters
that resemble the receptive fields of simple cells (25). A
filter RF with preferred spatial frequency i and location (x,y)
was specified as

2 2 2 2
RF,(x,y)= 4, {exp[ ;; ]—B‘. exp( 0_)2 ]+C,. exp[ O_xz H exp[oﬁ]
1i 2i 3i i

(Equation 4)

All parameters in Equation 4 were estimated by mask-
ing experiments (26,27). The convolution results were full-
wave rectified (taking the absolute value) in order to con-
sider both ON and OFF type cells. This filter-rectification
sequence was repeated for each of six frequencies and all
outputs were summed. Thus, the final model response
was the output matrix.

Extraction of FB coefficients

After neural filtering of the simulated V1 cells, images
were FB transformed up to the 30th Bessel order and root,
with angular resolution of 3° and radial resolution of one
pixel, yielding 1830 coefficients. These coefficients repre-
sent a frequency range of up to 30 cycles/image of angular
and radial frequency. This frequency range was selected
since perceptually it preserved most of the original image
information. We tested two forms of FB coefficient extrac-
tion: global (6) and local (21). In the global version, the
image is FB transformed as a whole, i.e., the FB coeffi-
cients are extracted from a circular image-wide area cen-
tered on the face image. Local FB analysis is performed by
extracting FB coefficients from a medium size circular area
centered on the right eye, left eye and between the eyes.
The three locally extracted coefficients are then joined to
form a single vector of features. lllustrative examples are
shown in Figure 3. These face regions were chosen on the
basis of previous studies that showed their importance for
face identification (21,28).

Other model versions

In order to evaluate the factors that influence the poten-
tial matching between the model results and human be-
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havior, we built a baseline luminance-based model, i.e.,
we replaced the FB coefficients with the pixel luminance
value. This model assumes no specific processing and
can demonstrate the gain obtained by using FB analysis.
For both FB and raw luminance versions, we also tested
models with and without prior local Cartesian filtering. This
type of comparison might clarify the necessity of an initial
local Cartesian analysis.

Simulations

The psychophysical experiment was simulated in such a
way that the input images and the experimental procedures
were as close as possible to those used with humans. The
first step was training, in which the eight unfiltered images
were processed and stored in the memory with their respec-
tive identity label. In the testing stage, all images were
manipulated in the same manner as in the psychophysical
experiment. In a typical trial, an unidentified target image
was given as input to the model and processed. The final FB
representation of the image was compared to the eight
stored images and the identity of the closest image (in
Euclidean terms) was attributed to the target image. The
only difference from the real psychophysical experiment
(besides the unnecessary use of the Lookup-table to correct
the non-linearity of the display) was the addition of white
noise to the target images, assuming a similar noise level in
the observers’ visual system. The noise had a 0.15 standard
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deviation and values outside the +2.0 standard deviation
range were discarded. Classification of test images was
performed by calculating the cross-correlation between the
target and learned images, and the label of the image that
achieved the highest value was selected. This strategy
yielded optimal performances in previous studies (12).

Results and Discussion

Human results

Figure 4 shows the face recognition performance of the
two subjects. The contrast sensitivity function of observer
S1 to radially filtered stimuli had a bell-shape and peaked
at the 11.3 frequency. The angular contrast sensitivity
function was only partially similar. It peaked in about the
same region, slightly shifted to higher frequencies. Sensi-
tivity was in general lower than that of the radial curve,
except at the highest sensitivity point. It also had a nar-
rower band-width shape as compared to the radial func-
tion. Sensitivity to unfiltered images was higher than to any
of the FB filtered images.

Observer S2 showed similar behavioral patterns, but
not identical. Both contrast sensitivity functions were bell
shaped and centered on middle-range frequencies, with
the sensitivity to angularly filtered images being in general
lower than that to radially filtered images. This observer
differed somewhat from observer S1 in having a wider

Global Local

Local Local

Figure 3. Face regions analyzed by the global and local Fourier-Bessel models. Regions outside the face area, but in the radius

range, were cropped only in this illustration.

Subject S1 Subject S2

80 T 80 Figure 4. Face recognition contrast
- | T/ - sensitivity functions of subjects S1
= 60 S 601 and S2. Circles and triangles rep-
@ B resent radial and angular filtering,
? 40 3 a0 respectively. Each point represents
2 q the mean of 5 measurements. Er-
g 20 £ 204 ror bars represent + standard error
o 38 of the mean.

01 10 100 0 10 100
Frequency Frequency
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band-width response and flatter peak sensitivity to radially
filtered images. The only notable difference was the level-
ing of the peak sensitivity to filtered images at the level of
the sensitivity to unfiltered images. The results of observer
S2 mean that the sensitivity to filtered images can be the
same as the sensitivity to unfiltered images.

The low variability between the results of the two ob-
servers permits drawing conclusion of at least a qualitative
nature. First, face recognition is better tuned to mid-range
radial and angular frequencies. This result is compatible
with previous studies using Cartesian filtering (see Fou-
rier-Bessel transformation) and reflects internal (neural)
constraints and/or lack of critical identity information at low
and high frequencies as used in the human face process-
ing (3). Second, sensitivity to images filtered in the angular
frequency domain is lower than to images filtered in the
radial frequency domain, an exception being the 16 cycle
filtering. At the moment, it is not clear what originated this
effect. Possible, not excluding, hypotheses are a) that the
angular filtering does not preserve as much face identity

Without Cartesian filtering
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information as radial filtering and b) that human face pro-
cessing relies more on radial than on angular components.
The fact that sensitivity to radially and angularly filtered
images can equal the sensitivity to unfiltered images is
intriguing, considering that the amount of information in the
latter is much higher, and confirms similar results observed
by Gold et al. (12). One possible explanation is that filtered
images had the same (global) contrast variance as that of
unfiltered images, but had regions of higher (local) con-
trast. Thus, observers could rely on this type of information
to identify the faces. A second, non-excluding, hypothesis
is that radial filtering at a specific frequency range empha-
sizes (local and/or global) facial features that can help
recognition and increase the signal-to-noise ratio.

Computational model results

Figure 5 (top row) shows the performance of the global
FB computational models. Without prior local filtering, the
model had a very flat sensitivity level for both radial and
angular filtering, although the radial curve was always

With Cartesian filtering

120 120+ Figure 5. Face recognition con-
- - trast sensitivity functions of the
E 1001 E 1001 computational models without
£ |e 2 (left panels) and with (right pan-
T |3 80 L AR ? 80 els) local Cartesian filtering.
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3 3 Local FB-based model. Bottom
40 40 row, Luminance-based model.
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Frequency Frequency radial and angular stimulus fil-
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= = urements.
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higher that the angular curve. When images were filtered
by local simulated V1 cells, the radial and angular func-
tions peaked at 11.3 frequency and the response range
was increased. The contrast sensitivity functions of the
latter model are similar to those observed in humans
regarding peak location at 11.3 mid-range frequency and
the lower sensitivity to angular than to radial filtering.

However, notable differences exist. The global sensi-
tivity of the FB model with radial filtering was relatively
higher in the low and middle frequency range, and similar
to the angular curve at high frequencies. This phenome-
non was not observed in the human results at the exact
same frequencies, but a parallel pattern of response could
be noticed if we ignored the response to the highest
frequency. The curves of the FB model notably had a wider
frequency band-width than those of humans, but had a
smaller response range. The sensitivity to unfiltered im-
ages was below peak sensitivity, and therefore filtered
images resulted in better recognition performance.

The effect of the Cartesian local processing is theoreti-
cally critical: from a physiological point of view, it is not
expected that any global processing would be performed
prior to a local analysis, and this aspect was confirmed by
the relatively poor results of the pure global FB model. The
most important difference was related to the flat response
of the model to the different frequency filtering and the
relatively high sensitivity to high frequencies. Clearly, the
approximation to human behavior is a result of the selec-
tive frequency filtering properties of the simulated V1 cells’
local filtering.

Figure 5 (middle row) shows the contrast sensitivity
functions of the local FB model. Without the prior Cartesian
analysis, the response to radially filtered images was not
much altered by the change from global to local FB analy-
sis, but the radial curve was inverted from a high-pass to a
low-pass filter shape. When the local FB analysis was
preceded by Cartesian filtering, the radial function had a
bell-shape, as in the global FB model, while the angular
function had a marked high-pass profile. In both model
versions, with and without the Cartesian filtering stage, the
sensitivity at high frequencies was higher to angular than
to radial filtering. These results suggest that of the four FB-
based model versions, Cartesian filtering followed by a
global FB analysis better describes human face process-
ing. It should be noted that in a previous large study (21), a
local FB-based algorithm outperformed a system based on
global FB analysis, but those systems were much more
complex than the models proposed here.

As a baseline for the FB model performance, we tested
a model based on only the raw luminance information
(Figure 5, bottom row). Without Cartesian processing, the
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bell-shaped angular curve bore some resemblance to the
human curve, but the angular curve was completely dis-
tinctive. The addition of prior Cartesian processing to this
model approximated its response to that of humans, as the
sensitivity to high-frequency angular stimuli surpassed the
sensitivity to radial stimuli. Still, significant differences
persisted. The radial and angular curves had low- and
high-pass shapes, respectively, with peaks at 5.6 and 16
cycles, in contrast to the bell-shaped human curves with
high sensitivity centered in the mid-frequency range.

It is interesting to note that for the three models tested
in which a Cartesian filtering step was utilized, the sensitiv-
ity to unfiltered images was below the peak sensitivity to
radially and angularly filtered images. This result indicates
that from a purely informative point of view, it is advanta-
geous to rely on the recognition of face images on the basis
of a strict polar frequency range. This phenomenon may be
directly related to the action of the simulated V1 cells in the
local FB and luminance-based models, but not in the
global FB-based model. Currently, available data do not
permit us to conclude if humans are relatively less sensi-
tive to unfiltered images or more sensitive to FB filtered
images. But, it is certain that humans benefit less from
polar filtering compared to the models under consider-
ation, a fact suggesting that the FB model is incomplete.

Conclusions and future directions

The computational system proposed here incorporates
several well-known properties of the human visual pro-
cessing system: a) it performs partially local sampling of
the eyes’ region (29,30), b) it decomposes visual stimuli
into components that represent polar spatial patterns char-
acteristic of cells in the LGN and V1 to V4 brain areas (4,5),
and c) the polar representation is mapped to a dissimilarity
space, similar to the previously proposed representation of
visual objects by humans (31-33). This type of representa-
tion implies dynamic and plastic general characteristics of
the system since each new labeled face image is mapped
into the representation of all previous images, thus repli-
cating characteristics encountered in the human memory
system. In previous studies, the system performed face
recognition tasks with a very low error rate, demonstrated
relative invariability of expression, age and luminance
changes, and was highly robust in response to occlusion of
up to 50% of the face area (6,20). Such high performance
and robustness were also observed in humans (34,35).

In the current study, we compared the automatic sys-
tem behavior directly to human performance. The similar
performance of the global FB-based model and human
psychophysics establishes for the first time a direct rela-
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tion between human face recognition and a polar-fre-
quency based model. The relation of the proposed model
is reinforced by the implementation of a local Cartesian
filtering, simulating the action of V1 cell type. Although the
global FB model did not reproduce all the features of the
human contrast sensitivity functions, the other two alterna-
tive models were considerably less adequate. The lumi-
nance-based model presented the more diverging pat-
terns, indicating a low level of participation in the process.
Although the tested local FB model was also rejected, we
cannot exclude, for example, the possibility that probing
face regions other than the eyes would improve the match
with human functions.

The demonstration of the possibility of constraining
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