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Abstract

Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The

thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet

content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some

characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this

change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with

physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-

matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when

thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict

the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological

disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic

characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis

and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.
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Introduction

A study performed at least 50 years ago demonstrated

that reduced variability and linear responses of biological

signals, by the statistical and mathematical analysis of

intrauterus heart rate variability, would be a predictive

value for future underlying disease manifestation (1).

Since then, chaos theory has described elements

manifesting behavior that is extremely sensitive to initial

conditions, does not repeat itself, and yet is deterministic;

a sequential series register of several biological para-

meters such as blood pressure measurements, brain

electrical activity, and renal ion transport, and possibly

temperature, presents nonlinear unpredictable chaotic

behavior, a kind of order without periodicity, and several

investigators have implemented studies trying to define

and distinguish normal variability from pathological

behavior profiles (2). Simultaneously, in the past few

years, along with the development of descriptive statistics

and computer tools, new models of variance analysis

were proposed, and studies which were analyzed by

interpretation of averages and deviations began to include

new mathematical concepts such as geometric models,

stochastic time series, chaos theory, and spectral

analysis (3-6).

Observation of the thermal registers of core tempera-

ture behavior, in humans and rodents, permits identifica-

tion of some characteristics of time series such as

autoreference and immobility that fit adequately into a

stochastic analysis. These characteristics are associated

with the physiological nature of an internal thermal series,

which is modulated by a complex superstructure that acts

at the behavioral level up to molecular signaling (7,8). In

this case, this regulatory superstructure reflects the

importance of central thermal homeostasis for keeping

temperature within a narrow variation range in mamma-

lian species. In fact, among all the biological signals

measured in humans, temperature is the one that has the

smallest relative deviation (±0.56C around the mean

value of 36.76C) (9). The hierarchical relevance of the
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central nervous system (CNS) to thermal control activities

is explained by fine adjustments of maximum enzyme

reaction activities to a given temperature in homeothermic

animals.

In homeothermic animals, the inability to cope with the

excess energy absorbed by a hypercaloric diet leads to

the phenomenon known as lipotoxicity, a concept inter-

preted as the cost of keeping the temperature at a

maximum but stable level, in order to promote increased

fatty acid oxidation and heat release. To maintain thermal

stability, animals develop obesity and impaired glucose

tolerance, responses associated with reduced thermo-

genesis (10). Thus, we may hypothesize that the energy

imbalance may reflect, at an earlier stage, a subtle

change in the variability of the thermal series of these

animals. However, from what we know so far, no studies

have been performed using complexity stochastic analy-

sis to define the temperature behavior in normal and

pathological models. To identify this change, we have

used, for the first time, a stochastic autoregressive model,

the concepts of which match those associated with

physiological systems involved (11,12) and applied in

high-fat intake diet (HFD) rats compared with their

appropriate standard food intake controls. The HFD

model is extremely efficient for creating pathophysiologi-

cal conditions such as hyperleptinemia, peripheral insulin

resistance, diabetes mellitus, and obesity that lead to

long-term metabolic and energy disorders. Blocking

insulin and leptin pathways at the level of the hypotha-

lamic nuclei promotes increased thermogenic activity in

the body, leading to adjustments in the CNS to maintain

temperature stability. Therefore, the purpose of the

present study was two-fold: a) to identify a stochastic

process associated with thermal time series involved with

the HFD procedure, and b) from characterization of this

stochastic process, to propose a model of an algebraic

system as a tool for early and efficient detection of

changes in physiological signals.

Material and Methods

Animals
General guidelines established by the Brazilian College

of Animal Experimentation (COBEA) and approved by the

Institutional Ethics Committee (CEEA/UNICAMP 1697-1)

were followed throughout the investigation. Our local

colonies originated from a breeding stock supplied by

CEMIB/UNICAMP, Campinas, SP, Brazil. Experiments

were conducted on age-matched, male offspring of

sibling-mated Sprague Dawley rats (n=7 for each group).

At 6 weeks of age (180.5±11.7 g body weight), the animals

were housed in individual cages and maintained under

controlled temperature (226C) and lighting conditions (7:00

am to 7:00 pm), with free access to tap water, and were

randomly distributed into two dietary groups: a control group

fed with pelleted standard rodent laboratory chow (standard

diet, SD; Nuvital, Brazil) or a high-fat diet group (HFD) fed a

high-fat diet for 4 weeks, up to 10 weeks of age. The

standard chow diet contained 11.9% kcal as fat and a total

of 2.9 kcal/g, and the high-fat diet contained 58.3% kcal as

fat and a total of 5.44 kcal/g. All male rats were weighed

weekly and had food and water intake measured daily

throughout the experiment. After an adjustment Subcue

period of 48 h, the 10-week-old rats were anesthetized with

a mixture of ketamine (75 mg/kg body weight, ip) and

xylazine (10 mg/kg body weight, ip), and a thermal probe

(Data Logger, USA) was placed inside the abdominal

cavity. The recording of internal temperature was sched-

uled to start at 1 week after the surgical proceedings, and

data were recorded for 6 h in both the SD and HFD groups,

with a 1-min period between recordings. During the

experiments, the animals were kept isolated in an environ-

ment of low external stimuli and monitored with respect to

the acceptance of diet and vitality. At the end of the assay, a

lethal dose of thiopental was administered and data were

transferred to the program Subcue-Data Logger

Mathematica 7.0 (Wolfram Research, Inc., USA).

Assumptions
The chosen time interval for the recorded temperature

of each pair of animals submitted to analysis was between

0:00 and 6:00 am, in SD rats and HFD animals. For

mammals, although internal temperature is considered to

be an inherently stationary time series with variability fixed

at about 0.56C, we reinforced this physiological condition

by subtracting the mean value of the entire series from

each individual measurement (13), to neutralize the action

of hormonal circadian rhythms, which could lead to a

certain degree of seasonality in the series (averaging).

According to regulatory dynamic characteristics of the

thermal control, the mechanisms of heat production and

heat dissipation have to work in synergy (7).

Based on this thermal profile, we consider animal

temperature as a source of information. The characteriza-

tion of a source of information comes from establishment of

the stochastic process. On the other hand, from the

information theory point of view, every source has an

associated measure quantifying its output. In our case, the

associated measure is the entropy (rate). As a conse-

quence, one of the goals in source coding is to maximize

the source entropy under an appropriate set of constraints.

In this article, we focus on the characterization of the

stochastic process associated with animal temperature,

which will maximize a statistical measure (the entropy rate)

under some constraints (the autocorrelation function) (14).

In this direction, we assume a stationary stochastic

process represents animal temperature x~fX(k)g. A source

is said to be stationary if given: X(1),X(2),:::,X(n), and

X(1zl),X(2zl),:::,X(nzl) t h e n , P X(1)~x1,X(2)~x2,:::,½
X(n)~xn�~P X(1zl)~x1,P(2zl)~x2,:::,P(nzl)~xn½ � f o r

any integer n, l>1, therefore x has a constant variance and

its autocorrelation function depends only on l{(lzn).
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For stationary processes, it is possible to determine

the entropy rate of the source {X(k)} (14). The entropy

rate of an information source is defined as

H(x)~limn?$
H(X(1),X(2),:::,X(n))

n
~

limn?$ H(X(1),X(2),:::,X(n{1),

when the limit exists. On the other hand, we also assume

the source is ergodic, that is, the time average exhibited

by only one realization of the source output is equal to the

ensemble average with probability one. Under these

conditions, the Shannon-McMillan-Breiman theorem (15)

guarantees convergence of the entropy rate.

From these facts, the problem we have to solve may

be stated as that of determining maximum entropy

distributions, as follows.

Problem : max
p[P

H(p)f g~max
p[P

X
x[X

{p(x) logp(x)

( )
,

Subject :
X
x[X

p(x)ri(x)~ai, for 1ƒiƒm,

where P is the set of all probabilities or probability density

functions ai are known constants, ri(x)~xi the i th moment

of the random variable X, and p(x) denotes either the

probability of the discrete random variable X or the

probability density function of the continuous random

variable X. The summation symbol is used either when X

is a discrete random variable or when X is a continuous

random variable. In this latter case, identification with the

integral symbol should be clear. As a consequence,

differential entropy h(x) is used instead of entropy rateH(x).

Autoregressive model
From the previous subsection, taking the earlier

problem, we are faced with finding the stochastic process

fX(i)g associated with animal temperature, which max-

imizes the entropy rate under the constraint of the

autocorrelation function, that is

max
p[P

H(p)f g~max
p[P

X
x[X

{p(x) log p(x)

( )
subject to

R(k)~E X(izk)X(i)f g~E X(i)X(izk)f g~R({k)~wk (1)

for k~1,2,:::,k and all i.

The solution to this problem is the kth order Gauss-

Markov process (14) of the form

X ið Þ~
Xk
k~1

akX(i{k)zZ(i) (2)

where Z(i)’s are independent, identically distributed

normal random variables with zero mean and variance

s2, denoted by N(0,s2), a1,a2,...,ak, s2 are unknown

coefficients chosen to satisfy the autocorrelation function,

and k is the order of the Markov process.

In a practical problem, we usually know a sample

sequence X(1),X(2),:::,X(n) from which the autocorrelation

R(0),R(1),:::,R(k) may be calculated. Therefore, the

question is: knowing the process has the form in

Equation 2, is it possible to choose ak values to satisfy

the constraints (Equation 1)? The answer to this question

is yes. The procedure to achieve this goal, after some

algebraic manipulations (in Equation 2), is given by

R(0)~
Xk
k~1

akR({k)zEfZ2(i)g~{
Xk
k~1

akR({k)zs2 (3)

R(l)~
Xk
k~1

akR(l{k), l~1,2, . . . (4)

Equations 3 and 4 are known as Yule-Walker

equations. This set of equations has a unique solution,

and from them it is possible to determine the ak values

from the known R(k). The next question is, how many

correlation lags should we consider? That is, what is the

optimum value of k? The answer to this question is to

make use of the Levinson-Durbin algorithm (16,17).

Formally, from the Yule-Walker equations, a system of

recurrent linear equations, the aforementioned algorithm

may find the coefficients. In addition to this, an adjustment

is needed between the set of experimental data and the

algorithm (model) used to represent it. Hence, this

adjustment is achieved by use of the selection method

based on the information criteria (18,19). The idea is to

select memory orders smaller or larger than the true

memory order in order to balance them. For instance, if

we consider Equation 5, the term ln ŝs2 may be interpreted

as a penalty for selecting memory orders smaller, and the

term k ln n
n can be interpreted as a penalty for selecting

memory orders larger than the true value. Therefore,

minimizing these two quantities leads to the true memory

order. One of these information criteria is known as the

Bayesian Information Criterion (BIC). In the case of

thermal time series, the memory order is determined for

the model satisfying

min ln ŝs2{
k ln n

n

� �
(5)

where k is the memory order of the AR model, n is the

sample length, and ŝs2 is the maximum likelihood

estimator of the noise variance given by ŝs2~Pj
j~1

X(j){X̂X(j)ð Þ2
nrj , where X(j) is the original series and X̂X(j) is

the series generated by the model and is the coefficient of

the correlation from the original series.
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System theory
One could ask if a system theory approach may be

employed to provide the same information as that

obtained from rat temperature sample sequences. In this

direction, consider a discrete time system with input Z(n),
impulse response H(n) and output X(n). Let Z(z), H(z) and

X(z) be the corresponding z-transform, that is, Z(z)~P
n Z(n)z

{n, H(z)~
P

n H(n)z
{n, and X(z)~

P
n X(n)z

{n.

From the previous subsection, we know that the stochas-

tic process is a kth order Gauss-Markov process and,

consequently, an autoregressive process. Under a sys-

tem theory point of view, an autoregressive process is

such that the system has only poles, that is,

H(z)~
1

1{
Pj

j~1 ajz
{j

~
X(z)

Z(z)
: (6)

Equivalently,

Z(z)~X(z) 1{
Xk
j~1

ajz
{j

" #
,

X
n

Z(n)z{n~
X
n

X(n){n{
X
n

Xk
j~1

ajX(n)z
{(nzj):

(7)

The next step is to determine the kth coefficient of the

previous polynomial equality, Equation 7. Let nzj~k in

the second term on the right-hand side of Equation 7. This

implies that n{j~k. As a consequence, the kth coefficient

in Equation 7 is given by Z(k)~X(k){
Pk
j~1

ajX(k{j).
Therefore,

X(k)~Z(k)z
Xk
j~1

ajX(k{j) (8)

Note that this is an autoregressive system with order k,
denoted by AR(k).

Spectral analysis
The spectral density function of an autoregressive

process as described in Equation 8 may be obtained as

follows: From Equation 8 we have

X(k)~a1X(k{1)z:::zakX(k{k)zZ(k), (9)

multiplying both sides by z{k, and summing both sides
over k and noticing that the left-hand side is the z-
transform of X, we have X(z)~

P
k a1X(k{1)z{kz:::

z
P

k akX(k{k)z{kz
P

k Z(k)z
{k.Changingvariablesleads

t o X(z)~
P

m (a1z
{k)X(m){mz:::z

P
m akz

{kX(m)z{m

z
P

k Z(k)z
{k: Notice that the terms ajz

{j, for 1ƒjƒ1,

are constants, yielding X(z)~(a1z
{k)(

P
m X(m)z{mz:::

z(akz
{k)(

P
m X(m)z{k)z

P
k Z(k)z

{k:
The left-hand side is the z-transform of X(.) and also of

the terms in parenthesis on the right-hand side. Hence,

X(z) 1{a1z
{1{a2

{2{:::{akz
{k

� �
~Z(z).

Since E Z(i)Z(j)j j~s2di,j, it follows that

X(z)j j2~ s2

1{a1z{1{a2z{2{:::akz{kj j2
,

where z~e jw. Since X(z)j j2 is just half the power
spectrum, then the spectral density function is given by

S(w)~
2s2

1{
Pk

k~1 ake
{jwk

��� ���2 : (10)

Hence, Equation 10 is the maximum entropy spectral

density subject to the constraints R(0),R(1),:::,R(k).

Blood pressure measurement
Systolic blood pressure (SBP) was measured in

conscious rats at 5 and 8 weeks of treatment (SD or

HFD), employing an indirect tail-cuff method using an

electrosphygmomanometer combined with a pneumatic

pulse transducer/amplifier (BpMonWin Monitor Version

1.33, IITC Life Science, USA). This indirect approach

allowed repeated measurements with a close correlation

(correlation coefficient=0.975), compared to direct intra-

arterial recordings (20,21). The mean of three consecutive

readings represented the blood pressure.

Glucose tolerance test (GTT)
GTTs were performed in 10-week-old SD and HFD

rats, after 12 h of fasting in order to determine changes in

insulin sensitivity. Eleven rats from independent litters were

tested. To establish basal values of glucose and insulin,

blood samples were taken by lancing the tail vein before a

glucose challenge (time 0). They then received a single

bolus of 1 g/kg glucose ip. Blood samples were taken from

the tail vein at 0, 15, 30, 60, 90, and 120 min. Glucose from

whole blood wasmeasured with a glucometer (MediSense/

Optium, Abbott, USA). Serum was separated (50 mL) and

kept at ––206C for measurement of insulin levels by

radioimmunoassay. The incremental area under the

glucose tolerance curve (AUC) was calculated as the

integrated AUC above the basal value (time 0) over the

120-min sampling period using Prism 4 for Windows.

Biochemical analysis
Plasma and urine sodium and potassium concentra-

tions were obtained at 4 weeks of treatment and

measured by flame photometry (B262; Micronal, Brazil),

while creatinine concentrations were determined

spectrophotometrically (model 143, Instrumentation

Laboratories, USA). The parameters glucose, albumin,

globulin, total protein, chloride, magnesium, calcium,

phosphorus, HDL, LDL cholesterol, and triglycerides were

also collected at the 4th week in control and post-HFD

treatment (SD and HFD) and measured using enzyme

4 N.A. Lutaif et al.
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immunoassay kits with a Modular Analytic P Biochemistry

Analyzer (Roche Diagnostics, Germany). Enzyme-linked

immunosorbent assays for plasma insulin were used to

determine rat/mouse insulin (EZRMI-13K; Linco

Research, Millipore, USA), according to the manufac-

turer’s protocols.

Data presentation and statistics
All numerical results are reported as means±SD of

the indicated number of experiments. Diagnostic checking

was performed by analysis of the correlation of residues

between the model and the samples (19,22). As shown in

the Results section, the correlation of residues falls inside

the boundary ±1.95/
ffiffiffi
n
p

(23). The AUC of the spectral

density function was considered as the index of variability,

and we have used it to establish the statistical difference

between SD and HFD values. The calculi of these areas

respected the same interval defined along the axis of

frequency (w). Comparisons involving only two means

within or between groups were carried out using the

Student t-test. The level of significance was set at

P#0.05.

Results

Experimental model data
Table 1 shows the serum parameter analysis for

animals from age-matched SD and HFD groups. There

were no significant differences among serum biochemical

parameters in SD rats compared with the age-matched

HFD group, except for magnesium plasma levels, which

were significantly lower in HFD compared to SD rats

(P=0.0086). Arterial blood pressure (in mmHg) levels

were similar in both experimental groups (SD: 137±4.24

vs 131.75±5.8 mmHg in HFD, P.0.05).

GTT
GTTs were performed to verify the effect of a high-fat

diet on glucose tolerance, compared with the normal-diet

group. Our study shows that, on the 4th week, the HFD

group showed similar basal glycemia after overnight

fasting, when compared to the SD group. Otherwise,

after glucose intraperitoneal loading, the SD and HFD

groups achieved similar plasma glucose concentrations at

30, 60, 90, and 120 min expressed by the incremental

AUC. The measurements of plasma insulin levels during

the same period (expressed in ng/mL) were also similar in

SD and HFD animals.

Stochastic complexity analysis
From the previous subsections, the autoregressive

model (19,22,23) may be seen as the best model to

characterize temperature as the biological parameter. This

model takes into consideration the inherent memory (past

data) of the biological system to generate or predict future

data. In mammals, adjustments in temperature are made

in accordance with information observed previously.

Through self-regulating mechanisms, animals are capable

Table 1. Serum biochemistry data for 10-week old age-matched rats receiving a standard diet or a high-fat diet for 4 weeks.

Standard diet (n=7) High-fat diet (n=6)

Sodium (mM) 141.7 ± 0.9 141.7 ± 1.0

Potassium (mM) 4.3 ± 0.2 4.3 ± 0.3

Chloride (mM) 104.3 ± 0.4 106.0 ± 1.2

Magnesium (mEq/L) 1.9 ± 0.044 1.7 ± 0.044*

Calcium (mg/dL) 9.3 ± 0.2 9.4 ± 0.2

Phosphorus (mg/dL) 6.8 ± 0.4 6.7 ± 0.3

Cholesterol (mg/dL) 50.6 ± 3.5 49.3 ± 5.1

Triglycerides (mg/dL) 37.4 ± 3.5 40.0 ± 1.6

HDL-cholesterol (mg/dL) 47.0 ± 3.1 46.3 ± 4.6

LDL-cholesterol (mg/dL) 6.3 ± 0.5 4.8 ± 0.5

VLDL (mg/dL) 8.8 ± 1.3 6.8 ± 1.2

Basal glucose (mg/dL) 123.9 ± 12.0 115.0 ± 8.6

Urea (mg/dL) 39.0 ± 2.0 40.8 ± 2.3

Creatinine (mg/dL) 0.4 ± 0.005 0.4 ± 0.1

Albumin (g/dL) 4.0 ± 0.1 4.1 ± 0.1

Globulin (g/dL) 2.7 ± 0.6 2.0 ± 0.0

Total protein (g/dL) 6.0 ± 0.1 5.8 ± 0.1

Insulin (ng/mL) 0.53 ± 0.21 0.42 ± 0.12

GTT (AUC) 1201 ± 337 1345 ± 245

Data are reported as means±SD. GTT: glucose tolerance test; AUC: area under the curve. * P,0.05 (Student t-test).
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of avoiding significant thermal fluctuations. Estimation of

the order of equations was performed via a partial

autocorrelation function, p̂p~r̂r~wk~ P�(k)k k= P(k)k k, where
P(k) is the autocorrelation matrix and P�(k) is the matrix

P(k) with the last column being substituted by the

autocorrelation vector; :k k denotes the determinant and

the ak’s denote coefficients of the AR model, by use of the

Levinson-Durbin algorithm. For an autoregressive process

with memory k, denoted by AR (k), wk=0, for k k, and

wk~0, for k k. Note in both panels of Figure 1 that the

greatest value of the partial autocorrelation function r̂r is

achieved when k=1. Best-fit equations were also chosen

according to the minimum value obtained by BIC. All steps

were performed with use of the software Mathematica 7.0

(16-18).

The total number of samples was the same for all

animals and achieved 361 consecutive valid measure-

ments, covering a 6-h period from 0:00 to 6:00 am

(Figure 2). These measurements were organized as

follows: SD : TSD~ t1,t2,:::,t361f g, XSD
t ~(X(t1),:::,X(t361))~

(X1,:::,X361), HFD : THFD~ t ’1,:::,t ’361f g, and XHFD
t ~(X(t ’1)

,:::,X(t ’361))~(X ’1,:::,X ’361):
Figure 2 exemplifies the time averaging series,

which were the sources used for derivation of the

process for the autoregressive model. The best-fit

model is achieved with the first order AR model, AR

(Equation 1), given by

X(t)~a1X(t{1)zs2 (11)

where a1 denotes the first order autoregressive coeffi-
cient, and s2 denotes the variance of white noise. AR

models derived from experimental data, Equations 12

and 13, originated from the Levinson-Durbin method

from temperature samples collected from SD rats at

TSD :

X(t)SD~0:98:X(t{1)z0:006 (12)

and X(t)SD~0:98:X(t{1)z0:0068; (13)

and from HFD rats at THFD :

X(t)HFD~0:97:X(t{1)z0:096 (14)

and X(t)HFD~0:96:X’(t{1)z0:006: (15)

Figure 3 shows the cross-correlation of residues,

denoted by r̂r kð Þ (the difference between correlation of the

original and AR series) of the temperature sample data

with those of Equation 8, up to k= 30. As can be seen,

corresponding cross-correlation values of residues k as a

function falls between the bounds: +1:96=
ffiffiffiffiffiffiffiffi
361
p

, in

agreement with the model and its data. Since the

coefficients in AR (Equation 1) models are less than 1

(see Equations 4, 5, 12, and 13), it follows that the

associated stochastic process is stationary.

Now, if the autoregressive process has k~1 and

a1~r, then from

X(n)~Z(n)zrX(n{1), (16)

by using recursively Equation 16, we arrive at

X(n)~Z(n)z
X$
j~1

r jZ(n{j)~
X$
j~1

r jZ(n{j): (17)

From Equation 6, X nð Þ is the convolution of H(n) by Z(n),
that is,

X(n)~H(n) � Z(n)~
X
j

H(j)Z(n{j): (18)

By comparing Equation 18 with Equation 19, it follows that

the impulse response H nð Þ is given by

H(n)~
rn,n§0

0,nƒ0

�
: (19)

Consequently, the frequency response is

Figure 1. Partial auto-correlation function r̂r for the standard

diet (panel A) compared to the high-fat diet (panel B) as a

function of k(lag).
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H(n)~
1

1{re{jw
: (20)

Therefore, the previous two Equations, 19 and 20,

specify the time and frequency responses, respectively

(see Figures 4 and 5) of the corresponding system.

Note that the spectral density function under a system

theory point of view may be obtained as X(z)j j2~
X(x):X

�
(z), where X

�
denotes the complex conjugate of X

leading to that of Equation 10. From the AR (1) model, the

spectral density function is given by

S(w)~
2s2

1za21{2a1 cosw
� 	 , (21)

where for SD rats a1= 0.98 and ŝs2= 0.0068, and for HFD

a1= 0.96 and ŝs2= 0.006. The spectral density function

(Equation 21), for the SD and HFD groups, is depicted in

Figure 6. As can be seen, the signal energy content is

located at low frequencies (39.78610–4 rad/min) after the

animals underwent the HFD for 4 weeks compared to

appropriate controls. Thus, the mean AUC of this specific

region to demonstrate the significant difference between

the thermal profile of SD rats compared to HFD rats

showed 0.04±0.0014 and 0.018±0.0028, respectively,

with P,0.001.

Discussion

In the present study, we evaluated, for the first time,

stochastic complexity analysis as a tool to detect, early

and efficiently, presumable alterations in thermal-series

profile registers in a specific model of metabolic and

energy disorder. As previously defined, the temperature

register obeys a nonlinear and randomized model (24).

Thus, by a chaotic solution to a deterministic equation, we

mean a solution whose outcome is very sensitive to initial

conditions and whose evolution through phase space

appears to be quite random. Taking into account the time

course series of core temperature measured in control

(SD for rodents) and experimental groups of animals

(HFD-treated rats), as a source of information, the

characterization of thermal profile comes from establish-

ment of the stochastic process. On the other hand, from

the information theory point of view, every source has an

associated measure quantifying its output. In this case

study, the associated temperature time course registers

were treated through maximum entropy distribution as a

means for stochastic characterization of the thermal

series. In this way, in the current study, we focus on the

characterization of thermal series maximized by a specific

stochastic process (autoregressive model) under appro-

priate sets of constraints (the autocorrelation function) to

produce the best variability analysis (spectral analysis).

The HFD model is extremely efficient for creating

pathophysiological conditions such as hyperleptinemia,

peripheral insulin resistance, diabetes mellitus, and

obesity that lead to long-term metabolic and energy

disorders. However, in this study no difference was

observed in glycemic levels, blood pressure, and body

mass measurement after 4 weeks of HFD intake

compared to age-matched animals treated with standard

chow (Table 1). On the other hand, the present study was

able to establish, by autoregressive analysis, a consistent

Figure 2. Temperature seriesXSD
t for the standard diet (panel

A) compared to XHFD
t for the high-fat diet (panel B).

Figure 3. Representative illustration of cross-correlation of the

residues for the standard diet group.
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and reliable analytical method that has permitted us to

characterize temperature as a referential biological para-

meter in homeothermic HFD-treated rats. Thus, the

current temperature data analyzed by spectral density

function has shown a distinct behavior when compared to

the SD control and HFD-treated groups, respectively, as

illustrated in Figure 6. Moreover, when statistical tests

were conducted on the spectral analysis for these same

series of temperature, we observed a significant decrease

in the variability of values found, mainly, in the low

frequency spectrum (Figure 6). This variability corre-

sponded to one cycle every 4 h or, in the international

system of notation, ,39.78610-4 rad/min or 0.25 cycle/h,

after the animal underwent the HFD for 4 weeks, with a

different circhoral rhythm to maintain the core and

peripheral temperatures on small-range control in mam-

mals (25). This reduction was observed by parametric

analysis of the autoregressive model.

The role of the CNS has been demonstrated in the

control of thermal and metabolic homeostasis in mam-

mals (9,24). It is well known that thermal control pathways

involve central and peripheral afferent nerve stimuli

arriving into the hypothalamic preoptic area and efferent

neural and humoral signaling control on thermogenesis

and heat loss. Thus, studies have demonstrated that,

after only 1 day of HFD intake, it is already possible to

observe in rats an attenuated activity of both the insulin

and leptin pathways signaling at the level of the

hypothalamic nucleus (26-28). These hormones, acting

either through stimulation of uncoupling proteins or via

increased sympathetic activity, promote a stimulated

thermogenic activity in those major organs of metabolic

activity (29). Conversely, this metabolic hyperactivity

leads to adjustments in the CNS to maintain stability of

body temperature, necessary for the proper functioning of

enzyme activities of all the chemical reactions associated

with basal metabolism (30). Since this occurs in home-

othermic mammals, these adjustments of body tempera-

ture are supposedly made in accordance with information

data already generated and memorized. We hypothesize

that it takes into account the inherent memory of biological

parameters that predict data or estimate generation of

future behavior profiles. In the present study, through self-

regulating mechanisms, HFD-treated animals were cap-

able of avoiding significant thermal fluctuations when

compared to the SD group. Here, we may suppose that

there are effective and fine-driven response sensors that

are modulated by neural thermal control centers located in

the hypothalamus, with regard to maintaining in a

stationary condition the body temperature time series

(Figure 2).

As previously demonstrated by hemodynamic studies,

when analyzing heart rate time registers, reduction in

variability of physiological parameters could be a marker

for a deleterious prognosis in the long run (31,32),

although a few studies have demonstrated some relation-

ship between thermal profile and mortality (1,32). In the

specific case of heart rate, statistical analysis of varia-

bility, by itself, was found to be very sensitive but less

specific when applied in practice (1,31,32). In the current

study, we accessed stochastic complexity analysis as

being highly sensitive and specific for detecting discrete

and subtle variations in thermal series in a specific

metabolic-induced disorder. Data emerging from a sto-

chastic analysis model of sequential temperature regis-

ters seem to be highly relevant, since there is a

hierarchical priority that keeps thermal homeostasis under

a narrow range of control to reach an adequate internal

milieu for cells and life survival, compared with other

biological parameters. We may state that mathematical

analysis is an efficient tool for early prediction of the

expression of pathophysiological syndromes even before

appraisal of metabolic and clinical disorders. Thus, we

may infer from the results of our study that thermal series

analysis by a stochastic model could be proposed as a

sensitive technique for clinical and pathophysiological use

to predict disorders in metabolic and energy homeostasis.

Figure 4. System time response for the standard diet group.
Figure 5. Representative illustration of the system frequency

response for the standard diet group.
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Conclusion

In conclusion, maximum entropy distribution as a

means for stochastic characterization of temperature time

series registers may be established as an important and

early tool to aid in diagnosis and prevention of metabolic

diseases due to its high ability for detecting small

variations in thermal profiles. Additional studies are being

performed with other tools to establish the precise

correlation between biological and mathematical concepts

that involve representation and more specific analysis of

thermal series profiles in experimental models in normal

or disease states.
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