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Abstract

Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However,
there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological
approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical
methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The
objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding
cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24)
and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed
using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the
a-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in
the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes
were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity
than other waves, suggesting that it is a possible biomarker of exposure to IR.
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Introduction

The possible effects of ionizing radiation (IR) on the
nervous system are of great clinical interest, because this
technology is widely applied in brain imaging as well as in
the treatment of brain tumors (1). However, the available
data on structural damage to the brain and to neurophys-
iological functions caused by IR and the repercussions for
animal behavior are not yet conclusive (2). After acciden-
tal exposure to IR in humans, as in the case of Chernobyl,
an increased incidence of schizophrenia was identified.
Hypotheses suggest that IR can be a trigger for people
who have a predisposition to schizophrenia, or can even
cause schizophrenia (3). However, the neurophysiological
basis for this is poorly understood (1).

Since the first radiobiological experiments, the
sensitivity of the human brain to radiation has been a
point of discussion (4). Evidence has accumulated
indicating significant neurophysiological alterations as
a result of exposure to ionizing radiation, such as
changes in electroencephalogram (EEG) patterns, the
presence of epileptiform waves and neuropsychiatric
disorders (5,6).

The law of Bergonié and Tribondeau (7) determines
which cells are most (dividing and undifferentiated) and
least (non-dividing and differentiated) sensitive to IR.
Nerve tissue is constituted of differentiated cells; these
cells are non-dividing and in the G0 stage of the cell cycle.
Together with muscle cells these differentiated cells are
among the most radioresistant in the human body, while
the most sensitive cells are spermatogonia and erythro-
blasts, epidermal stem cells and gastrointestinal stem
cells. After irradiation a reduction in neurogenesis was
noted in the hippocampus as a result of cellular death by
apoptosis, showing that these cells are highly sensitive to
IR (8). Another study, involving the proliferative zone of the
developing rat retina, has also shown that gamma
radiation induces apoptosis (9).

The brain is a highly complex and nonlinear network
(10). The most simple and usual record of its activity in
routine clinical practice is obtained using an EEG, which is
an important tool for understanding the behavior of the
brain in normal and disease states (11). Berger (12)
showed the existence of a relationship between brain
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states and a specific range of frequencies of the EEG. In
addition, some research has associated different behav-
iors with specific EEG frequency bands, for example, the
frequency range of 8-13 Hz is associated with quiet
wakefulness and alterations of this rhythm can be
associated with pathophysiological processes (13).

To identify and quantify the different brain oscillations,
the spectral decomposition of this signal should be
realized. A linear method used in this decomposition is
the Fourier transform (FT). This method allows the
characterization of the EEG through its component
frequencies (11). Many studies have shown that nonlinear
analysis methods, when applied to the EEG, were also
efficient in identifying pathological processes (14,15).
Sokunbi et al. (16), using the sample entropy and Hurst
exponent methods, analyzed the brain functional mag-
netic resonance imaging signals in individual schizophre-
nics and observed a higher complexity than in healthy
individuals. Some non-linear methods have been used for
seizure prediction, such as the Lyapunov exponent,
similarity index and correlation dimension (17). Lempel-
Ziv complexity applied in brain magnetoencephalograms
has been reported to have good accuracy in identifying
Alzheimer disease (18) and for the identification of
sedation in rats (19). Manilo and Volkova, using the
approximated entropy, were able to quantify deep
anesthesia (20). One important problem in analyzing the
EEG is that most methods designed for stationary time
series, i.e. having statistical properties such as mean and
variance that do not vary with time (21), are inadequate for
the analysis of non-stationary time series such as the
EEG. An efficient approach for handling non-stationary
series is the detrended fluctuation analysis (DFA), which
has been widely used to describe the long-range temporal
correlation (LRTC) in the EEG.

The DFA is one of the most widely used methods for the
identification of LRTC in time series especially in being able
to quantify scales in non-stationary series such as the EEG
(22). Studies have successfully used it to identify changes
in EEG patterns regarding neurodegenerative diseases
such as Alzheimer disease (15). Other authors have
identified long-range temporal correlations in the EEG of
humans and characterized the exponent a-DFA to detect
diseases such as depression and epilepsy (23). LRTC are
also present in the hippocampus of epileptic (21) and
schizophrenic patients (24). Abasolo et al. (14) evaluated
the combination of spectral analysis with DFA. They
suggested that the application of the LRTC regarding the
investigation of the amplitude envelopes of the oscillations
is more feasible in identifying degenerative changes
through the EEG, such as in the Alzheimer disease model.
Furthermore, the sensitivity of the a-DFA exponents in
identifying changes in the EEG profile varies according to
the frequency of the wave and the region recorded (24,25).

Consequently, the brain has been characterized as a
sensitive tissue to ionizing radiation and could be used as

a biomarker of exposure. Perhaps it could be a faster
method for evaluating human acute and recent (3 months)
exposures when compared with the traditional well-
established method of cytogenetic dosimetry, which is
based on the quantification of chromosome aberrations in
peripheral lymphocytes, and is also a laborious and time
consuming method of biodosimetry, despite its good
specificity. The objective of the present study was to use
the power spectrum and DFA to identify possible variations
in the cortical electrical activity of rats after gamma-ray
exposure, and attempt to identify new biomarkers of brain
exposure to IR based on the methods proposed here.

Material and Methods

Animals and experimental design
Fifteen adult male Wistar rats (Rattus norvegicus) were

obtained from the vivarium of the Departamento de
Morfologia e Fisiologia Animal, Universidade Federal Rural
de Pernambuco (UFRPE). The animals were housed using
a 12-h light/dark cycle and had free access to food and
water. The experimental protocol was approved by the
Committee on Animal Research and Ethics of the UFRPE
(#010/2012), according to the basic principles for research
using animals. The animals were divided into three groups:
a control (n=5) and two irradiated groups; one was
evaluated at 24 h (IR24; n=5) and the other at 90 days
(IR90; n=5) after exposure to IR.

Radiation exposure
The irradiation was carried out with the animals

anesthetized with 10 mg/kg xylazine and 75 mg/kg
ketamine administered intraperitoneally. The anesthetized
animals were irradiated at the Instituto de Radioterapia
Waldemir Miranda. The absorbed dose using 60Co
gamma radiation was 9 Gy to the top of the head followed
by 9 Gy to the bottom of the head, for a total dose of 18
Gy. The gamma source was one that is used for patient
radiotherapy, with a physical half-life of 5.3 years and a
gamma ray range of 1.17 to 1.33 MeV. The focal length
was 80 cm from the radiation source. The dose rate of the
source was 123.4 cGy/min and the exposure time was
15.27 min.

Electrocorticogram recording
The electrocorticogram (ECoG) is a methodology used

to record the electrical activity of the cerebral cortex by
introducing electrodes directly onto the exposed surface of
the cortex. ECoG has higher resolution than EEG
because of the attenuation of postsynaptic potentials by
the skull that has a low conductance (26).

To record the ECoG, animals were anesthetized with
10 mg/kg xylazine and 75 mg/kg ketamine administered
intraperitoneally. Rectal temperature was maintained at
around 37.5±1°C with an electric heater placed under the
animal. Thereafter, the head was fixed to a stereotactic
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base in which an incision on the top of the head exposed
the periosteum, which was subsequently removed. Then, a
circular hole of approximately 3 mm in diameter was
trepanned on to the left hemisphere of the parietal bone,
exposing the cortex. In this hole, a single Ag-AgCl electrode
was placed on the cerebral cortex and an identical electrode
was placed on the nasal bone to perform the ECoG.

Twenty minutes after the anesthesia the ECoG was
registered (over a period of 30 min) using an EMG device
410C (EMG Systems, Brazil) and a sampling rate of
750 Hz. Figure 1 shows the ECoG recording for the
control, IR24 and IR90 groups. After the ECoG recording,
the animals were euthanized using deep anesthesia.

Signal processing
The ECoG recordings were segmented using windows

of 2 min in duration. These ECoG segments were used for
power spectrum calculus to approximate to a stationary
condition. The segments were imported into OriginPro 9.0
(OriginLab, USA) and filtered using a bandpass filter of the
fast FT type. Then, the delta (0-4 Hz), theta (4-8 Hz),
alpha (8-16 Hz), beta (16-32 Hz) and envelopes of the
frequency intervals corresponding rhythms were obtained
using the Hilbert transform.

The FT square of the ECoG originates its power
spectrum. The mean power obtained in the power spectrum
allows the estimation of the contribution of the different brain
rhythms in the ECoG signal. Formally, the power spectrum for
an ECoG record can be calculated as follows (Equation 1):

-
Eo ¼

Z ve

vs

jf ðvÞj2dv
Z ve

vs

dv
(Eq. 1)

where f(v) is the FT of the f(t) signal, here represented by
the ECoG. The

-
Eo power spectrum normalized by a

determined frequency interval o ¼ ½vs; ve�, here repre-
sented by the different rhythms.

The calculus of the mean power for each rhythm was
obtained using a routine based on Welch’s method (27)
and implemented in the software MATLAB (Mathworks,
USA).

The DFA is a non-linear method based on fluctuation
analysis of the data after removal of trends in an
integrated time series (28).

The procedure to obtain the integrated time series is
shown in Equation 2:

yðkÞ ¼
Xk
i¼1

ðyðiÞ �MÞ (Eq. 2)

where M is the mean value of y (i) with i = 1, 2, ..., N. N is
the last value of the series and k is an integer number that
represents the superior limit of integration.

The integration above transforms the original series
into an unbounded process. The series y (k) is divided into
intervals of length n. Each interval is set by using
polynomial functions, representing the trend in each
interval. The function that characterizes the length of the
fluctuations for a length n of the intervals used to remove
the trend is shown by Equation 3:

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

½yðkÞ � ynðkÞ�2
vuut (Eq. 3)

The calculation is repeated at various interval lengths
n to determine the relationship between fluctuations F(n)
and the length of interval n. For fractal processes (self-
similar), F(n) increases with n by the power law, as shown
in Equation 4:

FðnÞEna (Eq. 4)

The self-similarity exponent a can be calculated by
using the slope obtained by linear regression of graph log
F(n) versus log n.

Figure 1. Electrocorticogram segment of 5 s dura-
tion for the following groups: control (A); IR24
(irradiation evaluated at 24 h) (B) and IR90 (irradia-
tion evaluated at 90 days) (C).
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If a=0.5, the series was the result of a random event;
a40.5 indicated the persistent long-range correlations.
The other values were: a=1 corresponding to 1/f noise
(very rough landscape); the aX1: correlations existed but
ceased to be of a power-law form or a random walk-like
fluctuation; and finally, a=1.5: brown noise; the integration
of white noise (very smooth landscape) (28).

Statistical analysis
All statistical data are reported as the median and

interquartile range. The non-parametric Kruskal-Wallis test
for significance was used; for comparison between
samples, the Dunn’s post hoc was used when required.
A P value o0.05 was considered to be statistically
significant.

Figure 1 shows a segment of the ECoG for the control,
IR24 and IR90 groups. For each experimental group, the
power spectrum from each segment of the ECoG was
constructed and the power calculated for different

frequency intervals corresponding to the different rhythms
(Figure 2).

Figure 3 shows the cortical rhythms filtered from ECoG
segments using a FT filter for the control group. In this
figure, changes can be noted in the delta, theta and alpha
rhythms. However, the beta rhythm was not modified.

The mean power and interquartile interval (in mV2/Hz) for
the delta, theta, alpha and beta rhythms regarding the
ECoG’s can be seen in Figure 4. The IR24 and IR90 groups
showed a significant reduction in the mean power for the
delta rhythms relative to the control group. Theta rhythms for
the two irradiated groups increased their potencies sig-
nificantly compared with the control group (Po0.01). The
mean powers of alpha and beta rhythms did not differ from
the control. However, the mean power for the two irradiated
groups differed for the alpha rhythms (Po0.05).

Mean values and the interquartile interval of the a-DFA
regarding the delta, theta, alpha and beta rhythms, and
the entire record of the ECoG are shown in Figure 5. The
a-DFA exponent for the delta wave did not vary
significantly between the groups, while for theta and beta
there was only a significant difference between the control
and IR24 groups. The alpha rhythm only differed
significantly between the IR90 and the control groups. In
the analysis of the entire record of the ECoG, the
exponent of the a-DFA in both irradiated groups differed
significantly from the control.

Discussion

The focus of this study was on the investigation of the
sensitivity of the power spectrum and DFA to identify
changes in the ECoG profile at 24 h after IR exposure
(IR24 group) and 3 months after IR exposure (group
IR90). The purpose was to establish a biomarker
signature of brain exposure to IR.

The power spectrum of the ECoG showed that for the
IR24 group, the ECoG activity regarding theta and alpha
rhythms increased relative to the control, and was

Figure 2. Power spectrum of the electrocorticogram for the
following groups: control (black), irradiation evaluated at 24 h
(IR24; red) and at 90 days (IR90; blue).

Figure 3. Frequency of delta (d), theta (y), alpha (a)
and beta (b) brain rhythms filtered from the
electrocorticogram.
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consistently elevated even at 90 days after IR exposure
(group IR90). The delta and beta waves were not altered
by IR when compared with the control. The effects of IR
on brain cortical activity in rats has not been previously
reported in the literature, but Loganovsky and Yuryev (6)
in a study involving survivors of Chernobyl showed that
the power spectrum of the EEG increased the activities of
beta and delta waves and decreased alpha and theta
wave activity. Yaar et al. (29), working with humans
exposed to low doses of IR (1.21-1.39 Gy), also showed
an increase in beta wave activity in the power spectrum
of the EEG, but no significant change was observed in
other rhythms. Despite the difference between the ECoG
in rats and humans, the power spectrum and the alpha
coefficient of DFA can be used as a biomarker of
exposure to IR, taking into consideration the specificity
of each animal.

The DFA identified a reduction in the LRTC in the
ECoG record, both at 24 h and 90 days after irradiation.
This method when applied to the theta component of the
ECoG showed that for irradiated groups the LRTC for
theta rhythm activity increased significantly relative to the
control group at both 24 h and 90 days after irradiation.
For the alpha component, a significant increase was
observed only at 90 days after irradiation when compared
with the control group. For the delta and beta components
of the ECoG no change was observed in the LRTC in
relation to the control group.

The theta rhythm in the IR24 group was more sensitive
in identifying changes in ECoG patterns. For this rhythm a
correlation was shown for long-range anti-persistent
rhythms and was equal to 0.07, while for the other
rhythms the a-DFA coefficient was approximately 1.5,

corresponding to Brownian noise. When applied to the
entire ECoG, a value of a-DFAE1.5 corresponding to
Brownian noise was found. The large values of a-DFA
may result from deep anesthesia (30).

In experimental animals, X-irradiation with 5 or 10 Gy
reduced hippocampal neurogenesis and induced cogni-
tive deficits at 3 months after irradiation (31), suggesting
that cranial irradiation may induce hippocampal-depen-
dent memory deficits. Active neurogenesis is responsible
for learning activities, memory and spatial orientation (32)
and modulation of theta rhythm (33). Therefore, changes
in the theta rhythm in the present study can be related to
the damage that IR induced in this theta generator; this
was strongly supported by the presence of a long-range
correlation in the IR24 group and an increase in the power
of the theta rhythms in the IR24 and IR90 groups
compared with the control group.

Computer models have shown that temporal long-
range correlations are dependent on the oscillation
amplitudes of the potentials generated by neural net-
works (34). The spread of electrical activity is dependent
on the membrane system and neurotransmitters (32).
Some recent studies have demonstrated that different
types and sources of IR cause changes in the post-
synaptic potential in the hippocampus, making this region
hyperexcitable (35–37). The intracellular recordings of
neurons showed that membrane properties such as
resistance, the time constant, duration of the threshold
of action potential and spike frequency adaptation were
not significantly changed from 1 to 3 months after
exposure to IR (35). Obenaus et al. (1) suggested that
these neurophysiological changes have relationships
with common cellular pathways, probably with an

Figure 4. Box plot (median, 1st and 3rd quartiles,
maximum and minimum) showing the results of the
energy values for the groups control, irradiation
evaluated at 24 h (IR24) and at 90 days (IR90) for
the delta (A), theta (B), alpha (C) and beta (D)
waves. *Po0.05 (Kruskal-Wallis nonparametric
test).
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increase in excitatory neurotransmitters and a decrease
in inhibitory ones.

In summary, power spectrum and detrended fluctuation
analysis were sensitive in identifying changes in ECoG and
showed changes in the pattern of ECoG at 24 h after
irradiation; these persisted after 90 days. Applications of
these methods could be used in the future to identify
radiation levels as a new biomarker of brain exposure to IR.
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