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s there a role for voltage-gated Na™ channels in the
aggressiveness of breast cancer?
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Abstract

Breast cancer is the most common cancer among women and its metastatic potential is responsible for numerous deaths. Thus,
the need to find new targets for improving treatment, and even finding the cure, becomes increasingly greater. lon channels are
known to participate in several physiological functions, such as muscle contraction, cell volume regulation, immune response
and cell proliferation. In breast cancer, different types of ion channels have been associated with tumorigenesis. Recently,
voltage-gated Na™ channels (VGSC) have been implicated in the processes that lead to increased tumor aggressiveness.
To explain this relationship, different theories, associated with pH changes, gene expression and intracellular Ca2™, have been
proposed in an attempt to better understand the role of these ion channels in breast cancer. However, these theories are having
difficulty being accepted because most of the findings are contrary to the present scientific knowledge. Several studies have
shown that VGSC are related to different types of cancer, making them a promising pharmacological target against this
debilitating disease. Molecular biology and cell electrophysiology have been used to look for new forms of treatment aiming to

reduce aggressiveness and the disease progress.
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Introduction

Cancer is one of the main causes of death worldwide,
and understanding the origins and progression of the
disease is essential for better treatments and diagnosis.
Death is mainly caused by metastasis, in a stage where
tumor cells disassociate from each other, destroy the basal
membrane, and enter the blood stream, forming secondary
tumors in other parts of the body (Figure 1) (1-4).

Tumors are classified into benign and malignant.
A benign tumor is characterized by a localized mass of
cells, which multiplies slowly and resembles the original
tissue, and normally is not life threatening. A malignant
tumor shows a higher degree of mutations and autonomy,
can invade adjacent tissue and present migration of tumor
cells to new places in the body, forming metastatic tumors.
Metastasis is caused by the loss of cell adhesion, which
leads to their migration to the extracellular matrix where
they can reach the blood or lymphatic vessels. The rate of
metastasis increases with the degree of aggressiveness
of the tumor cells. This process is affected by different molec-
ular and cellular factors, and also by the microenvironment
in which the tumor is located. All these factors will determine
the occurrence or absence of metastasis (2,3).
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lon channels, which are transmembrane proteins that
function as gates that control the flux of ions across the
cell membrane, have been associated with tumorigene-
sis and tumor progression, although their role in those
processes is not totally understood. Many studies have
demonstrated the participation of voltage-gated Na* chan-
nels (VGSC) in the progression of different tumors, such
as prostate cancer, small cell lung cancer, breast cancer
and others, linking VGSC to the invasion capacity of
tumor cells (4-9). With regard to breast cancer, it has been
found that VGSC are more expressed in cells with a high
metastatic capacity, such as MDA-MB-231 cell line, when
compared to weakly metastatic breast cancer cells, as
MCF-7 cell line (10-13). It has been shown that the inva-
sion capacity of MDA-MB-231 was reduced by approxi-
mately 30% when Na™* currents were blocked with
tetrodotoxin (TTX), a potent VGSC blocker (14). Results
reported by Fraser and others (15) show that Na* chan-
nels’ activity was associated with the increase in cellular
motility, endocytosis and invasion of metastatic human
breast cancer cells. They also revealed that expression
of a “neonatal” splicing form of VGSC was increased in
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Figure 1. Tumorigenesis process. The interaction between DNA and different carcinogenic factors can cause mutations in genes that
are responsible for controlling several important cellular functions, such as the regulation of apoptosis. The injured cell then has a lack of
proliferation control, which leads to the formation of tumors. The tumor can present a higher degree of aggressiveness, in which tumor
cells have characteristics like the loss of cell adhesion and increase in expression levels of ion channels. In some aggressive cancers,
cells can reach the blood stream and start the development of a cancer in new sites throughout the body (metastasis). (Figure adapted
with permission from Araujo P et al. Ciéncia Hoje 2014; 54: 36-39. (78)).

these cells and was directly associated with the metastatic
potential.

Taking into account the role of VGSC in the progres-
sion of breast cancer, this protein should be considered
as a new target for developing anti-cancer therapies. This
paper reviews recent information about these ion chan-
nels and their participation in the tumorigenesis process.
We also discuss the possibilities of VGSC being a poten-
tial therapeutic target.

Cancer statistics

Breast cancer is the second most common cancer in
the world and the most frequent among women. Breast
cancer is the fifth most common cause of overall death
from cancer, only behind lung, liver, colorectal and stomach.
Predictive statistics indicate that the number of new cases
will rise from 14 million in 2012 to 22 million in the next two
decades (16,17), and the number of deaths will be increased
by 45% until 2030 (18).

It is believed that the first event that occurs in the cells
during carcinogenesis is the accumulation of DNA genetic
alterations, which results in erroneous regulation of expres-
sion levels and/or patterns of certain proteins. Among these
alterations are mutations in proto-oncogenes and tumor
suppressor genes, and hyper- or hypo-methylation of DNA,
which are caused by interactions with chemical, biological
and physical carcinogenic factors, such as radiation, tobac-
co, alcohol, and infections by some viruses and bacteria
(1,17,19,20).

Voltage-gated Na* channels

lon channels are signaling molecules expressed through-
out the human body, being responsible for processes such
as cell proliferation, solute transport, maintenance of mem-
brane potential, nerve signaling and control of muscle
contraction, secretion, invasion and many other activities
(15,21-24). Consequently, alterations in the expression and/
or function of these proteins may lead to the development of
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different diseases, like cardiac arrhythmias, epilepsy, multiple
sclerosis and the progression of different types of cancer to
advanced stages (3,15).

Among the existing ion channels, VGSC are mostly
expressed in excitable cells, including neurons and mus-
cle cells, and are responsible for initiating and propagating
electrical signals. Studies have shown that these channels
are also present in non-excitable cells, although their phy-
siological function in these cells is not yet well understood
(8,11,24,25).

The VGSC are composed of a pore-forming o sub-
unit that can be associated with one or more  subunits
(Figure 2). Na™ channel o subunits are composed of four
homologous domains, each of which has six transmem-
brane segments. The VGSC family has 9 members,
Nav1.1 through Nav1.9, encoded by the genes SCN1A-
SCN5A and SCN8A-SCN11A. As for the B subunits, five
members have been found, 1 to f4 and 1B (an alter-
native splicing of B1), and are encoded by the genes
SCN1B through SCN4B. These are mainly composed of
an extracellular N-terminal segment, a single transmem-
brane segment and a short intracellular segment. Pore-
forming subunits may be expressed alone, since their
operation is independent of the presence of the  sub-
units. However, these subunits are essential, as they are
responsible for modulating the function of the channel
(opening, closing and inactivating it) and allow the asso-
ciation with cell adhesion molecules, extracellular matrix
and cytoskeleton (11,26,27).

VGSC and intracellular acidification

In recent years, many studies with cell cultures and
analysis of biopsy tissues have provided evidence that
VGSC are responsible for increasing the invasive potential
of tumor cells, participating in the processes of galvano-
taxis, cellular motility, migration, and others. Inhibition of
VGSC has been linked with reduction of metastatic be-
havior (4-8,28).The main question is how the influx of Na™
through these channels increases the invasive and meta-
static potential of tumors. Different groups have presented
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Figure 2. Voltage-gated Na™ channel. The pore-forming o subunit is composed by four homologous domains with 6 transmembrane
segments (S1-S6). The voltage sensor is located in S4. The 3 subunits present an immunoglobulin loop on the extracellular domain, a
transmembrane domain and a C-terminal intracellular domain. 1 and B3 connect non-covalently with o subunit, whereas B2 and p4
connect through disulfide bonds. (Figure published with permission from Brackenbury WJ and Isom LL. Front Pharmacol 2011; 2: 53,

doi: 10.3389/fphar.2011.00053. (65)).

distinct theories (associated with pH, gene expression and
intracellular Ca®*) in an attempt to better understand the
role of these channels and allow the development of new
antineoplastic drugs (9,27). Influx of Na* through the
Nav1.5 channels resulted in intracellular alkalinization and
consequent acidification of the extracellular space close
to the cell membrane (6,29,30). The mechanism that
explains pH variation is associated with co-expression of
Na®/H* (NHE)-1 exchanger, an important protein that
transports hydrogen ions. The influx of Na* through VGSC
increases the efflux of H™, resulting in a high intracellular
and a low extracellular pH. Low pH favors the activation of
cathepsins B and S, which are proteolytic enzymes respon-
sible for the extracellular matrix degradation (31,32), thus
enhancing pH-dependent extracellular matrix degradation
and invasion (Figure 3). In another study, Brisson et al. (33)
demonstrated that expression of Nav1.5 also promotes
modification of the F-actin network and enhances NHE-1
activity in breast cancer cells, resulting in increased
invasiveness of malignant cells. This proposition of how
VGSC and NHE-1 affect extracellular pH is opposite to
the traditional view of how these two proteins interact. It
is important to note, however, that cancer cells might
have a completely different organization and functioning
than normal cells.

Another important point that is not taken into account
is the relative contribution of the endo/lysosome H™ extru-
sion to the formation of an acidic tumor environment and
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to increase cathepsins activity. Endosomes are spherical
structures formed from the cellular membrane, which
contain approximately 40 hydrolytic enzymes capable of
digest cellular components, like mitochondria, intracellular
vesicles and even the whole cell. After its constitution, the
endosome can be transformed in lysosome or recycled
back to cell membrane (34). Lysosome formation is one of
the main roles of endosomes. According to Carrithers et
al. (35) and Black et al. (36), the lysosomal system is com-
plex and highly dynamic. It begins as an early endosome
and through a maturation process turns into a late endo-
some and then to a lysosome. Different changes occur in
this process, such as pH reduction, reception of vesicles
coming from the Golgi apparatus, and the activation of
lysosomal enzymes (35,37).

The acidic environment of endolysosomes is attribut-
ed to V-ATPase, proteins capable of using the energy of
ATP hydrolysis to transport H* through intracellular mem-
brane compartments. Recently, it was demonstrated that
Nav1.5, classically a cardiac isoform of VGSC, is also pres-
ent in late endosomes being responsible for an extra-
acidification of this vesicle. The authors suggested a model
to explain how these ion channels work and the general
idea is that they provide a passage for positive charges
(Na™) from inside of the endosome to cytoplasm. This trans-
port enables the entry of more protons into the endosome
through voltage-dependent channels CIC or H*-ATPase
pump (35).
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Figure 3. pH regulation affects tumor invasion process. The opening of voltage-gated Na™ channels (VGSC) causes an increase of the
intracellular Na* concentration and the activation of Na*/H*-1 exchanger (NHE1). The efflux of protons lead to a high extracellular
pH and a low intracellular pH, the latter being a favorable environment for the activation of cathepsins (enzymes that act in the
extracellular matrix degradation). This process enhances the invasion capacity of tumor cells.

Lysosomal trafficking and cathepsins activation

It is well known that lysosome ftrafficking is altered in
tumor cells (38). Therefore, the actual contribution of this
process to the acidification of extracellular environment
and, consequently, the cathepsins role during cancer
progression must be considered and further investigated.

Cathepsins are lysosomal peptidases that participate
in the intracellular protein catabolism. These enzymes are
synthesized as inactive zymogens and are activated after
the break of a pro-peptide by another protease or due to
low pH, the optimal environment for cathepsins action.
Protein degradation is involved in different cellular proces-
ses, physiological or pathological, such as autophagy,
antigen presentation, cellular stress signaling and apop-
tosis. Besides being commonly associated with tumor
progression because of their role in increasing extracel-
lular matrix degradation, cathepsins are also involved in
apoptosis regulation (38).

Apoptosis induction by cathepsins can be through the
extrinsic or death receptor pathway or through the intrinsic
or mitochondrial pathway. The first pathway is activated by
specific ligands of death receptors and posterior activation
of caspase 8, which will cleave Bid, a pro-apoptotic mole-
cule. The cleavage of Bid will generate a truncated form of
this molecule (iBid), capable of inducing mitochondrial
outer membrane permeabilization and, consequently, the
release of cytochrome c. Both pathways are connected
through Bid, but for the intrinsic pathway the stimuli will be
the presence of reactive oxygen species, which are pro-
duced during cellular stress and may cause lysosomal
membrane permeabilization, a non-proteolytic event that
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releases cathepsins into intracellular milieu. Cathepsins
will not only stimulate the cleavage of Bid but also the
inactivation of anti-apoptotic proteins, such as Bcl-2
(39,40).

Control of intracellular pH

The concentration of intracellular H* has an important
role in different cellular processes, because protein structure
and function depend on optimal pH. Cellular compartment-
alization is necessary to keep environmental conditions for
individual pathways and prevent cellular processes that
would cause functional changes (41). Cells have the ten-
dency to acidify due to products of metabolic reactions and
to electrical potential across the membrane, which pulls
positive ions into the intracellular space. Therefore, the
removal of protons and their equivalents is a constant
process (42).

Many transporters, which are expressed on cellular
membrane and organelles of secretory and endocytic
pathways, stringently control intracellular pH. Among them
are V-ATPase (as mentioned above), NHE, Na*-coupled
HCO3- transporters (NBC) and ion channels (42,43). lon
channels are functionally present on membranes of the
aforementioned organelles and also are involved with
the ionic homeostasis. There are common challenges in
studying channels from different intracellular organelles.
Unlike plasma membrane channels that have been unam-
biguously defined, the basic information for most orga-
nelles has yet to be established, including luminal ionic
composition, organelle membrane potential, and lipid com-
position of the organelle membrane. Although the importance
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of lysosomal ionic flux has long been appreciated, the ion
channels responsible for lysosomal Na*, K*, Ca?*, CI
and H* fluxes are only beginning to be discovered (44)
and more studies are clearly necessary to explain this
important issue.

Gene network and ion channels

Another hypothesis that tries to explain the role of the
ion channels in the physiopathology of cancer is based on
how VGSC can regulate the expression of certain genes,
called invasion gene network (3,27). It is well known that
Na™ channels are capable of regulating gene expression
in excitable cells and cancer cells (23,45-47). Further-
more, SCN5A gene is a key regulator of this invasion gene
network, suggesting that Nav1.5 may function as early
entry points of invasion signaling mechanisms. At least in
colon cancer, Nav1.5 may regulate invasion by this mecha-
nism in addition to extracellular acidification (48). The chal-
lenge is to understand how the activity of ion channels can
regulate transcription in cancer cells.

Ca?* and Na™ crosstalk

A third possibility is related to the regulation of
intracellular Ca2™* through VGSC. In excitable and non-
excitable cells, influx of Na* may result in an increase of
intracellular Ca2™ levels through the activation of voltage-
gated Ca?* channels (49). In addition to the plasma
membrane, voltage-gated Ca2™ channels are present in
internal membranes such as podosomes and endosomes
of cancer cells and macrophages (13,50,51). In THP-1 macro-
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phages and HTB-66 melanoma cells, Nav1.6 channel is
expressed in vesicular structures near podosomes regions.
Surprisingly, the activation of these cells mediated by
VGSC show a rapid uptake of Na®™ by mitochondria
and subsequent release of Ca2™ into the cytosol. It is
proposed that this process increases the formation of
podosomes/invadopodia, leading to increased cell inva-
sion (Figure 4) (50). However, it is not clear how VGSC
present in vesicular membranes are gated and/or whether
they interact with VGSC present in the plasma membrane
(9). In vascular endothelial cells the elevation of intracel-
lular Ca®* requires Na™* influx and in turn activates PKC
and extracellular signal-regulated kinase (ERK)1/2, poten-
tiating angiogenic functions including proliferation, differ-
entiation and adhesion (52).

Back to VGSC

In cancer cells, there is no specific pattern for subunits,
since different o subunits are expressed in different types
of cancer. For breast cancer, the subtype most commonly
found so far is the Nav1.5, which is encoded by the gene
SCN5A and is found in two different forms: 1) the neonatal
(nNav1.5), and 2) the adult splicing variant (9—11). An
alternative splicing can occur between two different exons
present in exon 6 of SCN5A (5’ exon and 3’ exon) and the
difference will be the presence or absence of an aspartate
residue at position 7 in the exon 6 (3). Through studies in
rat brain, it was possible to conclude that the transcription
containing the 5’ exon was more common at birth but
was quickly replaced by the 3’ exon. This splicing pattern

Cell Signaling
[ [

Mitochondria

Tumor Cell

Figure 4. Regulation of intracellular Ca®* through voltage-gated Na™ channels (VGSC). After the activation of VGSC, a quick
absorption of Na* ions and release of Ca®™ ions by the mitochondria occur. Somehow, these events activate a cell-signaling cascade to
increase the formation of podosomes, consequently, increasing the cell invasion ability of the tumor.
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has been found in studies with Nav1.1, Nav1.2, Nav1.3,
Nav1.5, Nav1.6 and Nav1.7 (53-58).

In a study to determine which Na* channels have
functional expression in different types of cancer cell lines
and cancer primary cultures, the neonatal Nav1.5 channel
isoform was found in breast cancer cells with high meta-
static potential. This protein was identified in biopsy sam-
ples and its increased expression could be associated
with patients with lymph node metastasis. This indicates
that the neonatal isoform is significantly up-regulated in
breast cancer cells and potentiates cell processes in-
volved in metastasis (15).

Another observation was that the majority of expressed
functional channels were resistant to TTX, a specific Na*
channel blocker (15). Experiments performed with breast,
prostate and lung cancers using TTX resulted in the sup-
pression of a variety of behaviors specific to highly metas-
tatic cells, such as invasion (14,59,60), lateral motility (61),
adhesion (62), migration (45), galvanotaxis (63) and endo-
cytosis (64). However, the importance and function of
B subunits in increased cell aggressiveness remains to be
explored (23).

The expression of B subunits and their participation
in cell migration and adhesion in two cell types, MDA-
MB-231 and MCF-7, demonstrated that MCF-7 cells had
higher expression levels of proteins encoded by SCN1B,
SCN2B and SCN4B genes compared to MDA-MB-231
cells. However, for both cell lines the most common sub-
unit was B1. Silencing B1 expression resulted in decreased
cell adhesion and higher migration in 3D cultures for MCF-7
cells (23).

The same study showed that overexpression of 1
subunit in MDA-MB-231 cells increased Na™ current, the
length of cell processes and the intercellular adhesion, in
addition to reducing the lateral motility and proliferation.
Considering all these findings, the authors were able to
conclude that the expression of 1 enhances cell adhe-
sion and reduces the migration of cells in breast cancer.
It is important to note that the effects on the adhe-
sive capacity of these cells can occur independently
of changes in membrane excitability, confirming that
B subunits have the ability to operate in the absence of
the o subunit (23).

In summary, the B subunits appear to have a role in the
regulation of several cellular processes including migra-
tion, adhesion, cell proliferation and resistance to apop-
tosis (65-68). Moreover, these functions appear to have
opposite effects to the regulation carried on by o subunits
(23). As we have seen previously, o subunits have greater
expression in highly metastatic cells and can increase the
ability of invasion and migration. B subunits are expressed
in cells with little metastatic capacity and are able to modu-
late Na* influx, increase cell adhesion and the extension
processes, and also regulate different activities such as
migration and o subunit mRNA expression (Figure 5)
(11,65).
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Therapeutic approaches

Each cancer should be considered individually when
deciding on the most appropriate treatment procedure.
Usually, a combination of treatments is used aiming at the
cure or to prolong survival while improving the patient’s
quality of life. The most commonly used treatments are
surgical removal of the tumor, chemotherapy and radio-
therapy. Surgery is the most effective treatment when the
total removal of the tumor is possible, but in most cases, it
is combined with chemotherapy and/or radiotherapy (17).

Chemotherapy is the utilization of various drugs with
the objective of killing the cancer cells, although it also
causes side effects on normal cells. The mechanism of
action of chemotherapic drugs is by the interference in the
cell cycle and in cell proliferation. Metabolic differences
and faster proliferation rate make cancer cells more sus-
ceptible to the drugs. However, normal cells with fast rates
of renewal are also affected and generate side effects
as hair loss, anemia, immunologic depression, nausea,
vomiting, dizziness, weakness and others (69). The dose
needed to achieve a balance between the maximal toxic
effect to malignant cells with the minimal effect on normal
cells is the challenge in chemotherapy.

Radiotherapy employs the emission of ionizing radia-
tion that releases free electrons in affected tissues and
causes alterations in the DNA, triggering different cell
signaling and causing tumor destruction. The effective-
ness of this treatment depends on various factors such
as tumor sensitivity to radiation, tumor location and the
amount of radiation. The adverse effects of this treatment
also result from the injury to normal cells, but since the
treatment is very localized it is usually well tolerated by
patients when the principles of total dose per treatment
and fractionated application are respected (69).

The important role that VGSC seems to have in meta-
static cells and unsatisfactory clinical results of regular
treatments, make these ion channels a real possibility
for the development of new methods of diagnosis and
perhaps a more effective therapeutic approach. Among
the pharmacological tools presently available to target
these molecules are drugs that block the functioning of ion
channels. One main blocker that has been studied is TTX,
a well-known Na* channel blocker (9).

Each o subunit isoform has a particular sensitivity to
TTX, in addition to other pharmacological and physiologi-
cal properties. The Nav1.1, Nav1.4, Nav1.6 and Nav1.7
Na™ channels are part of a group that exhibits the greatest
sensitivity to this toxin, since a nanomolar (nM) concen-
tration is necessary to block these channels. As for the
Nav1.5, Nav1.8 and Nav1.9 Na™ channels, the necessary
concentrations of TTX to achieve full blocking effect are in
the micromolar (uM) range (11,25). However, the toxicity
of this toxin to the human body and the low sensitivity of
some of its isoforms impede TTX to be used systemically
as an anti-metastatic treatment (25). Ranolazine and
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phenytoin, examples of other Na™ channel blockers, are
now being tested for use in cancer treatment. Thus far, the
results with these drugs show an inhibition of metastatic
behavior in in vitro experiments, reducing invasion and
metastasis (13,28,70-72).

Another form of therapy is genetic silencing, which
uses a technique where double-stranded RNAs (siRNA)
are synthesized artificially. The ideal target of siRNAs are
genes that are expressed or abnormally regulated only in
the tumor cells, or genes specifically involved in cell prolif-
eration, angiogenesis and/or metastasis (73).

This approach is still being tested for different diseases
with variable results (74,75). The U.S. Food and Drug
Administration approved a new antineoplastic siRNA for
clinical phase | studies against solid tumors (76). In breast
cancer, the in vitro study for gene silencing of nNav1.5
showed very good results. The interruption of the function
and expression of these channels in MDA-MB-231 breast
cancer cells caused a significant suppression in the migra-
tory capacity (about 50%) of these cells (77). However, the
reproduction of these results in vivo is much more com-
plicated and the clinical use of this new treatment depends
on the stability of these molecules and the non-suppression
of other targets (3).
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Conclusion and future perspectives

Studies on cancer and ion channels started in the
1990s with prostate cancer, followed by a series of
investigations focusing on the pathophysiological role
of ion channel expression in different types of cancer.
Afterwards, more studies were performed with differ-
ent cell types, and upregulation of voltage-gated Na™
channels have been described in cells presenting high
metastatic potential. Over the years, new molecular biol-
ogy techniques have been used to investigate ion chan-
nels, revealing the presence of different splice variants
and giving a better understanding of the underlying
mechanisms responsible for the different behaviors of
metastatic cells.

The association between breast cancer and Na*
channels, especially voltage-gated channels, was shown
to have great importance for cellular events that increase
tumors aggressiveness, mainly proliferation, migration,
loss of adhesion and galvanotaxis. Some of the proposed
theories on how the VGSC relate to the increased aggres-
siveness of tumors refute all the current knowledge on
Na™ homeostasis and raise the questions: do cancer cells
have a completely different organization compared to
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normal cells? Can we identifying the mechanisms of a tumor
cell looking at the normal cell or should we accept that
we are facing the unknown, where cellular structures might
have different functions and relations in cancer cells?

Besides being distressful, these differences can also
encourage the search of a better understanding for cancer
pathophysiology. Further research should be conducted
to unravel mechanisms involving VGSC, NHE-1 and pH.
Also of importance is determining if the properties associated
with B subunits are or not dependent on the o subunits
expression.
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At this point, no ligand is available that can be used selec-
tively for Nav1.5 channels, which is one of the main targets
for new anti-cancer therapeutic approaches. However, new
toxins are discovered every day, increasing the existing
arsenal that would lead to new and more effective drugs.
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