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Propofol attenuates sepsis-induced acute kidney injury
by regulating miR-290-5p/CCL-2 signaling pathway
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Abstract

Previous studies have indicated that propofol has immunomodulatory and antioxidative properties. However, the renoprotection
effect and the precise mechanisms of propofol in sepsis-induced renal injury remain unclear. The purpose of the present study
was to investigate the role of miR-290-5p/CCL-2 signaling in septic mice treatment with propofol. Mice were treated with
propofol (50 mg/kg) twice within 24 h. Survival outcome was monitored within 48 h. The mRNA and protein levels were assayed
by qRT-PCR and western blotting, respectively. Mouse podocytes (MPC5) were treated with lipopolysaccharide (LPS) to
establish the cell model in vitro. The proliferation of MPC5 was monitored using the MTS assay. Cell apoptosis was analyzed by
flow cytometry. Propofol improved survival outcome and alleviated acute kidney injury in cecal ligation and puncture-operated
mice. Propofol increased miR-290-5p expression and decreased CCL-2 and inflammatory cytokines levels in the kidney for
septic mice. We found that miR-290-5p was a direct regulator of CCL-2 in MPC5. Propofol could abrogate LPS-induced growth
inhibition and apoptosis in MPC5. Meanwhile, propofol inhibited CCL-2 expression in LPS-treated MPC5, however, knockdown
of miR-290-5p abrogated the inhibitory effect propofol on the mRNA and protein expressions of CCL-2. Propofol could serve as
an effective therapeutic medication to suppress sepsis-induced renal injury in vivo and in vitro by regulating the miR-290-5p/

CCL-2 signaling pathway.
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Introduction

Sepsis is a variety of serious infectious diseases
with pathogens that can release bacterial toxin into the
body and induce an inflammatory response in the host,
leading to septic shock and multiple organ failure (1).
Acute kidney injury (AKI) is associated with approxi-
mately 70% mortality triggered by sepsis in the intensive
care unit (ICU) (2). In addition, sepsis-associated AKI is
associated strongly with a poor prognosis and poses
significant clinical challenges for clinicians (3). To our
knowledge, there is no effective therapeutic medication
to improve the clinical outcomes of sepsis-associated
AKI (4). Therefore, we need to explore novel drugs to
protect the kidney from sepsis. Propofol has long been
recognized as a rapid, short-acting intravenous anes-
thetic, widely used in clinical anesthesia as well as
for sedation in the ICU (5). Recently, propofol has been
reported to improve oxidative stress and inflammatory
response in various tissues and organs, including lung,
brain, and liver (6-9). In addition, propofol shows renopro-
tective effects in endotoxemia (10), ischemia-reperfusion (11),
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and orthotopic liver transplantation-induced AKI (12). In septic
animal models, propofol treatment can protect the kidney
from sepsis-induced AKI by decreasing inflammatory
cytokines and inhibiting oxidative stress (13). However,
potential molecular mechanisms of propofol in cecal
ligation and puncture (CLP)-induced AKI have not been
clearly delineated. A class of small non-coding RNAs
(18-25 nucleotides), known as microRNAs (miR), have
emerged as the post-translational modulators that reg-
ulate the translation of target messenger RNAs (mRNAs)
by binding to its 3’-untranslated regions (3’-UTRs) (14).
miRs are involved in a wide variety of diseases, including
sepsis-associated AKI (15). Gene ontology (GO) analy-
sis indicates that differentially expressed miRs in sepsis-
induced AKI are primarily related to regulation of oxidative
stress and mitochondrial dysfunction pathways (16).
miRs also modulate the inflammatory response to endo-
toxin in mice (17). For example, miR27a is up-regulated and
promotes inflammatory response in sepsis (18). miR-205-5b
shows an anti-inflammatory activity in lipopolysaccharide
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(LPS)-induced sepsis (19). In the present study, we aimed
to determine the anti-inflammatory activity of propofol
associated with miR-mediated post-transcriptional reg-
ulatory mechanism.

Material and Methods

Animal treatment

A total of 48 male 8-week-old C57BL/6J mice (body
weight 20+ 2 g) were obtained from the Third Affiliated
Hospital of Southern Medical University (China) and
allowed to acclimate to the environment for 1 week.
The mice were given free access to food and tap water
and were individually caged under controlled temperature
(23 £ 2°C) and humidity (55 £ 5%) with an artificial 12-h
light/dark cycle. Sepsis in mice was induced by CLP surgi-
cal operation, as described previously (13). To investigate
the effect of propofol during sepsis-induced AKI, the mice
were randomly divided into 4 groups as follows: i) sham-
operated mice (n=12) as control group, ii) CLP group
(n=12) injected with normal saline, iii) propofol group (n=12)
that received propofol injection (50 mg/kg; twice within
24 h; Sigma-Aldrich, USA) in sham-operated mice, and
iv) propofol + CLP group that received propofol injection
(50 mg/kg; twice within 24 h) in CLP-operated mice
(n=12). Twenty-four hours after CLP surgical operation,
mice were sacrificed by an overdose of sodium pento-
barbital (2%; 200 mg/kg; Sigma-Aldrich). The blood from
the hearts was collected for serum biochemical analysis.
Kidneys were collected and immediately frozen in liquid
nitrogen and 4% formalin at room temperature for gene
and protein analysis and paraffin-embedded histological
analysis, respectively. In another experiment, we observed
the 48-h survival of CLP mice with or without propofol
treatment (n=12 in each group). This experiment was
approved by the Ethics Committee of the Third Affiliated
Hospital of Southern Medical University.

Enzyme-linked immunosorbent assay (ELISA)

Serum CCL-2 was measured by a mouse ELISA kit
(Cat. No. E-EL-MO0006¢c; Elabscience Biotechnology Co.,
Ltd, China). Glutamic oxaloacetic transaminase (GOT) (Cat.
No. c010-1) and glutamic pyruvic transaminase (GPT) (Cat.
No. c009-1) were determined using assay kits (Nanjing
Jiancheng Biology Engineering Institute, China). In brief,
5 pL serum and 25 pl. GOT or GPT substrates were added
to 96-well plates at 37°C for 30 min. Then, 2,4-dinitrophenyl-
hydrazine (25 pL) was added to all wells at 37°C for
30 min. Finally, sodium hydroxide (0.4 mol/L; 250 pL)
was added to stop the reactions at room temperature for
15 min, and the absorbance was measured at 510 nm.
Serum creatinine (Cre; Cat. No. C011-1; Nanjing Jiancheng
Biology Engineering Institute, China) and blood urea
nitrogen (BUN; Cat. No. C013-2; Nanjing Jiancheng Biology
Engineering Institute) levels were measured using an
autoanalyzer and an enzymatic kinetic method using
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commercial kits following the manufacturer’s protocol
with a SpectraMax M5 ELISA plate reader (Molecular
Devices, LLC, USA).

Hematoxylin & eosin (H&E) staining

Kidneys were collected and fixed with 4% formalin
at room temperature for 24 h, and paraffin-embedded.
Tissues were cut into 3-um thick sections, which were
stained with H&E (Beyotime Institute of Biotechnology,
China) at room temperature and visualized under a
microscope (Leica DM 2500; Leica Microsystems GmbH,
Germany). Renal injury was assessed using a previously
described 0—4 scale (20), in which 0 is none; 1, <10%; 2,
10-25%; 3, 26—-75%; or 4, >75%.

RNA analysis and RT-gPCR

Total RNA was extracted by TRIzol (Invitrogen, USA)
according to the manufacturer’s protocol. cDNA was synthe-
sized by reverse transcription reactions with 2 pg of total
RNA using Moloney murine leukemia virus reverse tran-
scriptase (Invitrogen; Thermo Fisher Scientific, USA) accord-
ing to the manufacturer’s protocol. PCR reaction mixtures
(20 pL) were prepared using the TagMan Universal PCR
Master Mix (Thermo Fisher Scientific) and performed using
a DNA Engine (ABI 7300; Thermo Fisher Scientific). The
reaction conditions were set according to the manufacturer’s
protocol. The Cq (quantification cycle fluorescence value)
was calculated using SDS software, version 2.1 (Applied
Biosystems; Thermo Fisher Scientific), and the relative
expression levels of miR and mMRNA were calculated using
the 224! method (21) and normalized to the intemal control U6
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
respectively. The primers were synthesized by Sangon
Biotech (China) as shown in Table 1. The PCR products
were confirmed by 2% agarose (Sigma-Aldrich) gel electro-
phoresis and visualized under a gel imaging analysis system
(Bio-Rad Laboratories, Inc., USA).

Cell culture

Mouse podocytes (MPC5) were obtained from the
National Infrastructure of Cell Line Resource (Serial number:
3111C0001CCC000230; China) and maintained in RPMI-
1640 (Invitrogen, USA) supplemented with 10% FBS (Invitro-
gen) at 37°C in a humidified incubator (Thermo Fisher
Scientific), under 5% CO,, 95% air atmosphere. MPC5
were treated with lipopolysaccharide (LPS; 100 ng/mL,
Sigma-Aldrich), or combined with propofol (100 uM) or miR-
290-5p inhibitors (100 nM). All of the experiments were
performed in triplicate.

Transfection with miR-290-5p mimics and inhibitors
The sequences of the miR-290-5p mimics (5-ACU
CAAACUAUGGGGGCACUUU-3’) and anti-miR-290-5p
(antisense inhibitor of miR-290-5p: 5-AAAGUGCCCC
CAUAGUUUGAGU-3') were synthesized by RiboBio
(China). The MPC5 were transfected using Lipofectamine
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Table 1. Primers for RT-gPCR.

Reverse primer (5'-3')

Gene Forward primer (5'-3')
miR-124 TCGGCAGGTAAGGCACGCGGTG
miR-290-5p GCTGGGTTTCACGGGGGTATCAA
miR-292-5p AGCTGGGGTTTTCUCGGGGGUC
U6 CTCGCTTCGGCAGCACATATACT
CCL-2 ATTTCCACACTTCTATGCCTCCT
IL-1B8 ACCTTCCAGGATGAGGACATGA
TNF-o TACTCCCAGGTTCTCTTCAAGG
NGAL GATGTTGTTATCCTTGAGGCCC
GAPDH GCACCGTCAAGCTGAGAAC

TCAACTGGTGTCGTGGAGTCGGC

TCAACTGAGTGCCGTAGGGTGCG

GACGTTGAGTCCGATGTACCCGTA
ACGCTTCACGAATTTGCGTGTC
ATCCAGTATGGTCCTGAAGATCA
CTAATGGGAACGTCACACACCA
GGAGGTTGACTTTCTCCTGGTA
CACTGACTACGACCAGTTTGCC

TGGTGAAGACGCCAGTGGA

3/10

2000 (Invitrogen; Thermo Fisher Scientific) at a final con-
centration of 100 nM. At 48 h post-transfection, the cells
were harvested for analysis.

Luciferase reporter gene assay

The potential binding sites between miR-290-5p and
CCL-2 were obtained using online prediction software
(miRanda-mirSVR,; http://www.microrna.org/), miRDB (http:/
www.mirdb.org/), and TargetScan (http://www.targetscan.
org/). The wild-type (WT) and mutant-type (MUT) 3’-UTR of
CCL-2 were synthesized by RiboBio (China) and inserted
into the multiple cloning sites of the luciferase expressing
pMIR-REPORT vector (Ambion; Thermo Fisher Scientific,
Inc.). For the luciferase assay, MPC5 (1 x 10°) was seeded
into 24-well plates and co-transfected with luciferase reporter
vectors containing the WT and MUT of CCL-2-3'-UTR
(0.5 pg) and mimics and inhibitors of miR-290-5p (100 nM)
using Lipofectamine 2000 (Invitrogen; Thermo Fisher
Scientific). Luciferase activity was measured using the
Dual Luciferase Reporter® Assay System (Cat. No. E1960;
Promega, USA) on a Luminoskan™ Ascent Microplate
Luminometer (Thermo Fisher Scientific).

MTS assay

The proliferation of MPC5 was monitored using the
MTS assay kit (Promega Corporation, USA). Absorbance
was measured at 492 nm using an ELISA reader (MD
SpectraMax M5; Molecular Devices, LLC, USA).

Flow cytometry analysis

MPC5 was treated with LPS (100 ng/mL), LPS
(100 ng/mL) + propofol (100 uM), or LPS (100 ng/mL) +
propofol (100 uM) + miR-290-5p inhibitors (100 nM) for
24 h. Cells were collected after digestion and were washed
twice with PBS and centrifuged at 1200 g for 5 min at 4°C.
The supernatant was discarded, and the cells were
then resuspended and fixed in ice-cold 75% ethanol and
stored at 4°C. Annexin V-FITC apoptosis detection kit was
purchased from Invitrogen. The samples were analyzed
using flow cytometer (BD Biosciences, USA). The data
were processed by Cell Quest Software (version 5.1, BD
Biosciences,).
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Western blotting

Proteins were extracted with radio immunoprecipita-
tion assay (RIPA) buffer (Cat. No. P0013B; Beyotime
Institute of Biotechnology), and the concentrations were
determined using the Bicinchoninic Acid Kit for Protein
Determination (Cat. No. BCA1-1KT, Sigma-Aldrich; Merck
KGaA). Protein (30 pg) for each sample was separated on
a 10% SDS-PAGE gel and transferred to nitrocellulose
membranes (Bio-Rad Laboratories, Inc., USA). The mem-
branes were incubated with the primary antibody CCL-2
(Cat. No. sc-1784; dilution: 1: 1,000; Santa Cruz Biotech-
nology, USA), and NF-kB/p65 (Cat. No. 3034; dilution:
1: 500; Cell Signaling Technology, Inc., USA). Following
three washes with TBST, the membranes were incubated
with the appropriate horseradish peroxidase-conjugated
secondary antibody (Cat. No. sc-516102; dilution: 1:10,000;
Santa Cruz Biotechnology) at room temperature for 2 h and
visualized by chemiluminescence (Thermo Fisher Scientific,
Inc.). Signals were analyzed with Quantity One™ software
version 4.5 (Bio Rad Laboratories, Inc.). GAPDH (Cat. no:
2118; dilution: 1: 2,000; Cell Signaling Technology, Inc.,
USA) and histone (Cat. no: 9715; dilution: 1: 2,000; Cell
Signaling Technology, Inc.) were used as control antibodies.

Statistical analysis

Data are reported as the mean + SD for each group.
All statistical analyses were performed using PRISM
version 5.0 (GraphPad Software, Inc., USA). Statistical
differences between two groups were determined using
Student’s t-test. Inter-group differences were analyzed by
one-way analysis of variance, followed by a post-hoc
Tukey’s test for multiple comparisons. Survival rates were
calculated using the Kaplan-Meier method with the log-
rank test applied for comparison. P <0.05 was considered
to indicate a statistically significant difference.

Results

Propofol had a significant effect on sepsis-induced
AKI in mice

In our study, CLP surgical operation was performed to
establish the polymicrobial sepsis-induced AKI in mice.
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Table 2. Effects of propofol on hepatic and renal function in cecal ligation and puncture (CLP)-operated or

sham-operated mice.

Sham CLP Propofol Propofol + CLP
CCL-2 (pg/mL) 136.49+15.27 321.67 +48.34* 151.82 £ 16.37 198.61 + 31.47*
GOT (U/L) 67.49+7.15 432.67 £78.93* 73.83+£10.52 173.56 + 25.73"
GPT (U/L) 38.47+5.35 205.71+36.72* 45.84 +6.21 75.49 £ 13.51%
BUN (mmol/L) 5.78+0.62 17.27 +2.31* 4.89+0.71 9.12+1.68%
Cre (umol/L) 4.31+0.51 54.65+10.95* 5.36 £ 0.47 20.61+4.22%

Data are reported as the means + SD. *P <0.05 compared with the Sham group; *P <0.05 compared with
the CLP group (ANOVA). GOT: glutamic oxaloacetic transaminase; GPT: glutamic pyruvic transaminase;

BUN: blood urea nitrogen; Cre: creatinine.
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Figure 1. Propofol attenuated cecal ligation and puncture (CLP)-induced acute kidney injury in mice. Twenty-four hours after CLP
surgical operation, renal histology (magnification 200 x ; A) and injury score (B) were performed in the kidneys from mice with or without
propofol treatment. Renal expression of neutrophil gelatinase associated lipocalin (NGAL) mRNA (relative to the controls) was
measured by RT-qPCR (C) and verified by agarose gel electrophoresis analysis (D). Data are reported as means = SD (n=12 per group).
*P<0.05, *P <0.01, ***P <0.001 compared with the control group; #P <0.05 compared with the CLP group (ANOVA). nd: not detected.

Twenty-four hours after CLP surgical operation, the serum
levels of GOT, GPT, BUN, and Cre were significantly higher
in CLP-operated mice than in the control group, while
propofol treatment decreased those levels in CLP-operated
mice (Table 2). In addition, H&E staining was performed
to observe the extent of renal injury. As indicated in
Figure 1A and B, the severe architectural disruptions of
kidney were triggered by CLP surgical operation, including
tubular dilatation and brush border loss. Renal injury scores
were significantly increased in the CLP group compared with
the control group. In contrast, propofol treatment preserved
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the morphologic integrity of kidney in CLP-operated mice.
Neutrophil gelatinase associated lipocalin (NGAL) is a highly
predictive biomarker of AKI (22). In the present study, the
mRNA expression of NGAL was measured in the kidney
from septic mice with or without propofol treatment. The
results demonstrated that NGAL mRNA increased by 7-fold
after CLP surgical operation, but propofol treatment could
reverse the mRNA expression of NGAL induced by CLP in
the kidney from mice (Figure 1C). Furthermore, the PCR
products of NGAL were confirmed by 2% agarose gel
electrophoresis (Figure 1D).
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Figure 2. Propofol improved survival outcome in septic mice.
Kaplan-Meier survival curves of cecal ligation and puncture (CLP)-
operated mice treated or non-treated with propofol. Data are reported
as means £ SD (n=12 per group). *P <0.05 compared with the CLP
group (log-rank test).

Propofol improved survival outcome in
CLP-operated mice

We observed the 48-h survival of CLP mice with and
without propofol treatment. We found that 92% of mortality
occurred within 48 h after CLP surgical operation. However,
the septic mice treated with propofol did not die at 38 h, and
42% survived with propofol treatment (Figure 2).

Propofol inhibited inflammatory gene expression in
CLP-operated mice

Induction of CCL-2 regulates some inflammatory cyto-
kines levels, such as interleukin 1 (IL-1B), IL-6, and tumor
necrosis factor o (TNF-a) (23). In septic mice, CCL-2
induces systemic inflammatory response and promotes
tissue repair (24). The plasma concentration of CCL-2
in sepsis patients is significantly higher than in healthy
controls (25). In our study, we found that the serum
concentration and mRNA of CCL-2 in CLP-operated
mice were significantly up-regulated compared to sham-
operated mice, while propofol treatment decreased the
levels of CCL-2 in septic mice (Table 2, Figure 3A and B).
Moreover, septic mice exhibited significantly higher mRNA
expression of IL-1p and TNF-o. compared with the sham-
operated mice. Propofol treatment also inhibited sepsis-
induced inflammatory response (Figure 3A, C and D). In
addition, we detected the protein expression of NF-Kb
(p65) in the nucleus and found an increased NF-kB(p65)
level in the kidney from CLP-operated mice, while propofol
had the capacity to reduce CLP-induced up-regulation of
NF-Kb (p65) protein in the nucleus (Figure 3E). NF-xB as a
key transcription factor has been implicated in the process
of sepsis-induced inflammatory response. Over-activation
of NF-«kB is associated with cytoplasmic degradation of
its inhibitor IkBa, which leads to the translocation of p65,
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a subunit of NF-kB, into the nucleus that binds to DNA and
enhances the expression of inflammatory cytokines (26).

Propofol was associated with post-transcriptional
regulatory mechanism in septic mice

Based on the above findings, we concluded that CCL-2
played a significant role in the pathogenesis of sepsis.
To investigate whether CCL-2 could be regulated by miRs
in sepsis-induced AKI, the online prediction softwares
miRanda-mirSVR, miRDB, and TargetScan were used
for prediction. We found that miR-124, miR-290-5p, and
miR-292-5p were overlapped in at least two databases.
Therefore, we measured their expression in the kidney
from septic mice with or without propofol treatment. The
results demonstrated that NGAL miR-124 and miR-290-5p
decreased by 47% and 78%, respectively, after CLP sur-
gical operation, which were restored by propofol treat-
ment in septic mice. However, miR-292-5p had no obvious
difference among the four groups (Figure 4). Therefore,
we focused on miR-290-5p in our study.

First, the conserved binding sites between miR-290-5p
and CCL-2 were depicted based on miRanda-mirSVR,
miRDB, and TargetScan databases and are shown in
Figure 5A. Then, the luciferase reporter plasmids contain-
ing WT or MUT 3-UTR of CCL-2 were constructed.
In addition, MPC5 were cotransfected with miR-290-5p
mimics and luciferase reporter plasmid. Luciferase report-
er assay showed that the luciferase activity of WT 3’-UTR
of CCL-2 reduced by nearly 56% with the co-transfection
of miR-290-5p mimics. Transfected with miR-290-5p mimics,
the luciferase enzyme activity had no significant change
in the reporter vector containing MUT 3’-UTR of CCL-2
(Figure 5B). We also found that the mRNA (Figure 5C) and
protein (Figure 5D) expression of CCL-2 were markedly
inhibited in MPC5 transfected with miR-290-5p mimics.
As expected, the luciferase activity (Figure 5E), mRNA
(Figure 5F), and protein (Figure 5G) levels of CCL-2 were
dramatically increased after transfection with miR-290-5p
inhibitors.

Propofol improved LPS-induced MPC5 dysfunction by
regulating miR-290-5p/CCL-2 signaling pathway

To investigate the role of miR-290-5p in LPS and
propofol-treated MPC5 podocytes, we found that transfec-
tion of miR-290-5p inhibitors significantly down-regulated
the expression of miR-290-5p in MPC5 podocytes
(Figure 6A). Potential cytotoxicity of LPS and propofol was
analyzed using an MTS assay. The results indicated that
propofol protected against LPS-induced MPC5 death,
however, knockdown of miR-290-5p abrogated the pro-
tective effect of propofol on cell viability (Figure 6B). Intrigu-
ingly, similar results were obtained by flow cytometry
analysis (Figure 6C and D). We also found that knock-
down of miR-290-5p abrogated the inhibitory effect of
propofol on the mRNA (Figure 6E) and protein (Figure 6F)
expression of CCL-2.
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Figure 3. Propofol inhibited excessive inflammatory responses in septic mice. Renal mRNA levels of CCL-2 (A and B), interleukin (IL)-18
(A and C), and tumor necrosis factor o (TNF-a) (A and D) were measured by RT-gPCR and verified by agarose gel electrophoresis analysis.
Protein expression of NF-«xB (p65) in the nucleus (Nuc) was measured by western blotting (E). Data are reported as means + SD (n=12 per
group). ***P <0.001 compared with the control group; P <0.05 compared with the cecal ligation and puncture (CLP) group (ANOVA)

Discussion

It is well known that the inflammatory response plays a
central role in the complications that develop in experi-
mental sepsis (27). In septic mice with AKI, CLP leads to
formation of oxidative stress, which appears to intensify
inflammatory response (13). Suzuki et al. (28) showed that
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oxidative stress results in an increase in the expression
of CCL-2, which accelerates macrophage recruitment, an
inflammatory process. Similar mechanisms were seen
in our study; we found that CLP induced the expres-
sion of CCL-2 and the subsequent increase of the pro-
duction of proinflammatory cytokines, which might be
associated with renal injury in septic mice. Importantly,
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Figure 4. Effects of propofol 24 h after cecal ligation and puncture (CLP)
on renal expression of miR-124, miR-290-5p, and miR-292-5p was
measured by RT-gPCR in kidneys. Data are reported as means £ SD
(n=12 per group). *P<0.01, **P<0.001 compared with the sham
group; *P <0.05, ##P <0.001 compared with the CLP group (ANOVA)).
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the post-transcriptional regulatory mechanism demon-
strated that miR-290-5p could reversely regulate the
expression of CCL-2. The in vivo model showed that
propofol increased miR-290-5p levels as well as decreased
the expression of CCL-2 in CLP-operated mice. The in vitro
cell model confirmed that propofol protected LPS-induced
MPC5 death by inhibiting CCL-2 levels. However, miR-290-
5p loss-of-function abrogated the protective effect of
propofol on LPS-induced MPC5 apoptosis. All of these
findings suggest that propofol can serve as an effective
therapeutic medication to suppress sepsis-induced renal
injury in vivo and in vitro by activating miR-290-5p and
the subsequent inhibiting CCL-2 and its downstream
pathways, such as the inflammatory response.

Propofol has been shown to be capable of anti-
inflammatory and anti-apoptotic effects, which may be
attributed to its structural similarity to anti-inflammatory
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Figure 5. CCL-2 is a direct target gene of miR-290-5p. Schematic representation of the putative miR-290-5p binding site in the 3'-untranslated
regions (3 UTR) of CCL-2 was predicted by the online database (A). Mouse podocytes cells (MPC5) were co-transfected with the wild type (WT)
and mutant (MUT) of CCL-2-3'-UTR and miR-290-5p mimics, and luciferase activity (B), mRNA (C), and protein (D) of CCL-2 were measured.
After transfection with the WT and MUT of CCL-2-3'-UTR and miR-290-5p inhibitors, luciferase activity (E), mRNA (F), and protein (G) of CCL-2
were measured. Data are reported as means + SD (n=3 per group). *P <0.05 compared with the normal control (NC) group (ANOVA).
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Figure 6. Inhibition of miR-290-5p neutralized the protective effect of propofol in lipopolysaccharide (LPS)-treated mouse podocytes
(MPC5). The levels of miR-290-5p were measured by RT-qPCR after being transfected with miR-290-5p inhibitors in MPC5 (A). In LPS-
treated MPC5 combined with propofol or propofol + miR-290-5p inhibitors, cell viability was measured using the MTS assay (B);
apoptosis was analyzed using flow cytometry (C and D); the mRNA (E) and protein (F) expression of CCL-2 were detected by RT-qPCR
and western blotting, respectively. Data are reported as the means £ SD (n=3 in each group). *P <0.05 compared with control group;
&P <0.05 compared with LPS + propofol group.

Braz J Med Biol Res | doi: 10.1590/1414-431X20187655


http://dx.doi.org/10.1590/1414-431X20187655

Propofol regulates miR-290-5p/CCL-2 in AKI

medications (10). Consistent with previous studies (11,13),
our results indicated that propofol treatment was shown to
inhibit inflammatory reaction in vivo and attenuate apopto-
sis in vitro by targeting miR-290-5p/CCL-2 signaling path-
way. Notably, CLP-treated mice or LPS-treated podocytes
have increased expression of CCL-2, suggesting that CCL-2
may be central in the pathological process of renal injury, as
reported previously (13,29). We proposed the mechanism
for the protective role of propofol, which protected against
CLP or LPS-induced renal injury by inactivation of CCL-2
and its downstream inflammatory cytokines.

Further study on molecular mechanisms have exam-
ined the effects of propofol on miRs expression. In the
present study, propofol significantly increased the expres-
sion of miR-290-5p in the kidney from septic mice. miR-
290-5p is a member of the miR-290-295 cluster, which are
the most abundant miRs and mediate a latent pro-survival
function in mouse embryonic stem cells (MESCs) (30,31).
miR-290-295 cluster deficiency results in partially pene-
trant embryonic lethality and germ cell defects in mice (32).
In addition, miR-290-295 cluster has been found to accel-
erate cell proliferation by promoting the G1 to S phase
transition (33), suggesting a role for this miR cluster in
serving a protective function in preventing mESCs apop-
tosis. The anti-apoptotic functional consequence of miR-
290-5p in LPS-treated podocytes was confirmed by our
in vitro experiments, which provided evidence that miR-
290-5p may decrease the renal injury by suppressing
podocytes apoptosis. On the other hand, direct damage to
renal tissues or cells by CLP or LPS might be alleviated
through miR-290-5p-targeted CCL-2 and inflammatory
cytokines. To our knowledge, this is the first study to report
the anti-inflammatory activity of miR-290-5p in the animal
and cell model of sepsis. Preliminary study has shown
that improvement of survival rates and renal damage and
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