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Abstract

Osteoblast differentiation is an effective way to promote bone formation. Long non-coding RNA taurine upregulated 1 (TUG1)
has been identified as a crucial modulator of multiple biological processes. This study was designed to investigate the function
of TUG1 in the proliferation and differentiation of osteoblast precursor cells hFOB1.19. In this study, we found that TUG1
promoted hFOB1.19 cell proliferation, while TUG1 knockdown hindered cell proliferation. TUG1 and cannabinoid receptor 2
(CNR2) were upregulated, while miR-545-3p was down-regulated in hFOB1.19 cells undergoing osteoblastic differentiation.
TUG1 induced osteoblast differentiation by increasing alkaline phosphatase (ALP) activity and the expression of osteoblastic
differentiation markers. TUG1 was a sponge of miR-545-3p and regulated osteoblastic differentiation by modulating miR-545-3p.
Moreover, miR-545-3p directly targeted CNR2 and restored the effect of CNR2 on osteoblastic differentiation. In conclusion,
TUGH1 accelerated the proliferation and differentiation of osteoblasts by sponging miR-545-3p and increasing CNR2 expression,

which might provide a new biomarker for bone diseases.
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Introduction

Bone is an organ dynamically regulated by osteoblasts
and osteoclasts, which emerge as crucial regulators in
bone turnover (1). The major responsibility of osteoblasts
is bone formation, while the primary function of osteo-
clasts is bone resorption (2). Unbalance of osteoblast
and osteoclast functions causes several bone metabolic
diseases, including osteoporosis (3). Osteogenic differ-
entiation is an orderly process in which mesenchymal
stem cells (MSCs) are transformed into osteoblasts (4).
Accumulating evidence has shown that the induction of
osteogenic differentiation is a vital therapeutic strategy for
bone diseases.

Long non-coding RNAs (IncRNAs) are a type of non-
coding RNAs (ncRNAs) longer than 200 nucleotides.
Numerous studies have shown that INcRNAs are abnor-
mally expressed in many diseases and participate in
the occurrence and development of tumors (5). INcRNA
taurine upregulated 1 (TUG1) has been documented to be
aberrantly expressed in many cancers (6). For example,
TUG1 contributed to cell proliferation and metastasis in
melanoma by sponging microRNA-29¢c-3p and upregulat-
ing RGS1 (regulator of G-protein signaling 1) (7). TUG1
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recruited microRNA-212-3p from FOXA1 (Forkhead box
A1) to expedite osteosarcoma progression (8). Besides,
TUG1 diminished cisplatin resistance in triple negative
breast cancer by binding to microRNA-197 (9). In osteo-
blast differentiation, TUG1 silencing restrained osteoblast
proliferation and differentiation via inactivating the Wnt/-
catenin pathway (10). Nevertheless, the precise mechan-
ism of TUG1 in osteoblast differentiation remains poorly
understood.

MicroRNAs (miRNAs) are highly conserved ncRNAs
composed of 18-25 nucleotides. Emerging evidence has
validated that miRNAs exert a crucial regulatory role in
osteoblast differentiation and osteoclast-mediated bone
resorption by repressing mRNA translation (11). For
instance, inhibition of miR-451a facilitated osteogenic
differentiation and impeded bone loss in osteoporosis
by regulating Bmp6 expression (12). Down-regulation of
miR-92b-5p regulated ICAM-1 (intercellular adhesion
molecule 1) expression to block osteogenic differentiation
stimulated by melatonin in bone marrow mesenchymal
stem cells (BMSCs) (13). In addition, IncRNAs can serve as
miRNA sponges to regulate gene expression (14). In the
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present research, bioinformatics analysis revealed that
TUG1 might be a decoy for miR-545-3p. Previous research
found that miR-545-3p hindered osteogenic differentiation
(15). However, the relationship between TUG1 and miR-
545-3p in osteogenic differentiation remains unclear.

Moreover, cannabinoid receptor 2 (CNR2) might be a
target of miR-545-3p based on bioinformatics analysis.
CNR2 is implicated in cancer, bone metabolism, and pain
perception (16). CNR2 is more implicated in the physio-
logical modulation of the skeleton compared to other patho-
logical processes of the central nervous system (17,18).
In renal cell carcinoma, CNR2 knockdown curbed tumor
progression (19). In osteoporosis, upregulation of CNR2
accelerated the osteogenic differentiation of BMSCs (20).

In this research, we verified the role of TUG1 in
hFOB1.19 cell proliferation and differentiation. More impor-
tantly, we explored the potential mechanisms of TUG1 in
osteogenic differentiation.

Material and Methods

Cell culture

Human fetal osteoblastic cell line hFOB1.19 was
commercially acquired from American Type Culture Col-
lection (ATCC, USA). Cells were maintained in Dulbecco’s
modified Eagle medium (DMEM)/Ham’s F-12 medium
(1:1) (Gibco, USA) supplemented with 10% fetal bovine
serum (FBS; Gibco) and 0.3 mg/mL geneticin (G-418;
Solarbio, China). For osteoblastic differentiation, hFOB1.19
cells were cultured in osteogenic medium (OM; Gibco,
USA) for different time periods (0, 1, 4, 7, 14, or 21 days).
Cells were seeded in an incubator with 5% CO, at 34°C for
proliferation and at 39°C for differentiation.

Cell transfection

TUG1 overexpression vector, CNR2 overexpression
vector, the empty overexpression vector, small interference
RNA (siRNA) against TUG1 (si-TUG1), siRNA targeting
CNR2 (si-CNR2), siRNA negative control (si-NC), miR-545-
3p mimic (miR-545-3p), the scramble control (NC), miR-
545-3p inhibitor (anti-miR-545-3p), and the inhibitor control
(anti-NC) were purchased from GenePharma (China).
When cell confluence reached ~70%, plasmids and
oligonucleotides were transfected into hFOB1.19 cells
using Lipofectamine 3000 (Invitrogen, USA).

Quantitative real-time polymerase chain reaction
(qRT-PCR)

After RNA extraction using Trizol reagent (Invitrogen),
RNA was reverse-transcribed using the Prime script RT
master mix (Takara, China) or miScript reverse transcrip-
tion kit (Qiagen, Germany). qRT-PCR was performed using
SYBR Green PCR master mix (Takara). The expression of
TUG1 and CNR2 was normalized by B-actin. MiR-545-3p
expression was normalized by U6. RNA levels were
calculated using the 2722t method. The reaction procedure
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included 95°C for 10 min, followed by 40 cycles of 95°C
for 10 s, 60°C for 10 s, and 72°C for 30 s. The primers
included: TUG1-F: 5-CTGAAGAAAGGCAACATC-3,
TUG1-R: 5-GTAGGCTACTACAGGATTTG-3’; miR-545-
3p-F: 5-TGGCTCAGTTCAGCAGGAAC-3'/, miR-545-3p-
R: 5-TGGTGTCGTGGAGTCG-3’; CNR2-F: 5-GGGTGA
CAGAGATAGCCAATGG-3/, CNR2-R: 5-TGAACAGGTA
TGAGGGCTTCC-3'; B-actin-F: 5-GTCACCGGAGTCCAT
CACGAT-3/, B-actin-R: 5-TCACCAACTGGGACGACATG-
3’; UB-F: 5-CTCGCTTCGGCAGCACA-3, U6-R: 5-AAC
GCTTCACGAATTTGCGT-3.

Cell counting kit-8 (CCK-8) assay

Transfected hFOB1.19 cells (5 x 10%) were plated into
96-well plates. Then, the cells were cultured for 24, 48,
or 72 h. After discarding the cell supernatant, 100 uL com-
plete medium containing 10 uL CCK-8 solution (Beyotime,
China) was added to each well at indicated time points.
After incubation for 3 h, the absorbance was monitored
at 450 nm using Varioskan™ LUX multimode microplate
reader (Thermo Fisher Scientific, USA).

Western blot assay

Cells were lysed using RIPA buffer (Solarbio) and
then subjected to sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) to separate proteins.
Subsequently, the proteins were transferred onto poly-
vinylidene fluoride membranes (Millipore, USA). The mem-
branes were blocked with 5% non-fat milk for 2 h, and
then incubated with primary antibodies against prolifer-
ating cell nuclear antigen (PCNA) (ab18197, Abcam, UK),
CNR2 (ab3561, Abcam), ALP (ab83259, Abcam), runt-
related transcription factor 2 (RUNX2) (ab23981, Abcam),
osteocalcin (OCN) (ab93876, Abcam), osteopontin (OPN)
(ab8448, Abcam), and B-actin (ab8227, Abcam). Next, the
membranes were probed with the corresponding secondary
antibody (ab7090, Abcam). Subsequently, the signal
intensity was detected by the enhanced chemilumines-
cence system (Qiagen).

Alkaline phosphatase (ALP) activity determination

ALP activity, a hallmark enzyme of mature osteoblasts,
was examined using the ALP activity colorimetric assay
kit (BioViSion, USA). First, the cells were washed twice
with PBS and then extracted with RIPA buffer (Solarbio).
The optical density at 405 nm was measured using
Varioskan™ LUX multimode microplate reader (Thermo
Fisher Scientific).

Dual-luciferase reporter assay

The sequences of TUG1 or CNR2 3’ untranslated
region (UTR) containing wild-type or mutant binding site of
miR-545-3p were inserted into pmirGLO vector (Promega,
USA) to form TUG1-wt (wild type), TUG1-mut (mutant),
CNR2-wt, or CNR2-mut. Then, the corresponding vector
and miR-545-3p mimic or NC were co-transfected into
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hFOB1.19 cells. The Dual-luciferase reporter kit (Promega)
was utilized to measure luciferase activity.

RNA immunoprecipitation (RIP) assay

RIP assay was performed using Magna RNA immu-
noprecipitation kit (Millipore). In brief, \FOB1.19 cells were
transfected with miR-545-3p or NC. After collecting cell
lysates, they were incubated with magnetic beads contain-
ing anti-Ago2 or anti-IgG. Finally, the enrichment of TUG1
and miR-545-3p was measured by qRT-PCR.

Statistical analysis

Graphpad Prism 7.0 software (USA) was utilized to
analyze the data. Data are reported as means + SD with
three independent experiments. The difference was ana-
lyzed by Student’s t-test and one-way analysis of variance.
P <0.05 was considered statistically significant.
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Results

IncRNA TUG1 promoted hFOB1.19 cell proliferation
To investigate the effect of TUG1 on cell proliferation,
hFOB1.19 cells were transfected with TUG1 or si-TUG1.
First, transfection efficiency was evaluated using qRT-
PCR. TUG1 expression in the TUG1 group was signifi-
cantly higher than that in the vector group, and TUG1
expression in the si-TUG1 group was significantly lower
than that in the si-NC group (Figure 1A). In addition,
CCK-8 analysis showed that overexpression of TUG1
significantly expedited the viability of hFOB1.19 cells,
while down-regulation of TUG1 suppressed hFOB1.19
cell viability (Figure 1B). Moreover, western blot assay
revealed that PCNA expression was elevated after trans-
fection with TUG1, whereas PCNA expression was
decreased after the introduction of si-TUG1 (Figure 1C).
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Figure 1. Long non-coding RNA TUG1 promoted hFOB1.19 cell proliferation. A-C, TUG1 was overexpressed or knocked down in
hFOB1.19 cells after introduction of TUG1 or si-TUG1. A, The expression of TUG1 was determined by qRT-PCR. B, Cell viability was
detected by CCK-8 assay. C, The expression of PCNA was measured by western blot assay. Data are reported as means + SD of three

independent experiments. *P <0.05 (Student’s t-test).
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These data indicated that TUG1 promoted hFOB1.19 cell
proliferation.

TUG1 and CNR2 were upregulated, while miR-545-3p
was down-regulated in osteogenic differentiated
hFOB1.19 cells

TUG1 expression was significantly increased in
hFOB1.19 cells cultured with OM in a time-dependent
manner (Figure 2A). gRT-PCR suggested a significant
reduction in miR-545-3p expression at 7, 14, and 21 days
in hFOB1.19 cells stimulated with OM (Figure 2B). Fur-
thermore, western blot assay indicated a marked increase
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Figure 2. TUG1 and CNR2 were upregulated, while miR-545-3p
was down-regulated in osteogenic differentiated hFOB1.19 cells.
The hFOB1.19 cells were incubated in osteogenic medium (OM)
for 0, 1, 4, 7, 14, or 21 d. A and B, TUG1 and miR-545-3p
expression was detected by gRT-PCR. C, CNR2 protein level was
examined by western blot assay. Data are reported as means + SD
of three independent experiments. *P <0.05 (ANOVA).
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in CNR2 expression at 4, 7, 14, and 21 days in hFOB1.
19 cells cultured with OM (Figure 2C). These data
suggested that TUG1 might play a vital role in osteogenic
differentiation.

ALP activity and marker expression were increased
during osteogenesis

ALP activity was increased in hFOB1.19-OM cells
compared with hFOB1.19-control cells (Figure 3A).
Similarly, the levels of osteogenic-related proteins (ALP,
Runx2, OCN, and OPN) were significantly higher in
hFOB1.19-OM cells than that in hFOB1.19-control cells
(Figure 3B).

TUGH1 facilitated hFOB1.19 cell differentiation

ALP activity was increased in hFOB1.19-OM cells
by overexpressing TUG1 relative to the vector group,
whereas knockdown of TUGH1 restrained the activity of
ALP (Figure 4A). Moreover, the protein levels of ALP,
Runx2, OCN, and OPN were significantly increased in
hFOB1.19-OM cells transfected with TUG1 compared with
the vector group, while the levels were decreased in
osteogenic differentiated hFOB1.19 cells introduced with
si-TUG1 (Figure 4B). These data indicated that TUG1
facilitated hFOB1.19 cell differentiation.

TUGH1 directly targeted miR-545-3p

LncBase Predicted v.2 online database (http://carolina.
imis.athena-innovation.gr/diana_tools/web/index.php?r=
Incbasev2/index-predicted) predicted that TUG1 con-
tained the complementary binding sites of miR-545-3p
(Figure 5A). Dual-luciferase reporter assay disclosed
that the luciferase activity of TUG1-wt reporter was
significantly decreased after transfection with miR-545-
3p mimic, but the luciferase activity of TUG1-mut reporter
was not affected when the binding sites were mutated
(Figure 5B). Furthermore, RIP assay was performed to
verify whether miR-545-3p was a target of TUG1. The
results showed that TUG1 and miR-545-3p were enriched
in Ago2 antibody complex compared with the anti-lgG
group (Figure 5C). In addition, miR-545-3p expression
was detected in hFOB1.19 cells introduced with vector,
TUG1, si-NC, or si-TUG1. The results showed that
upregulation of TUG1 resulted in a distinct decrease in
miR-545-3p expression, while down-regulation of TUG1
induced a significant increase in miR-545-3p expression
(Figure 5D). These data demonstrated that miR-545-3p
was a direct target of TUG1 in hFOB1.19 cells.

TUGH1 restored the effect of miR-545-3p on osteogenic
differentiation

To investigate the role of miR-545-3p in TUG1-mediated
osteogenic differentiation, ALP activity and osteoblastic
differentiation markers were detected in osteogenic differ-
entiated hFOB1.19 cells after transfection. The results of
gRT-PCR showed that co-transfection of miR-545-3p and
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Figure 3. ALP activity and marker expression were increased during osteogenesis. A, The activity of ALP was determined in hFOB1.19
cells cultured with growth medium (GM) or osteogenic medium (OM) (14d). B, The expression of osteogenic differentiation markers was
determined by western blot assay. Data are reported as means £+ SD of three independent experiments. *P <0.05 (t-test).
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Figure 4. TUG1 facilitated hFOB1.19 cell differentiation. A, The activity of ALP in osteogenic differentiated hFOB1.19 cells was detected
after TUG1 was upregulated or down-regulated. B, The protein levels of ALP, Runx2, osteocalcin (OCN), and osteopontin (OPN) in
osteogenic differentiated hFOB1.19 cells were measured after transfection with TUG1 or si-TUG1. Data are reported as means + SD of

three independent experiments. *P <0.05 (t-test).

TUGH1 recovered the increase in miR-545-3p expression
induced by transfection of miR-545-3p, and the reduction in
miR-545-3p expression triggered by inhibition of miR-545-
3p was restored after introduction of anti-miR-545-3p and
si-TUG1 (Figure 6A). Moreover, the activity of ALP was
significantly restrained in miR-545-3p-treated osteogenic
differentiated hFOB1.19 cells, while TUG1 upregulation
abrogated this effect (Figure 6B). Similarly, inhibition of miR-
545-3p increased ALP activity, which was weakened by
TUG1 knockdown (Figure 6C). In addition, overexpression
of miR-545-3p resulted in a decrease in the levels of ALP,
Runx2, OCN, and OPN, whereas the levels were reverted
by reintroduction of TUG1 (Figure 6D). Consistently, trans-
fection with anti-miR-545-3p significantly increased the
expression of ALP, Runx2, OCN, and OPN, while the effect
was relieved after transfection with si-TUG1 (Figure 6E).
These results showed that TUG1 restored the inhibitory
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effect of miR-545-3p on osteogenic differentiation in
hFOB1.19 cells.

CNR2 was a target of miR-545-3p

TargetScan online database (http://www.targetscan.
org/vert_72/) predicted that miR-545-3p and CNR2 3'UTR
had putative binding sites (Figure 7A). Dual-luciferase
reporter assay showed that mature miR-545-3p signifi-
cantly blocked the luciferase activity of CNR2-wt re-
porter (Figure 7B). RIP assay was used to further confirm
whether miR-545-3p targeted CNR2, and the results
revealed that miR-545-3p and CNR2 were enriched in anti-
Ago2 complex (Figure 7C). Furthermore, the protein level of
CNR2 was significantly decreased in hFOB1.19 cells
transfected with miR-545-3p compared to the NC group,
and the protein level of CNR2 was significantly increased in
hFOB1.19 cells introduced with anti-miR-545-3p relative to
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means + SD of three independent experiments. *P <0.05 (t-test).
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Figure 6. TUG1 restored the effect of miR-545-3p on osteogenic differentiation. A, Expression of miR-545-3p was measured in
hFOB1.19 cells transfected with negative control (NC), miR-545-3p, vector + miR-545-3p, or TUG1 + miR-545-3p. Also, miR-545-3p
expression was tested in hFOB1.19 cells transfected with anti-NC, anti-miR-545-3p, si-NC +anti-miR-545-3p, or si-TUG1 + anti-miR-
545-3p. B, The activity of ALP was detected in osteogenic differentiated hFOB1.19 cells following miR-545-3p upregulation and/or TUG1
upregulation. C, ALP activity was examined in osteogenic differentiated hFOB1.19 cells after miR-545-3p down-regulation and/or TUG1
down-regulation. D, Protein levels of ALP, Runx2, osteocalcin (OCN), and osteopontin (OPN) were analyzed in osteogenic differentiated
hFOB1.19 cells transfected with miR-545-3p and/or TUG1. E, The levels of ALP, Runx2, OCN, and OPN were tested in osteogenic
differentiated hFOB1.19 cells introduced with anti-miR-545-3p and/or si-TUG1 by western blot assay. Data are reported as means + SD
of three independent experiments. *P <0.05 (ANOVA).
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*P <0.05 (t-test).

the anti-NC group (Figure 7D). Besides, upregulation of
TUG1 significantly increased CNR2 protein expression,
and depletion of TUG1 reduced CNR2 protein expression
(Figure 7E). These data indicated that CNR2 was a target
of miR-545-3p in hFOB1.19 cells.

miR-545-3p inversed the effect of CNR2 on osteogenic
differentiation

The decreased expression of CNR2 caused by knock-
down of CNR2 and the increased expression of CNR2
induced by overexpression of CNR2 were reversed
after transfection with anti-miR-545-3p or miR-545-3p in
hFOB1.19 cells, respectively (Figure 8A). Depletion of
CNR2 prominently suppressed ALP activity, while sup-
pression of miR-545-3p reversed this effect (Figure 8B).
Also, overexpression of CNR2 and miR-545-3p weak-
ened the stimulatory impact of CNR2 upregulation on
ALP activity (Figure 8C). Moreover, knockdown of CNR2
significantly reduced the expression of ALP, Runx2,
OCN, and OPN, whereas the effect was recovered after
reintroduction of anti-miR-545-3p (Figure 8D). Besides,
upregulation of CNR2 significantly increased the expression
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of ALP, Runx2, OCN, and OPN, which were abrogated by
upregulating miR-545-3p (Figure 8E). These data indicated
that miR-545-3p reversed the effect of CNR2 on osteogenic
differentiation in hFOB1.19 cells.

Discussion

Osteoblast-induced bone formation plays a vital role in
bone turnover (21). During bone remodeling, a series of
markers of bone turnover are released (22). Runx2 binds
to osteoblast-specific cis-acting element 2 to function as a
key transcriptional regulator for osteoblast differentiation
(23). Osteoblasts produce a variety of extracellular matrix
proteins, including ALP, collagen type |, OCN, and OPN
(24). Inducing osteogenic differentiation has become a
vital therapeutic strategy for bone loss-related diseases
(25).

Accumulating evidence has demonstrated that IncRNAs
participate in bone remodeling to regulate metabolic bone
disease, such as osteoporosis (26). For example, Yu et al.
(27) reported that IncRNA PCAT1 positively regulated
osteoblast differentiation in human adipose-derived stem


http://dx.doi.org/10.1590/1414-431X20209798

Effect of IncRNA TUG1 on osteoblast differentiation

hFOB1.19
A hFOB1.19 B
CNR2 wws s sy s
CNR2 D e e G

£
GAPDH | —— — o
15 ’ 5 * * 2
g3 — 5 gs.] H—H g

s

§&1o — 5s = g5
oc e oc’ 8z
£%0s £22 58
595%™ ] o ge

T 5 = T gt 2

o« 0.0 = o
¢ & & & § & & &
BT & & &S
3 & & o <
9 < = 2
'
& o e
S o &
LY &
S
&
e
D hFOB1.19-OM (14d)

hFOB1.19-OM (14d)
ALP | S — e —
- AP
RUNXZ | o w— v o
= ocN
OPN

I
T*

OCN | S s v s

OPN | " s s

Relative protein level

GAPDH | s s s s

&

SO S S
b AN
PSR e

¢,
)
%,
S,

SO SIS
?\ ,‘SJ,\,Q\;I

Ond' i SiS°
SN I

o,
%)

R
& S S & S
& I Ry o R RS
& & o & &
S & & & &
& S & S S

Ii| l:| |i| |:| * Runx2
T T H

8/10

(o]

hFOB1.19-OM (14d)

hFOB1.19-OM (14d)

(fold change)
™

Absorbance 405 nm

o

, hFOB1.19-0M (14d)
s B
s H "4 TH fad] [l £y oA

2.0 L Runx2

Relative protein level
-
-

GAPDH s s S s

Figure 8. MiR-545-3p inversed the effect of CNR2 on osteogenic differentiation. A, The protein level of CNR2 was measured in
hFOB1.19 cells transfected with si-NC (negative control), si-CNR2, anti-NC +si-CNR2, or anti-miR-545-3p +si-CNR2. Additionally,
CNR2 expression was detected in hFOB1.19 cells introduced with vector, CNR2, NC + CNR2, or miR-545-3p + CNR2. B, ALP activity
was determined in osteogenic differentiated hFOB1.19 cells transfected with si-CNR2 and/or anti-miR-545-3p. C, After introduction with
CNR2 and/or miR-545-3p, ALP activity was evaluated in osteogenic differentiated hFOB1.19 cells. D, Protein levels of ALP, Runx2,
osteocalcin (OCN), and osteopontin (OPN) were measured in osteogenic differentiated hFOB1.19 cells following CNR2 down-regulation
and/or miR-545-3p down-regulation. E, Expression of ALP, Runx2, OCN, and OPN was detected in osteogenic differentiated hFOB1.19
cells following CNR2 overexpression and/or miR-545-3p overexpression. Data are reported as means + SD of three independent
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cells (hADSCs) via binding to miR-145-5p and increas-
ing TLR4 expression. Xiao et al. (28) discovered that
MALAT1 accelerated osteogenic differentiation in human
aortic valve interstitial cells (hAVICs) by modulating the
miR-204/Smad4 axis. Moreover, Yu et al. (29) revealed
that TUG1 facilitated osteoblast differentiation in human
aortic valves via sponging miR-204-5p and increas-
ing Runx2 expression. The findings of this study were
consistent with previous studies. TUG1 promoted osteo-
blast proliferation and differentiation.

Investigations have corroborated that IncRNAs could
function as competing endogenous RNAs (ceRNAs) to
down-regulate miRNAs (14). In the current study, we
verified that TUG1 was a sponge of miR-545-3p. Further-
more, miR-545-3p acted as a modulator in a variety
of diseases. For example, miR-545-3p targeted MT1M
to facilitate the progression of human hepatocellular
carcinoma (30). Li et al. (15) reported that SP1-triggered
miR-545-3p suppressed the expression of osteogenic
differentiation markers and facilitated apoptosis in differ-
entiated MC3T3-E1 cells through inactivation of the
LRP5-induced Wnt/B-catenin signaling pathway, thereby
inhibiting osteoblast differentiation. Similar to previous
research, miR-545-3p expression was decreased in a
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time-dependent manner in hFOB1.19 cells undergoing
osteogenic differentiation. In addition, TUG1 inversed the
inhibitory effect of miR-545-3p on osteogenic differentia-
tion, suggesting that TUG1 regulated osteogenic differ-
entiation via sponging miR-545-3p.

Additionally, our research demonstrated that CNR2
was a target of miR-545-3p. A previous report suggested
that deficiency of CNR2 expedited age-related bone loss
in mice and CNR2 was related to low bone mineral density
in females (17). Besides, the absence of CNR1 and CNR2
receptors suppressed osteoclasts, thereby preventing
age-related bone loss (31). Furthermore, recent studies
have verified that miRNAs could repress the expression
of target genes by binding to their mRNAs (32). Xu et al.
(33) disclosed that microRNA-187-3p clearly restrained
osteogenic differentiation of hFOB1.19 cells via target-
ing CNR2. In the current study, CNR2 expression was
significantly increased in osteogenic differentiated hFOB1.
19 cells. Furthermore, mechanism analysis validated that
miR-545-3p hindered osteogenic differentiation by targeting
CNR2.

In conclusion, TUG1 facilitated the proliferation
of osteogenic precursor cells (hFOB1.19 cells). Also,
TUG1 sponged miR-545-3p to promote osteogenic
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differentiation of hFOB1.19 cells by upregulating CNR2.
Therefore, our findings provided new insights into the
molecular mechanisms of bone metabolism. In vivo
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