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Abstract

Globally, cardiac arrest (CA) is a leading cause of death and disability. Asphyxial CA (ACA)-induced kidney damage is a crucial
factor in reducing the survival rate. The purpose of this study was to investigate the role of antioxidant enzymes in
histopathological renal damage in an ACA rat model at different time points. A total of 88 rats were divided into five groups and
exposed to ACA except for the sham group. To evaluate glomerular function and oxidative stress, serum levels of blood urea
nitrogen (BUN) and creatinine (Crtn) and malondialdehyde (MDA) levels in renal tissues were measured. To determine
histopathological damage, hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson’s trichrome staining were
performed. Expression levels of antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2
(SOD-2), catalase (CAT), and glutathione peroxidase (GPx) were measured by immunohistochemistry (IHC). Survival rate of
the experimental rats was reduced to 80% at 6 h, 55% at 12 h, 42.9% at 1 day, and 33% at 2 days after return of spontaneous
circulation. Levels of BUN, Crtn, and MDA started to increase significantly in the early period of CA induction. Renal
histopathological damage increased markedly from 6 h until two days post-CA. Additionally, expression levels of antioxidant
enzymes were significantly decreased at 6 h, 12 h, 1 day, and 2 days after CA. CA-induced oxidative stress and decreased
levels of antioxidant enzymes (SOD-1, SOD-2, CAT, GPx) from 6 h to two days could be possible mediators of severe renal
tissue damage and increased mortality rate.
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Introduction

Ischemia and reperfusion (I/R)-mediated damage has
been identified as one of the major causes of debilitating
disease and death in several pathological conditions,
including myocardial infarction, ischemic stroke, and
cardiac arrest (CA) (1). An ischemic environment caused
by an interruption in the blood flow induces tissue injury
initially with subsequent damage prompted by reperfusion
(2). I/R injury is a multifocal process involving numerous
cell types and signaling pathways (3). Among them,

oxidative stress-mediated injury after I/R has been well
established (1). Since I/R is an enormously complex
process, its pathophysiology is not yet fully understood.

After cardiac arrest, the mortality rate increases in
those patients who immediately achieve the return of
spontaneous circulation (ROSC), which seems to be a
possible trigger that involves multiple organs. Although
sustained ischemic conditions in the whole body primarily
mediate global tissue and organ injury, further damage
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can occur during and after reperfusion (4,5). Previous
studies have found post-cardiac arrest syndromes (PCAS)
in various organs, especially in the heart, brain, and renal
tissue (6,7). However, most studies were focused on brain
injury. The occurrence and effect of I/R injury in the kidney
after CA are not described well (8).

I/R is mediated by oxidative stress, which may cause
injury to insulted tissues. The damage caused by the
return of oxygen to an ischemic tissue is far greater than
the injury caused by ischemia alone (9). However, in a
two-phase pattern, oxidative stress can lead to I/R injury-
provoked damage. Oxidative stress directly induces
cytotoxicity by producing free radicals and indirectly
triggers post-ischemia-reperfusion inflammatory injury by
recruiting inflammatory mediators through redox-mediated
signaling pathways (9,10). These oxidative stress and
inflammatory reactions have been associated with the
development of multiple organ failure (11).

Reactive oxygen species (ROS) generated by sudden
recirculation of oxygen have been found to play a
significant role in the pathophysiology of I/R injury (12).
Moreover, excess production of ROS can stimulate lipid
peroxidation, DNA damage, apoptosis, and necrosis and
trigger cellular death in several ways (13,14). To protect
ROS-mediated injury, it is important to neutralize the
effects of ROS. Antioxidant enzymes such as superoxide
dismutases (SODs), catalase (CAT), and glutathione
peroxidase (GPx) can provide a front line of defense
against ROS-mediated injury (15,16). SODs, CAT, and
GPx are a group of metalloenzymes that catalyze the
dismutation of superoxide anion (–O2) into hydrogen
peroxide (H2O2) and subsequently increase the break-
down of H2O2 to water and molecular oxygen (O2)
(16–18).

However, in a previous experiment, antioxidant
enzymes and their relationships with renal injury were
observed only one day after induction of asphyxial CA
enzymes (19). A time-course study was not performed.
Thus, the aim of this study was to examine the changing
pattern of antioxidant enzymes (SOD-1, SOD-2, CAT,
Gpx) in rat kidneys following asphyxial CA in a time-
dependent manner.

Material and Methods

Experimental animals and groups
All experimental methods of this investigation were

approved by Jeonbuk National University (approval No.
CBNU 2020-084) based on guidelines of ethics and
scientific care provided by the Institutional Animal Care
and Use Committee (IACUC) at Jeonbuk National
University. The experimental Sprague Dawley male rats
(body weight: 270–330 g) were 7 weeks old. They were
provided by the Experimental Animal Center of Jeonbuk
National University (Iksan campus, South Korea). A total
of 88 rats were used in this study and assigned to five

groups. Eight rats were used for the sham group and the
remaining 80 rats were used for CA surgery. CA-operated
rats were sacrificed at 6 h (n=8), 12 h (n=8), 1 day (n=8),
and 2 days (n=8) following ROSC.

Induction of CA and cardiopulmonary resuscitation
(CPR)

CA induction and CPR were performed following an
established protocol (20). Anesthesia was maintained
using a rodent ventilator (Harvard Apparatus, USA).
Heating pads were used to maintain body temperature
(37±0.5°C). During the experimental period, peripheral
oxygen saturation (SpO2) and electrocardiogram (ECG)
data were recorded frequently. The right femoral vein was
exposed to insert the cannula for intravenous injection.
Mean arterial pressure (MAP) was measured by cannula-
tion of the left femoral artery. To induce CA in rats,
intravenous vecuronium bromide (2 mg/kg, Gensia, Sicor
Pharmaceuticals, USA) was inserted, and mechanical
ventilation was stopped (19). CA was confirmed by MAP
values lower than 25 mmHg after 3–4 min of a stabilization
period. Five minutes after induction of CA, epinephrine
(0.005 mg/kg, Sigma, USA) and sodium bicarbonate
(1 mEq/kg, Sigma) were injected intravenously (19).
Mechanical chest compression (Jeung Do Bio & Plant
Co., Ltd., Korea) was done at 300/min with 100% oxygen
supply. When rats became thermodynamically stable, they
were sacrificed at specific time points (Figure 1).

Evaluation of serum levels of urea nitrogen and
creatinine

For euthanasia, 30% urethane (Sigma) was used.
Then 3–5 mL of blood was collected from the inferior vena
cava. Serum was separated from blood by centrifugation
at 3400 g or 15 min and used to determine blood urea
nitrogen (BUN) and creatinine (Crtn) levels with an
Automatic Analyzer 7020 (Hitachi, Japan).

Evaluation of malondialdehyde (MDA)
Levels of MDA as an oxidative stress marker in renal

tissues were evaluated following instructions of a com-
mercial kit (Cayman Chemical, USA). In brief, renal
tissues were homogenized and centrifuged at 8832 g for
10 min. The supernatant was collected and kept at –80°C
for experimental analysis. Using a tunable versus max
microplate reader (Cayman Chemical), the absorbance of
MDA was measured at 535 nm.

Hematoxylin and eosin (H&E), periodic acid-Schiff
(PAS), and Masson’s trichrome staining

Both kidneys were removed carefully after sacrificing
rats without any damage and fixed with 10% neutral
buffered formalin. Paraffin-embedded blocks were then
made and sectioned (5 mm in thickness) for H&E, PAS,
and Masson’s trichrome staining to examine histopatho-
logical changes, glomerular basement membrane, and
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interstitial fibrosis, respectively (21). Images of stained
kidney sections were taken using a Leica DM 2500
microscope (Leica Microsystems, Germany). For H&E-
stained sections, �400 magnification was used. For PAS-
and Masson’s trichrome-stained sections, �1,000 mag-
nifications were used. For each rat, separate slides were
prepared. Ten different fields of the same slide were then
examined. Two experienced renal pathologists assessed
histopathological changes via quantitative tubulointerstitial
injury measurement by counting numbers of apoptotic and
necrotic cells, determining loss of tubular brush border,
tubular dilatation, cast formation, and neutrophil infiltra-
tion, and examining glomeruli basement membrane
thickness in a double-blinded fashion. The scoring was
done based on level of damage: 0=none; 1=0–10%;
2=11–25%; 3=26–45%; 4=46–75%; and 5=76–100% (22).

Immunohistochemistry
To observe the expression pattern of antioxidant

enzymes in renal tissues, immunohistochemistry was
performed according to our published protocol (23). In
short, xylene and ethanol were used for deparaffinization
and dehydration of tissue sections, respectively. Antigen
retrieval and quenching were done using citrate buffer and
3% hydrogen peroxide, respectively. Tissue sections were
blocked with goat serum and then incubated with primary
antibodies for SOD-1 (Rabbit, Abcam, USA, #cat
ab13498), SOD-2 (Rabbit, Abcam, #cat ab13533), CAT
(Rabbit, Abcam, #cat ab16731), and Gpx (Rabbit, Abcam,
#cat ab22604) overnight at 4°C according to the dilution
recommended by the company. Afterward, tissue sections
were incubated with a secondary antibody (Vector
Laboratories Inc., USA) and vectastain ABC reagent
(Vector Laboratories Inc.) at room temperature for 1 h.
For the brown staining of immunoreactive tissue sections,
diaminobenzidine (DAB, Sigma-Aldrich) was used. Coun-
terstain was done using hematoxylin. Finally, sections
were mounted onto glass slides after dehydration and
cleaned with ethanol and xylene bath. A Leica DM 2500
microscope (Leica Microsystems) was used to capture

images of immunoreactive tissue sections. ImageJ thresh-
old analysis software (ij152-win-Java8; NIH, USA) was
used to analyze the relative absorbance in percentage.

Statistical analysis
GraphPad Prism 5.0 (USA) was used to analyze data.

Data are reported as means±SE. Survival rates were
measured using Kaplan-Meier statistics and log-rank
tests. Comparison of data among groups was performed
using one-way analysis of variance (ANOVA) followed by
Bonferroni’s multiple comparison tests. For all analyses,
statistical significance was considered when the P-value
was less than 0.05.

Results

Physiological variables
There were non-significant (P40.05) differences in

baseline characteristics between CA-operated groups and
the sham group (Table 1). MAP and SpO2 with isoelectric
ECG were used to confirm CA. Changes were observed
for ECG, MAP, and SpO2 as expected according to the
protocol. The survival rate of rats was 80% at 6 h, 55% at
12 h, 42.9% at 1 day, and 33% at 2 days after ROSC.
At baseline and after ROSC, body temperature, body
weight, and heart rate did not change significantly. The
room temperature was kept stable during the experiment.

Renal function evaluation and MDA levels in renal
tissues

Serum levels of BUN and Crtn were significantly
(Po0.05) increased at 6 h, 12 h, 1 day, and 2 days after
ROSC. The peak level of BUN was at 12 h after ROSC,
and it was maintained for up to 2 days. The peak level of
Crtn was at 1 day after ROSC, and it was maintained for
up to 2 days (Figure 2A and B). MDA concentrations at
6 h, 12 h, 1 day, and 2 days after ROSC were significantly
(Po0.05) increased in kidneys of rats with CA-induced
ischemia compared with those in the sham group
(Figure 2C).

Figure 1. Schematic diagram of the cardiac arrest (CA) model in rats with the pragmatic time used for animal stabilization, CA induction,
cardiopulmonary resuscitation (CPR), rate of spontaneous circulation (ROSC), and sacrifice.
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Histopathological findings
Histopathology results showed that brush borders of

epithelial cells of renal tubules were completely lost with
dilatation and infiltration of inflammatory cells in glomer-
ular capillaries and acute tubular necrosis following
ROSC. H&E score showed significant damage to proximal
and distal convoluted tubules of the renal cortex at 6 h,
12 h, and 2 days post-CA (Figure 3). PAS staining score
showed that the diameter of glomeruli capillaries and the
thickness of the glomerular basement membrane were
markedly increased at 6 h, 12 h, 1 day, and 2 days after
ROSC compared with the sham. Masson’s trichrome
staining revealed increased interstitial fibrosis in the renal
cortex following ROSC in a time-dependent manner
(Figure 3).

Immunohistochemical analysis of antioxidant
enzymes

Immunoreactive antioxidant enzymes SOD-1, SOD-2,
CAT, and GPx were significantly reduced in renal
tissues of CA-operated groups. In the sham group,
expression levels of antioxidant enzymes were markedly
higher in tubular cells. However, other groups displayed
lower numbers of tubular cells stained with SOD-1,
SOD-2, CAT, and GPx in a time-dependent manner.

Immunoreactive SOD-1 and SOD-2 expression levels
were significantly decreased at 6 h and maintained for
2 days after ROSC. GPx and CAT expression levels
started to decrease at 6 and 12 h and continued for 2 days
(Figure 4).

Discussion

The survival rate of out-of-hospital CA patients who
have received CPR from ambulance personnel and
surviving admission ranges from 14 to 39%, with more
than half of them dying within the first 24 h after arriving at
the hospital (24). The survival rate in CA animal models
varies according to the methodology or animals employed.
In the present study, the survival rate declined in a time-
dependent manner, reaching 33% at two days post-CA.
Previous studies have also shown the same pattern of
survivability (25,26). Therefore, our asphyxial CA model
was suitable for studying CA patients.

Severe damage is found mostly in the heart and brain
following I/R injury after CA (27). Nonetheless, some
research has found that acute renal impairment affects
neurological recovery (28). Furthermore, acute renal
damage is increased in 43% of patients resuscitated after
CA, with more than 75% of such damage occurring within

Table 1. Physiological condition before (sham) induction of cardiac arrest and after in rats (n=8).

Parameter Sham 6 h 12 h 1 d 2 d

Body weight (g) 328.4±17.3 330.3±16.7 327.9±13.2 331.2±17.0 330.4±12.1

SpO2 97.2±0.7 97.8±0.6 96.4±0.2 96.6±1.7 98.0±1.2

MAP (mmHg) 122.2±0.5 119.8±1.4 116.2±1.3 120.1±1.4 120.6±0.5

Asphyxia time to CA (s) – 157.3±13.3 158.0±14.3 162.0±16.3 153.8±8.79

CPR time (s) – 75.2±10.6 74.4±10.6 71.1±12.5 73.4±11.0

Survival rate (%) 100.0 80.0 55.0 42.9 33.0

Data are reported as means±SE. There were no significant differences between groups. SpO2: oxygen saturation; MAP: mean arterial
pressure; CA: cardiac arrest; CPR: cardiopulmonary resuscitation; d: day.

Figure 2. Effects of return of spontaneous circulation (ROSC) after induction of cardiac arrest (CA) on blood urea nitrogen (BUN),
creatinine, and malondialdehyde (MDA) levels on blood serum. Data are reported as means±SE (n=8). Po0.05, ANOVA followed by
Bonferroni’s multiple comparison tests.
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three days (29). Thus, it is important to focus on acute
renal damage following CA and CPR. In the present study,
we found severe histological changes in kidney tissues.
Jawad et al. (26) and Kim et al. (19) have reported the
same pattern of histopathological changes in renal tissues
after induction of asphyxial CA. Creatinine and BUN are
the most frequently utilized endogenous indicators for
assessing glomerular function (30). These are markedly
augmented after ROSC in CA hospital patients and in an
induced-CA rat model (26). Previous studies have also
reported that BUN and creatine levels are increased at
1 day and 2 days after ROSC in an asphaxial CA rat
model (31,32). Our experimental data were also similar to
studies using a traditional I/R model. There were only
differences in histopathological damage in renal tissues.
BUN and Crtn levels started to increase in an earlier
period of 6 h after ROSC. Results of BUN and Crtn levels
and histological analysis confirmed that acute kidney

injury could progress in the initial period of CA and
continue for 2 days in asphyxial CA.

The involvement of oxidative stress is crucial in the
development of renal ischemic injury, which is pathologi-
cally prompted by excess generation of ROS and reactive
nitrogen species (RNS) (33). Those superoxides are
extremely bioactive oxygen molecules and vastly linked
to renal tissue damage (34). Overproduction of ROS
ultimately induces DNA degradation, protein inactivation,
and structural and functional disruption of renal tubular
cells by widespread membrane lipid peroxidation (35,36).
Increased ROS can also lead to MDA generation and
severely weaken the antioxidant enzyme system (37).
In the present study, MDA was markedly increased in
CA groups compared with the sham group, resembling
results of a previous study (26). Thus, asphyxial CA can
increase oxidative stress in a time-dependent manner and
provoke renal damage.

Figure 3. Effects of return of spontaneous circulation (ROSC) after induction of cardiac arrest (CA) on renal histopathological changes.
H&E, PAS, and Masson trichrome staining (A) showed significantly augmented tubular injury and damage in the glomerulus in the CA-
operated groups (6 h, 12 h, 1 day, 2 days) compared to the sham group. Graphs represent the tubular injury score (B) and glomerular
basement membrane damage score (C). Original magnification: �400. Scale bar: 50 mm. Data are reported as means±SE (n=8).
Po0.05, ANOVA followed by Bonferroni’s multiple comparison tests. (%) Indicates loss of brush border with necrosis, (#) indicates
irregular brush borders, (-) indicates dilated glomerular capillaries, and (c) indicates infiltration of inflammatory cells in CA-operated
groups.
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Detrimental consequences of oxidative stress can be
reduced by enzymatic antioxidant systems known to
scavenge ROS. Antioxidant enzymes such as SODs,
CAT, and GPx can inhibit ROS-mediated injury. SODs are
the most dominant antioxidant enzymes in cells. They can
initiate neutralization of ROS-induced toxicity and accel-
erate the neutralization and dismutation of superoxide
anion (–O2), which is highly detrimental, into hydrogen
peroxide (H2O2) and molecular oxygen (O2) (16). To
reduce toxic effects of H2O2 on tissues, CAT can increase
the breakdown of H2O2 into water and molecular oxygen,
which completes the detoxification process similar to SOD
(17). However, in mammals, CAT is restricted to peroxi-
somes, making it improbable to interact with SOD-
produced hydrogen peroxide (38). CAT might decompose

peroxynitrite and oxidize nitric oxide to nitrite to balance
oxidation of NO (39). In addition, GPx is a vital intracellular
antioxidant enzyme that can also intensify the degradation
of H2O2 to H2O and lipid peroxides to their equivalent
alcohols, mainly in the mitochondria (18). The present
experiment revealed that antioxidant defense systems
were altered by asphyxial CA-mediated I/R injury. The
change in the potentiality of antioxidant enzymes sug-
gested the role of ROS in the pathogenesis of asphyxial
CA-mediated I/R renal injury. Our study revealed that the
immunoreactivity of antioxidant enzymes including SOD-
1, SOD-2, CAT, and GPx started to decline at an early
stage of CA (6 h) and continued to decline significantly up
to 2 days after ROSC compared with the sham group.
Expression patterns of antioxidant enzymes in the

Figure 4. Effects of return of spontaneous circulation (ROSC) after induction of cardiac arrest (CA) on renal antioxidant enzymes.
A, Immunohistochemistry showing significantly decreased expression of antioxidant enzymes superoxide dismutase (SOD)-1, SOD-2,
glutathione peroxidase (GPx), and catalase (CAT) in the CA-operated groups (6 h, 12 h, 1 day, 2 days) compared to the sham group.
Graphs represent the relative optical density (ROD%) of (B) SOD-1, SOD-2, GPx, and CAT expression. Original magnification: �400.
Scale bar: 50 mm. Data are reported as means±SE (n=8). Po0.05, ANOVA followed by Bonferroni’s multiple comparison tests.
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asphyxial CA model are similar to those in the ischemic
acute kidney injury model. A previous experiment has
found that antioxidant enzymes including SOD-1, SOD-2,
CAT, and GPx in kidneys exposed to ischemia for 30, 60,
90 min, 2 h, and 24 h are reduced significantly (40). Kim
et al. (19) have shown that immunoreactivity of antioxidant
enzymes (SOD-1, SOD-2, CAT, GPx) in renal tissues are
decreased at 1 day after I/R induction by asphyxial CA
and that hypothermia treatment can increase the expres-
sion of antioxidants enzymes.

Conclusion
CA-induced ischemia significantly increased oxidative

stress in renal tissues during the early period (6 h).
Oxidative stress-mediated markers could be involved in

the reduction of activities of antioxidant enzymes such
as SOD-1, SOD-2, GPx, and CAT, ultimately increasing
renal injury in a time-dependent manner. They could be
potential factors for a low survival rate. Further studies are
needed to explore the exact mechanism involved.
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