EFEITO DA TEMPERATURA NO COMPORTAMENTO **REOLÓGICO DA POLPA DE MANGA (mangífera indica L-Keitt)**¹

José Raniere Mazile Bezerra VIDAL^{2,*}, Daniela Helena PELEGRINE³, Carlos Alberto GASPARETTO³

RESUMO

Foi determinado o efeito da temperatura no comportamento reológico da polpa de manga variedade Keitt na faixa de temperatura de 10ºC a 60ºC. A polpa integral foi produzida em planta piloto e refinada num "finisher" com peneira de 1,6mm. As análises reológicas foram conduzidas em um reômetro Haake Rotovisco RV-20 com geometria de cilindros concêntricos. O efeito da temperatura sobre o parâmetro reológico representado pelo índice de comportamento, nos casos dos modelos de Mizrahi-Berk (M-B) e Lei da Potência, foi ajustado por uma função linear do tipo: $n_M = A_1 + B_1T$. O índice de consistência foi ajustado usando-se a equação de Arrhenius: $ln(K_M)$ $= A_{2} + B_{2}/T.$

Palavras-chave: reologia; temperatura; manga; polpa.

SUMMARY

EFFECT OF THE RHEOLOGICAL BEHAVIOR OF MANGO PULP (magifera indica L-KEITT). The rheological behavior of mango pulp (Keitt) was measured in the temperature range 10-60°C. Whole pulp was produced in pilot plant and finished with 1.6 mm mash sieve. Rheometry was conducted in a Haake-Rotovisco RV-20 rheometer with concentric cylinders. Temperature effect on rheological parameters of consistency was fitted to the Arrhenius model: $ln(K_M) = A_1 + B_1/T$. The flow behavior index for both power law and Mizrahi-Berk were fitted as: $n_{M} = A_{2} + B_{2}T$. **Keywords:** rheology; temperature; mango; pulp.

1 – INTRODUÇÃO

A manga é um fruto de regiões tropicais e subtropicais, de grande demanda em todo o mundo, tanto para o seu consumo in natura quanto industrializada na forma de sucos, polpas, néctares, sorvetes e sobremesas gelificadas [4]. A variedade Keitt ocupa posição de destaque nos mercados interno e externo, tanto para o consumo in natura quanto para a industrialização, conforme relatam os trabalhos de SIQUEIRA et al. [7] e CEREZAL, BATISTA & PIÑERA [2], devido ao elevado teor de polpa e de sólidos solúveis totais, pH favorável, maior suculência e menor teor de fibras.

Para fabricação dos produtos derivados de manga utiliza-se a polpa concentrada, a qual será submetida aos processos de industrialização. Para que cada etapa do processo seja economicamente viável, é fundamental o conhecimento das propriedades físicas e químicas da polpa submetida a tais processos [6]. Dentre essas propriedades o comportamento reológico ocupa posição de grande destaque, sendo útil não só como medida de qualidade, mas também em projetos, avaliação e operação dos equipamentos processadores de alimentos tais como as bombas, sistemas de agitação e tubulações [3, 5].

A inexistência de dados reológicos sobre frutas tropicais na literatura tem levado a indústria nacional a utilizar no processo de fabricação destes sucos, condi-

^{3.} Departamento de Engenharia de Alimentos (UNICAMP), FEA - UNICAMP Caixa Postal 6121 Campinas - SP Brasil - CEP 13.081-970 *A quem a correspondência deve ser enviada.

ções semelhantes às aplicadas na produção do suco de laranja. Todavia, por terem propriedades diferentes, os resultados não atingem o mesmo nível de qualidade [8]. Para obter sucos concentrados com qualidade capaz de conquistar o exigente paladar dos importados, a indústria brasileira deve respeitar as características exclusivas de cada fruta. A crescente necessidade e procura dos parâmetros reológicos para os diversos fluidos manipulados nas indústrias de processamento está ligada também a grande importância econômica que estes fluidos e equipamentos de manipulação representam atualmente [9].

2 - MATERIAIS E MÉTODOS

A manga utilizada neste trabalho é de variedade Keitt e foi selecionada de um único lote proveniente da região Sul de Minas Gerais. As polpas foram produzidas em planta piloto a partir de frutas cujo grau de maturação foi padronizado por ensaio em texturômetro da marca Texture Analyser modelo TA - TX2, com penetração de 1cm, isso foi feito somente para tentar padronizar a maturação pois, esse é um parâmetro quase impossível de igualar entre todas as frutas. Em seguida as frutas passaram por despolpadeira com tela de 1,6mm de abertura. A polpa integral (Brix °16,6 e acidez 4,47) foi para um congelador de placa, visando um congelamento rápido do material para evitar a formação de grandes cristais de gelo na superfície e danificação das estruturas celulares, além de inibir ações enzimáticas. Após 4 horas, o material foi retirado e embalado a vácuo em sacos de polietileno para diminuir o contato com o ar. O produto embalado foi armazenado em freezer horizontal a - 20°C. Parte da polpa integral foi centrifugada (Brix °16,05 e acidez 4,47) a 15000rpm (29000G) durante 40 minutos. As medidas reológicas foram feitas às temperaturas de 10, 20, 30, 40, 50 e 60°C no

^{1.} Recebido para publicação em 16/10/2002. Aceito para publicação em 25/09/2003 (000762).

^{2.} Departamento de Engenharia de Alimentos (UNICENTRO), Caixa Postal 730 Guarapuava-PR-Brasil-Cep:85015-430

reômetro de cilindros concêntricos ZA30, Haake Rotovisco, modelo RV-20. O tempo de corrida, para cada ensaio foi programado para 4 minutos, sendo que nos dois minutos iniciais a taxa de deformação variou de maneira crescente até o valor máximo, próximo de 300 s⁻¹. Em seguida, a taxa de deformação variou de maneira decrescente durante dois minutos até o valor mínimo próximo de 0 s⁻¹.

Tanto na corrida ascendente quanto na descendente foram obtidos 20 pontos de taxa de deformação *versus* tensão de cisalhamento, resultando num total de 40 pontos, dos quais foi tomado o valor médio da tensão de cisalhamento para cada taxa de deformação. Os experimentos foram realizados em triplicata, onde para cada repetição utilizou-se uma nova amostra, igual a anterior, para evitar possíveis efeitos de tempo.

As curvas de taxa de deformação *versus* tensão de cisalhamento foram ajustadas pelos modelos de M-B e Lei da Potência, representados pelas Equações (1) e (2), na *Tabela 1*.

TABELA 1. Modelos reológicos utilizados

	Modelo de Mizrahi-Berk (M-B)	Modelo Lei da Potência			
Equação	$\tau^{0,5} = \kappa_{0M} + \kappa_M \cdot \gamma^{n_M} $ (1)	Equação	$ au = \kappa \cdot \gamma^n$ (2)		
τ	tensão de cisalhamento (Pa)	τ	tensão de cisalhamento (Pa)		
γ	taxa de deformação (s ⁻¹)	γ	taxa de deformação (s ⁻¹)		
κ_M	índice de consistência (Pa.s)	ĸ	índice de consistência (Pa.s)		
n_M	índice de comportamento	п	índice de comportamento		
$\kappa_{\rm 0M}$	raiz quadrada da tensão inicial (Pa) ^{0,5}				

A decisão do modelo mais adequado foi tomada com base nos parâmetros estatísticos coeficiente de correlação (R²), chi-quadrado (χ^2) e soma dos quadrados dos resíduos (SSR), conforme definidos por BENDER, DOUGLASS & KRANER [1].

3 – RESULTADOS E DISCUSSÃO

O comportamento reológico das polpas de manga integral e centrifugada pode ser visto nas *Figuras 1 e 2* onde estão plotados os pontos experimentais com suas respectivas curvas de ajustes com eixo γ *versus τ*.

FIGURA 1. Modelo de Mizrahi-Berk ajustado para a polpa integral.

40

FIGURA 2. Modelo Lei da Potência ajustado para polpa centrifugada.

As *Tabelas 2 e 3* apresentam os valores dos parâmetros obtidos por ajuste dos modelos de Mizrahi-Berk (M-B) e Lei da Potência aos reogramas das polpas integral e centrifugada, respectivamente, pois estes proporcionaram melhores parâmetros de ajuste.

TABELA 2. Parâmetros do modelo de Mizrahi-Berk (M-B) para polpa de manga integral

1 1 1	C	5 0	,			
	10∘C	20°C	30∘C	40°C	50∘C	60∘C
<i>К</i> _{0М} (Ра) ^{0,5}	3,41	4,12	3,47	3,81	4,57	4,51
κ_M (Pa.s)	1,12	0,68	0,41	0,20	0,20	0,14
$n_{\scriptscriptstyle M}$	0,29	0,35	0,40	0,48	0,48	0,54
Erro K OM	0,06	0,02	0,09	0,11	0,07	0,13
Erro κ_M	0,04	0,11	0,04	0,04	0,02	0,04
Erro n_M	0,00	0,02	0,02	0,03	0,01	0,04
χ^{2}	0,00	0,00	0,00	0,00	0,00	0,00
SSR	0,00	0,01	0,00	0,01	0,00	0,03
R ²	0,99	0,99	0,99	0,99	0,99	0,99

TABELA 3. Parâmetros do modelo Lei da Potência para polpa de manga centrifugada

	0	0					
	10°C	20°C	30°C	40°C	50°C	60°C	
_κ (Pa.s)	0,45	0,32	0,25	0,20	0,15	0,09	
п	0,69	0,71	0,72	0,73	0,74	0,77	
Erro _K	0,02	0,02	0,01	0,01	0,01	0,01	
Erro n	0,00	0,01	0,00	0,01	0,01	0,02	
x ²	0,06	0,06	0,02	0,03	0,02	0,04	
SSR	1,16	1,09	0,44	0,61	0,44	0,69	
R ²	0,99	0,99	0,99	0,99	0,99	0,99	

O efeito da temperatura sobre os índices consistência e de comportamento dos modelos de Mizrahi-Berk (M-B) e Lei da Potência, foram ajustados através do software ORIGIN. Como as polpas de manga integral e centrifugada foram melhores descritas, respectivamente, pelos modelos de Mizrahi-Berk (M-B) e Lei da Potência, buscou-se uma dependência do tipo linear para o índice de comportamento (*n*) em função da temperatura, como representada nas *Figuras 3 e 4*, podendo ser expressa na forma:

$$n_{M} = A_{1} + B_{1} \cdot T \tag{3}$$

onde T é a Temperatura (K), sendo A_1 e B_1 as duas constantes obtidas da regressão linear do gráfico T versus *n*. Na *Figura 3* descarta-se ponto relativo a temperatura de 40° C (313K), pois esse não foi utilizado na obtenção da reta de ajuste.

FIGURA 3. Efeito da temperatura sobre o parâmetro n_{M} para polpa de manga integral.

FIGURA 4. Efeito da temperatura sobre o parâmetro *n* para polpa de manga centrifugada.

Nas *Tabelas 4 e 5* estão os parâmetros de índice de comportamento ajustados ao reograma e aqueles obtidos pelo ajuste de uma dependência linear com a temperatura, conforme ilustrados nas *Figuras 3 e 4*.

TABELA 4. Parâmetros de Mizrahi-Berk (M-B) para polpa de manga integral

Temperatura (°C)	10	20	30	40	50	60
n_{M} (ajuste ao reograma)	0,29	0,35	0,40	0,48	0,48	0,54
n_M (por $n_M = A_1 + B_1 \cdot T$)	0,30	0,35	0,40	0,45	0,50	0,54

TABELA 5. Parâmetros da Lei da Potência para polpa de manga centrifugada

0 0						
Temperatura (°C)	10	20	30	40	50	60
n (ajuste ao reograma)	0,69	0,71	0,72	0,73	0,74	0,77
<i>n</i> (por $n = A_1 + B_1 \cdot T$)	0,69	0,71	0,72	0,73	0,75	0,76

Para a descrição do índice de consistência (parâmetro κ), buscou-se uma dependência do tipo de Arrhenius em função da temperatura, representada nas *Figuras 5 e 6* e expressa na forma:

$$In(\kappa) = A_0 + B_0 T^{-1} \tag{4}$$

sendo *T* o valor da temperatura (κ) e A_2 e B_2 as duas constantes obtidas da regressão linear do gráfico In(κ) *versus T*⁻¹.

FIGURA 5. Efeito da temperatura sobre o parâmetro κ_M (Mizrahi-Berk) para polpa integral.

FIGURA 6. Efeito da temperatura sobre o parâmetro κ (Lei da Potência) para polpa centrifugada.

As *Tabelas 6 e 7* apresentam os valores dos índices de consistência ajustados ao reograma e aqueles obtidos pelo ajuste de uma dependência tipo Arrhenius com a temperatura, conforme ilustrado nas *Figuras 5 e 6*.

TABELA 6. Parâmetros de Mizrahi-Berk (M-B) para polpa integral

Temperatura (°C)	10	20	30	40	50	60
$\mathcal{K}_{\mathcal{M}}$ (ajuste ao reograma)(Pa.s)	1,12	0,68	0,41	0,20	0,20	0,14
$\kappa_{\mathcal{M}} \left(\ln(\kappa_{\mathcal{M}}) = A_2 + B_2 \cdot T^{-1} \right)$ (Pa.s)	1,05	0,65	0,41	0,27	0,18	0,13

TABELA 7. Parâmetros da Lei da Potência para polpa de manga centrifugada

Temperatura (°C)	10	20	30	40	50	60
${\cal K}$ (ajuste ao reograma) (Pa.s)	0,45	0,32	0,25	0,20	0,15	0,09
\mathcal{K} $\left(\ln\left(\kappa\right)=A_{2}+B_{2}\cdot T^{-1}\right)$ (Pa.s)	0,47	0,33	0,24	0,18	0,14	0,10

Os valores das constantes A_1 , B_1 , $A_2 e B_2$ das Equações (3) e (4) estão apresentados na *Tabela 8*.

Nas Figuras 7 e 8 os pontos marcados representam os valores fornecidos diretamente do levantamento de

Ciênc. Tecnol. Aliment., Campinas, 24(1): 039-042, jan.-mar. 2004

dados do reograma. As linhas continuas representam os modelos de Mizrahi-Berk (M-B) e Lei da Potência com os novos parâmetros κ e *n* ajustados pela dependência com a temperatura, valores esses dados nas *Tabelas 4, 5, 6 e 7.*

TABELA 8. Valores das constantes das Equações (3) e (4)

	Equaç	ao (3) (i=1)	Equação (4) (i=2)		
Constante	Polpa Integral	Polpa Centrifugada	Polpa Integral	Polpa	
	i olpa integrai	i olpa Oentinugada	i olpa integrar	Centrifugada	
Ai	-1,09100	0,28645	-14,1206	-10,74429	
Вi	0,00491	0,00143	4012,802	2827,6354	
R ²	0,98304	0,97808	0,98177	0,9852	

FIGURA 7. Modelo de Mizrahi-Berk ajustado para polpa de manga integral.

FIGURA 8. Modelo Lei da Potência ajustado para polpa de manga centrifugada.

Os parâmetros $\kappa_{_{OM}}$ da *Tabela 9* foram obtidos a partir de uma regressão linear, usando-se os pontos experimentais e os novos valores de $\kappa_{_M}$ e $n_{_M}$ fornecidos pela dependência com a temperatura.

TABELA 9. Parâmetro de Mizrahi-Berk (M-B) para polpa de manga integral

Temperatura (°C)	10	20	30	40	50	60
${m {\cal K}}_{0M}$ (ajuste ao reograma) (Pa) $^{0.5}$	3,41	4,12	3,47	3,81	4,57	4,51
$oldsymbol{\mathcal{K}}_{0M}$ (recalculado) (Pa) $^{0.5}$	3,49	4,13	2,90	3,54	4,53	4,51

Portanto, estes modelos descrevem o comportamento reológico da polpa de manga integral, levando em consideração a dependência dos parâmetros reológicos com a temperatura. A sua vantagem é que os parâmetros índice de consistência (κ) e índice de comportamento (n) estão descritos de maneira mais coerente, pois todos podem ser representados diretamente em função da temperatura. Essa representação é muito mais conveniente, principalmente para uso de algoritmos de cálculos de processos e equipamentos.

4 - CONCLUSÕES

Para o modelo de Mizrahi-Berk (M-B), a partir dos dados obtidos no reômetro Haake Rotovisco, o parâmetro $\kappa_{_{OM}}$ representa a raiz quadrada da tensão inicial para o produto iniciar escoamento. Com a variação da temperatura na faixa de 10 a 60°C o parâmetro κ_{om} mostrou-se na faixa de 3,41 a 4,57 Pa^{1/2}. Foi verificado o valor do índice de comportamento menor que 1 (um) mostrando que as polpas de manga integral e centrifugada apresentam comportamento pseudoplástico. Com o aumento da temperatura observou-se um aumento no índice de comportamento e uma diminuição no parâmetro índice de consistência, indicando que as polpas perdem pseudoplasticidade e ficam menos viscosas na medida em que a temperatura aumenta. Foi verificado que a viscosidade diminuiu com a temperatura até 40°C e para temperaturas de 50°C e 60°C foi observado um aumento da viscosidade o que pode ser explicado por um possível aumento de mobilidade e portanto interação entre fibras suspensas, já que esse comportamento não é observado na polpa centrifugada.

5 – REFERÊNCIAS BIBLIOGRÁFICAS

- BENDER, F.E.; DOUGLASS, L.W.; KRAMER, A. "Statistics in research", in Statistical methods for food and agriculture, Avi Publishing Company, Inc., 1982. Westport (USA).
- [2] CEREZAL, P.; BATISTA, A.R.; PIÑERA, R.M. "Evaluation de cultivares de mango para la elaboración de pulpas", Alimentaria, v. 260, p. 29-31, 1995.
- [3] IBARZ, A.; GONÇALVES, C.A.; EXPLUGAS, S. "Rheology of clarified passion fruit juices", Fruit Processing, v. 6, p. 330-333, 1996.
- [4] PELEGRINE, D.H. Comportamento reológico das polpas de manga e abacaxi. 1999. 115p. Tese de Mestrado, FEA/UNICAMP. Campinas, (SP).
- [5] QUEIROZ, A.J.; VIDAL, J.R.M.B.; GASPARETTO, C.A. "Influência dos sólidos suspensos na reologia do suco de abacaxi", XIV Encontro Sobre Escoamento em Meios Porosos, Uberlândia, v. 1, p. 49-53, 1996.
- [6] QUEIROZ, A.J.M. Análise do comportamento reológico dos sucos de abacaxi e manga. 1998. 109 p. Tese de Doutorado, FEA/UNICAMP, Campinas (SP).
- [7] SIQUEIRA, D.L.; BOTREL, N.; CARVALHO, V.D.; RA-MOS, V.H.V.; COUTO, F.A.D. "Características físicas e químicas de vinte cultivares de mangueira (mangífera indica L.)", **Revista Brasileira de Fruticultura**, v. 10, p. 49-54, 1988.
- [8] VIDAL, J.R.M.B.; Estudo reológico do suco de manga efeito dos sólidos insolúveis. 1997. 81p. Tese de Mestrado, FEA/UNICAMP. Campinas, (SP).
- [9] VIDAL, J.R.M.B.; Comportamento Reológico da Polpa de Manga (Mangífera indica L-Keit). 2000. 120p. Tese de Doutorado, FEA/UNICAMP. Campinas, (SP).