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Abstract
Samples of beer made in Brazil were analyzed for the presence of fumonisin B1 (FB1) and ochratoxin A (OTA). FB1 was searched for in 58 beer 
samples from 30 plants located in nine states. The samples were concentrated and cleaned up with strong ion exchange column, derivatized 
with OPA and analyzed by HPLC with fluorescence detection. The limit of detection was 0.26 ng.mL-1 and the average recovery was 98%. 
Twenty-five samples contained FB1 ranging from 1 to 40 ng.mL-1. Beer (123 samples) from 36 plants located in 5 states were analyzed for 
OTA by means of immunoaffinity column cleanup followed by liquid chromatography associated with fluorescence. The detection limit was 
0.1 ng.mL-1 and the average recovery was 92%. Five samples contained OTA in concentrations from 1 to 18 ng.mL-1. The results indicate that 
FB1 and OTA contamination in Brazilian beer is not geographically limited and that beer does not contribute significantly to FB1 intake by 
consumers. In the case of regular high ingestion, beer could contribute sizably to OTA, intake although still below the maximum considered 
tolerable for the toxin.
Keywords: mycotoxins; fumonisin B1; ochratoxin A; beer.

Resumo
A presença de fumonisina B1 (FB1) e de ocratoxina A (OTA) foi investigada em amostras de cerveja fabricada no Brasil. FB1 foi pesquisada em 
58 amostras de cerveja provenientes de 30 fábricas localizadas em nove Estados. As amostras foram concentradas, e a toxina isolada através 
de coluna de troca iônica forte, derivação com OPA e análise por CLAE com fluorescência associada. O limite de detecção foi 0,26 ng.mL-1 e a 
recuperação média foi de 98%. Vinte e cinco amostras continham FB1 em concentrações de 1 a 40 ng.mL-1. Cerveja (123 amostras) proveniente 
de 36 fábricas localizadas em 5 Estados foi analisada para OTA através de coluna de imunoafinidade seguida de CLAE com detector de 
fluorescência. O limite de detecção foi 0,1 ng.mL-1 e a recuperação média foi de 92%. Cinco amostras continham OTA em concentrações de 1 
a 18 ng.mL-1. Os resultados indicam que a contaminação da cerveja brasileira por FB1 e por OTA não é geograficamente limitada e que não 
contribui significativamente para a ingestão de FB1 por consumidores. Por outro lado, no caso de consumo alto e regular, esta pode contribuir 
substancialmente na ingestão de OTA, porém ainda abaixo do máximo considerado tolerável para a toxina.
Palavras-chave: micotoxinas; fumonisina B1; ocratoxina A; cerveja.
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1 Introduction
Fumonisins consist of a group of mycotoxins produced 

mainly by strains of Fusarium verticilloides and Fusarium 
proliferatum5. Within this group of toxins, Fumonisins B1 (FB1), 
B2, and B3 are the most commonly found in food and feed. FB1 
represents up to 70% of the fumonisins produced in labora-
tory conditions or found in naturally contaminated food or 
feed. It is also the most toxic of the group9. In rats, FB1 causes 
cancer in liver, is toxic to kidneys and liver and weakens the 
immune system22. FB1 brings about leukoencephalomalacia in 
horses22,49 and pulmonary edema in swine11. There is no direct 
evidence of FB1 carcinogenic effect in humans, but an increase 
of oesophageal cancer is observed in areas where maize, either 
contaminated by Fusarium or containing high levels of FB1, 
is used as the main staple5,50. Fumonisins, mainly FB1, have 
been detected in a large array of maize products in all areas 
of the world where analyses of such commodities have been 
conducted 4,6,7,16,17,25,40,45.

Fumonisins may be introduced when making beer when 
maize is used as an adjunct to fermentation18. Corn starch 
and corn syrup are among the adjuncts alternatively used for 
beer production, but no contamination by fumonisins has 

been found in these materials4,28. FB1 is stable to heat1,19,20 and 
to conditions found during fermentation of corn to produce 
ethanol37.

The presence of fumonisins in beer was described for the 
first time by SCOTT and LAWRENCE36 in beverages commer-
cialized in Canada. The levels found were low and only 4 of the 
41 samples analyzed had concentrations higher than 2 ng.mL-1. 
In a subsequent study, SCOTT et al.38 found the toxins in 20 
of 46 samples of beer. The concentrations of FB1 + FB2 in the 
positive samples ranged from 0.2 to 64 ng.mL-1 (average = 5.6 
± 13.6 ng.mL-1). Both studies included foreign and Canadian 
beers. TORRES et al.51 analyzed 32 samples of Spanish beers 
and found that 14 samples contained FB1 in concentrations 
ranging from 4.76 to 85.53 ng.mL-1 (average = 28 ± 22 ng.mL‑1). 
HLYWKA and BULLERMAN18 examined 29 samples of beers 
commercialized in the U.S.A. The authors detected FB1, FB2, 
and FB3 in 25 of the samples. The contaminated samples con-
tained FB1 + FB2 concentrations from 0.3 to 13.5 ng.mL-1.

Ochratoxin A (OTA) is nephrotoxic to monogastric animals, 
especially swine, and a potent renal carcinogen in rats. It be-
haves as immonotoxic and teratogenic agent. It shows genotoxic 
properties in some tests, but not in others such as the Ames 
test23,30. Evidence gathered so far, although not conclusive, 
points to OTA as the possible causative agent of the endemic 
chronic renal disorder observed in humans in the Balkan 
countries44,46. The occurrence of OTA in food has been shown 
to be worldwide, especially in cereals24,31,43. Penicillium ver-
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rucosum, Aspergillus ochraceus, and A. carbonarius are OTA 
major producers, but their individual temperature and other 
growth preferences cause them to occur in different areas of 
the globe, as well as infecting diverse food29,48. OTA residues 
may occur in beer, if the toxin is present in barley and malt 
used in its making2. The fermentation of wort to which OTA 
had previously been added showed that the toxin decreased 
from 2 to 13%37. A remainder of 13 to 32% of the toxin was 
found in the final product when OTA contaminated malt was 
obtained from barley inoculated with Penicillium verrucosum 
and subsequently used for beer making2. 

Beer has been surveyed for OTA in various countries. 
MEDINA et al.26 examined 88 samples of beer (domestic and 
imported) marketed in Spain and OTA was detected in 82.9% of 
them. The range for positive samples was 0.007-0.204 ng.mL-1. 
In Hungary, VARGA et al.52 analyzed 25 samples of beer and 
all but one of the samples were found to be contaminated with 
small amounts of OTA with a mean concentration of 0.127 ng.
mL-1 and a range from 0.030 to 0.250 ng.mL-1. DASKO et al.12 
analyzed OTA 20 samples of local and 4 samples of foreign 
beer commercialized in Slovenia. No positive results for OTA 
presence were detected in any of the beer samples. German 
beers (35 samples) were analyzed by DEGELMANN et al.13 
and OTA levels in the range of 0.1-0.2 ng.mL-1 were found 
in 9 beer samples, 21 samples contained trace amounts of 
OTA (<0.1 ng.mL-1) and in 5 samples no OTA was detectable. 
SCOTT and KANHERE35 found traces of OTA in 26 out of 
46 samples of Canadian and imported beers. In Denmark, 
JORGENSEN21 found OTA in 21 samples of beer analyzed 
in concentrations ranging from 0.0001 to 0.160 ng.mL-1, 
with a mean of 0.049 ng.mL-1. In Japan, 94 imported and 22 
Japanese made beers were tested for OTA by NAKAJIMA et 
al.27 and a mean level of 0.010 ng.mL-1 was determined in 86 
out of the imported beers and a mean level of 0.0125 ng.mL-1 
in 21 of the Japanese beers. VISCONTI et al.53 analyzed Ital-
ian and imported beers (61 samples) and found that half of 
the samples contained OTA in concentrations from <0.01 to 
0.135 ng.mL-1. No correlation between the incidences of OTA 
and country or beverage type was found by SOLEAS et al.42 in 
beer commercialized in Canada (107 samples). In Belgium, 
OTA was found by TANGNI et al.47 in all samples of 62 Belgian 
and 20 imported beers analyzed and the highest concentration 
was 0.185 ng.mL-1. PRADO et al.31 investigated the presence 
of OTA in 26 samples of beer produced in Brazil and found 
traces of the toxin in 6 samples.

Brazil is the fifth world largest producer of beer after 
China, US, Germany, and Russia with a yearly production of 
8.5 billion liters according to data collected from 2002 to 2003. 
The annual per capita beer intake of 47.6 liters in 2004, on 
the other hand, ranks ninth after countries such as the Czech 
Republic, Germany, the UK, Australia, the US, Spain, Japan, 
and Mexico41. So far Brazilian beers have not been examined 
for FB1 and a limited number of samples have been analyzed 
for OTA. The present work investigated beers produced in 
various locations within the country for the possible presence 
of FB1 and OTA. 

2 Material and methods

2.1 Samples

Beers made in Brazil (44 Pilsner and other light colored 
types and 14 stout and other dark colored types) were acquired 
at food markets and liquor outlets during 2000 and 2001 to 
be analyzed for FB1. One hundred and twenty–three samples 
of beer (94 light and 29 dark types) were acquired at food 
markets during 2003 and 2004 to be analyzed for OTA. The 
beers were either canned or glass bottled. A sample from each 
type of beer formulation was acquired whenever more than 
one type of beer was produced by the plant in order to cover 
its whole range of products. 

2.2 Analytical reagents

Reagent grade solvents and salts were used for sample 
extraction, cleanup and derivatization. Ultra-pure water (Milli-
Q Plus, Millipore, Milford, USA) and chromatographic grade 
acetonitrile and methanol were used for the mobile phase. 
Fumonisin B1 and ochratoxin A were obtained from Sigma 
(St Louis, USA).

2.3 Sample extraction and cleanup for fumonisin B1 
determination

The AOAC Method 995.1534 originally developed for corn 
and its products and modified by CAMARGOS et al.8 was used 
as follows. In short, the pH of beer samples was brought to 
the 5.8-6.5 range with 1N NaOH and the samples were filtered 
through qualitative filter paper. For sample cleanup and con-
centration, an aliquot of 50 mL beer was applied to a strong 
anion exchange SPE column (10 cm3.500 mg -1, SAX, Bond Elut 
LRC, Varian, Walnut Creek, USA) previously conditioned with 
10 mL methanol followed by 10 mL de methanol/water (3:1). 
The sample was followed by 10 mL methanol/water (3:1) and 
6 mL methanol. FB1 was eluted with 20 mL methanol/acetic 
acid (95:5). The elution was dried under nitrogen stream in a 
60 °C water bath.

2.4 Fumonisin B1 determination by  
liquid chromatography

The dried extract was suspended in 500 µL acetonitrile/
water (1:1), an aliquot of 100 µL was transferred to a reaction 
vessel and 200 µL OPA reagent (40 mg o-ftaldialdehyde in 1 mL 
ethanol diluted with 0.1 M borate buffer and 50 µL 2-mercap-
toethanol) was added. The flask was kept in an ultrasonic bath 
at 5-15 °C for 30 seconds. After 60 a second reaction time 
the derivatized sample was injected into a Model 1050 liquid 
chromatograph (Hewlett Packard, Palo Alto, USA), Rheodyne 
manual injector with a 20 µL loop, HP 1046 fluorescence detec-
tor (335 nm and 440 nm), HP 3393A integrator, Spherisorb 
ODS-2, 5 µm, 250 x 4.6 mm column mm (Supelco, Bellefonte, 
USA), guard column Varian (Walnut Creek, USA), 2 cm, filled 
with C18 ODS, 32 µm (Alltech, Deerfield, USA) and mobile 
phase water/acetonitrile/acetic acid (54:46:1) at a flow rate of 
1.0 mL/minute. Identification was based on a comparison of 
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standard and sample retention times, and external standards 
were used for quantification. 

2.5 Sample extraction and cleanup for ochratoxin A 
determination

Ochratoxin A was extracted from beer samples according 
to the method from R-Biopharm Rhone33 modified as follows. 
The beer samples were degassed by mixing with a magnetic 
stirrer at 100 rpm for 60 minutes. The pH was adjusted to 
7.2 with 2 M NaOH. An aliquot of 30 mL was applied to the im-
munoaffinity column (Ochraprep, R-Biopharm Rhone, Glasgow, 
Scotland). The column was subsequently washed with 20 mL 
ultrapure water at the flow rate of 5 mL/minute (Mili-Q Plus, 
Millipore, Milford, USA). The column was allowed to dry and 
air was flushed through it. The toxin was eluted into a vial with 
3.0 mL chromatographic grade methanol and the elution was 
dried under nitrogen.

2.6 Ochratoxin A determination by  
liquid chromatography

The dried extract was suspended in a 1.0 mL mobile phase 
and 100 µL of it was injected into an HPLC system consisting of 
a Rheodyne manual injector, pump system model 1050 (Hewlett 
Packard, Palo Alto, USA), C18 Chromolith 100 x 4.6 mm ana-
lytical column and 5 x 4.6 mm guard column (Merck, Darm-
stadt, Germany), fluorescence detector model 1046A (Hewlett 
Packard), integrator model 3393A (Hewlett Packard) under 
the following analytical conditions: mobile phase acetic acid/ 
methanol (35:65) at 1 mL/minute, excitation and emission wave-
lengths 333 nm and 470 nm, respectively. Calibration curves 
were prepared in the range of 0.027 to 0.136 µg OTA mL-1.

2.7 Analytical quality control

The recovery tests for FB1 were conducted with samples 
spiked with standard to achieve concentrations of 5, 10, 20 or 
50 ng.mL-1. A reagent blank and a spiked sample with 8 ng.mL‑1 
FB1 were added to each series of 8-12 samples analyzed. A 
sample spiked with 3 ng OTA mL-1 was analyzed in triplicate 
and accompanied each series of 8 – 12 samples during the OTA 
survey. The results of these spiked samples were used to cal-
culate recovery. All positive samples were analyzed twice, each 
duplicate analyzed on a different day. The detection limit for FB1 
was based on 3 times the average SD response for 3 injections 
from 8 different contaminated samples containing the toxin 
standard at concentrations close to 5 ng.mL-1. The detection 
limit for OTA was taken as 3 times the SD derived from the 
area of 7 injections of a spiked beer sample (3 ng.mL-1). The 
quantification limit was taken as 5 times the detection limit 
in both cases.

3 Results and discussion
The average recovery was 98 ± 17% (n = 12) for FB1 concen-

trations in beer between 5 and 50 ng.mL-1 (Table 1). No interfering 
compound was observed in the chromatograms (Figure 1). The 
detection limit for FB1 in beer samples was 0.26 ng.mL-1.
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Figure 1. a) Chromatogram of fumonisin B1 standard (4 ng.mL-1);   
b) chromatogram of uncontaminated beer sample; and c) chromato-
gram of naturally contaminated beer sample (14.3 ng FB1 mL-1).

Table 1. Recovery of fumonisin B1 (FB1) added to beer.
FB1 added (ng.mL-1) Recovery (%)

5 118.3
5 121.2
5 78.0
10 74.7
10 105.9
10 71.6
20 99.0
20 90.1
20 100.6
50 87.5
50 104.8
50 120.4
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The beers used in the FB1 survey were produced at 
30 plants placed at 23 locations mostly located in the south-
east (states of São Paulo, Minas Gerais, and Rio de Janeiro, 
45 samples), and a few in the south (states of Paraná and Rio 
Grande do Sul, 6 samples), the north-east (states of Sergipe, 
Pernambuco, and Paraíba, 6 samples), and the north (state 
of Pará, 1 sample). The south-eastern region of the country 
besides being the most industrialized also concentrates 43% 
of the population.

FB1 was detected in 25 (21 light and 4 dark) of the 58 sam-
ples of beer analyzed (43.1%) in concentrations ranging from 1 
to 40 ng.mL-1 (Table 2). The average concentration FB1 for con-
taminated samples was 9.6 ± 10.2 ng.mL-1. The contaminated 
samples were produced in plants at 16 locations, of which 11 
were located in the southeast, 3 in the northeast, and 2 in the 
south. The distribution of the contaminated samples shows 
that the contamination is not confined to a single area of the 
country and it is probably connected with the use of maize as 
an adjunct. The levels found are within the range and the mag-
nitude found in other countries where toxin has been searched 
for in beer18,38,51.

concentration of FB1 in beer was 4.1 ng.mL-1. The intake of 
FB1 due to beer of a consumer who ingested 1300 mL of the 
beverage daily (10 times the national average) and that had a 
body weight of 70 kg would be 3.8% of the PMTDI.

The average recovery of OTA for a concentration of 
3 ng.mL-1 of the toxin was 93% (n = 16) for beers of light color 
such as Pilsner and 87% (n = 6) for dark beers such as stout 
and Malzbier (Table 3). The detection and quantification limits 
were 0.1 and 0.5 ng.mL-1, respectively, for light and dark beers. 
The RSD was 1.5% for the recovery tests (n = 18) for light beers 
and 1.2% (n = 6) for dark beers. No interfering compound was 
observed in the chromatograms (Figure 2).

Table 2. Concentration of fumonisin B1 in positive samples of com-
mercial beer produced in Brazil during �������������  2000 and 2001a.

Sample no. FB1 conc. b (ng.mL-1) ± SD

 1  4.5 ± 0.3
 2 15 ± 1
 3 14 ± 1
 6  7.3 ± 0.5
 8 14.7 ± 0.2
14  2.9 ± 0.3
15 39 ± 2
25  8 ± 2
27 17 ± 1
28 11 ± 2
29  3.0 ± 0.6
30  3.0 ± 0.7
34 10.7 ± 0.1
36  1.2 ± 0.2
37 12 ± 1
38 40 ± 4
39  2.3 ± 0.3
40  2.2 ± 0.4
42 10 ± 1
43  1.4 ± 0.2
45  4 ± 1
46  3.0 ± 0.3
51  4.3 ± 0.6
54  4.3 ± 0.3
56  4.0 ± 0.2

aTotal number of samples analysed = 58; and bMean of duplicate results. 

The average per capita intake of beer in Brazil is 
130 mL.day -1 40. The Provisional Maximum Tolerable Daily 
Intake (PMTDI) by the Joint FAO/WHO Expert Committee 
on Food Additives5 is 2000 ng.kg -1 bw for fumonisins B1, B2, 
and B3, alone or in group. In the present survey, the average 

Table 3. Recovery of ochratoxin A added to beera.

Beer type Recovery (%) ± SDb

Pilsner  79.7 ± 5.7

107.3 ± 5.5

 82.3 ± 5.1

101.3 ± 1.1

 79.3 ± 7.1

 93.0 ± 2.6

 95.3 ± 6.8

 93.3 ± 5.9

108.7 ± 3.0

101.7 ± 8.6

 89.3 ± 2.5

 92.0 ± 1.7

 89.7 ± 2.1

 98.7 ± 1.5

 95.3 ± 6.4

 95.0 ± 4.0

 83.0 ± 14.0

 89.0 ± 8.5
Dark  85.0 ± 2.6

 65.3 ± 4.1

114.0 ± 2.6

 62.0 ± 3.6

 88.3 ± 0.6

109.0 ± 8.2
aUncontaminated beer samples spiked with OTA (3 ng.mL-1); and bMean of triplicate results.

Beers used in the survey for OTA were produced at 
36 plants corresponding to 15 locations in the states of Paraná 
(southern region, 115 samples), São Paulo, Rio de Janeiro 
(south-eastern region, 3 samples), Paraíba (north-eastern re-
gion, 2 samples), and Pará (northern region, 3 samples). OTA 
was found in 5 samples from the 123 beers analyzed. All were 
light colored beers, with OTA concentrations varying from 1 to 
18 ng.mL-1 (Table 4). Four of the samples were from 3 plants 
belonging to the same beer company. One of the samples was 
from a plant located in the south of the country, 3 from the 
south-east, and one from the north. Although the number of 
contaminated samples is small, it shows the contamination is 
not restricted in terms of region.

Incidences of 83 to 100% of OTA in beer have been reported 
in all countries where the toxin has been searched for, except 
for Slovenia where no contamination has been found by OTA 
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in beer. The incidence found in Brazilian beer in the present 
survey (4.8%) is therefore low. The levels found, on the other 
hand are higher then the levels reported by other countries by 
various orders of magnitude12,13,21,26,27,35,47,52,53.

The Provisional Tolerable Weekly Intake (PTWI) by JECFA3 
for OTA is 100 ng.kg -1 bw. Considering that the average con-
tamination of beer by OTA found in the present work was 
0.3 ng.mL-1, a consumer of 1,300 mL beer per day (10 times the 
national average) would be ingesting 2,730 ng OTA weekly and 
that would amount to 39 % of the PWTI. The incidence of OTA 
in beer was low but its high toxicity turns it into a significant 
contributor at an OTA intake in case of regular high ingestion 
of the beverage.

4 Conclusions
The survey conducted in Brazilian beer found FB1 and OTA 

to be present in 43% and 4.8% of the samples, respectively. 
The toxicity of FB1 combined with the low levels present in the 
samples examined, indicate that the presence of this toxin in 
Brazilian beer is more of a quality issue for the industry than a 
reason for public health concern. On the other hand, the high 
levels of OTA found and its high toxicity are cause for public 
health concern even with the low incidence observed. The elimi-
nation of both toxins from the product should be contemplated 
by the industry either for quality or health reasons. 
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