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Rheological behavior of blueberry
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1 Introduction
Blueberries have become very popular with consumers 

because of research findings that their consumption improves 
human health (KALT  et  al., 1999). The health benefits of 
berries may be partly attributed to their high content of 
phenolic compounds since phenolics possess a wide spectrum 
of biochemical activities such as antioxidant, antimutagenic, 
abilities to modify gene expression (NAKAMURA  et  al., 
2003), as well as cardiovascular protection, antidiabetic 
properties, vision improvement properties, and inhibition of 
carcinogenesis.

Anthocyanins, natural pigments responsible for the blue, 
purple, violet, and red colors of fruit, are one of the major 
flavonoid classes. The major sources of anthocyanins in edible 
plants are the families Vitaceae (grape) and Rosaceae (cherry, 
plum, raspberry, strawberry, blackberry, apple, peach, etc.). 
Other plant families which contain anthocyanin pigments 
are Solanaceae (tamarillo and eggplant), Saxifragaceae (red 
and black currants), Cruciferae (red cabbage), and Ericaceae 
(blueberry and cranberry).

The blueberry is an almost unknown fruit in Brazil. The 
introduction of this fruit in the country began on the second 
half of the 80s, and the first commercial initiative occurred just 
after 1990.

Among the colored fruits, berries such as blackberry, 
raspberry, blueberry, cranberry, mulberry, and strawberry are 
consumed both in fresh and in processed forms. 

It is important to understand the rheological behavior 
of blueberry purees, especially for processing and handling 
applications involving pumping and mixing (NINDO, 2007).

The rheological properties play an important role in 
the handling and quality attributes of minimally processed 
foods, such as fruit and vegetables. One of the most important 
characteristics of the rheological behavior is the material 
properties dependence on temperature (RAO; STEFFE, 
1992).

It has been reported that fruit pulps behave as a non-
Newtonian fluids (HOLDSWORTH, 1971). In general, purees 
of fruits and vegetables are pseudoplastic fluids (RAO, 1977). 

Resumo
As características físicas e físico-químicas do mirtilo (Vaccinium myrtillus) produzido no Brasil foram analisadas. As propriedades reológicas 
foram medidas em 5, 25, 45 e 65 °C, em um reômetro de tensão controlada equipado com geometria rugosa de placas paralelas com taxa de 
deformação variando de 0-300 s–1 com o objetivo de verificação da influência da temperatura no comportamento do fluido. O comportamento 
pseudoplástico com tensão residual foi bem descrito pelos modelos de Ostwald-de-Waele (Lei da Potência), Herschel-Bulkley (HB) e Mizhari 
Berk. A tensão residual diminuiu com o aumento da temperatura para 5, 25 e 45 °C, enquanto que para 65 °C os efeitos foram contrários, 
exibindo elevados valores. A viscosidade diminuiu com o aumento da temperatura e a equação de Arrhenius apresentou uma boa descrição 
do efeito da temperatura na viscosidade aparente do mirtilo, e a energia de ativação (Ea) determinada para uma taxa de deformação de 
100 s–1 foi 9,36 kJ.mol–1.
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Abstract
The physical and physicochemical characteristics of blueberry (Vaccinium myrtillus) fruits produced in Brazil were analyzed. Rheological 
properties were measured at 5, 25, 45 and 65 °C, on a stress controlled rheometer equipped with grooved a stainless-steel parallel-plate in a 
shear rate range of 0-300 s–1, with the objective of determining the influence of temperature on the rheological properties. The pseudoplastic 
behavior with yield stress was well described by the Ostwald-de-Waele (Power Law), Herschel-Bulkley (HB) and Mizhari Berk models. The 
yield stress and behavior index decreased with the increase in the temperatures for 5, 25, and 45 °C whereas for the temperature of 65 °C the 
effects were the opposite exhibiting elevated values. The viscosity decreased with an increase in temperature, and the Arrhenius equation 
described adequately the effect of temperature on the apparent viscosity of the puree, in which the activation energy (Ea) determined at a 
shear rate of 100 s–1 was 9.36 kJ.mol–1.
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The fruits were at their perfect stage of maturation. They were 
selected and standardized for the analyses considering their 
size, firm texture, and absence of defects. 

For the rheological analysis, the fruits were triturated in 
a household blender, kept in a household freezer (–18 °C), 
and defrosted in a household refrigerator just before the 
experiment.

2.2 Physical and physicochemical characterization

The fresh fruits selected were physically characterized 
according to their weight and dimensions (height and 
diameter).

Moisture, soluble solids, protein, ash, pH, total sugar, 
invert sugar, and titratable acidity were determined according 
to the standard method AOAC (1984); the pH was determined 
with a METTLE TOLEDO 320 model pH meter; the titratable 
acidity was expressed as a percentage of citric acid and was 
determined with 0.1 M NaOH up to pH 8.1; the soluble dry 
matter was determined using a CARL ZEISS (JENA) 32-G 110d 
refractometer; the protein content was determined by the Kjeldal 
method (Nx6.25); and the total sugar and invert sugar contents 
were analyzed by the Lane-Eynon method.

The water activity was determined in an AQUALAB CX-2T 
DECAGON equipment at 25 °C.

The total content of anthocyanins was determined by the 
Francis (1982) method. Initially, an extraction of the pigments 
of a 1 g of the fruit sample of with 20 mL of extractor solution 
(methanol/HCl 1.5 M in a 85:15, v:v, proportion) was done. The 
mixture was then homogenized in an IKA ULTRA TURRAX 
T8 basic homogenizer and kept refrigerated before the lecture 
of absorbance, which was done in the filtered extract in a BECK 
MAN DU-70 Spectrophotometer at wave length of 528 nm. 
The whole process was performed protected from light, and the 
total anthocyanins (TA) was expressed in mg.100 g–1 of sample 
according to the Equation (2):
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(2)

where Absmáx = maximum absorbance; V = volume 
(mL); 1%

1 , máxcmE λ = Extinction coefficient at 1%, used by Lees 
and Francis (1972) for cranberry extract = 98.2, and  
W = sample weight (g).

2.3 Rheological measurements 

The flow curves of the blueberry puree were determined 
using a CSL2 500-Carri Med rheometer. It was adopted the 
grooved stainless-steel parallel-plate, with 2 cm diameter 
and a gap of 1 mm between plates. The steady shear (η vs. γ ) 
experiments were conducted at increasing strain rate values 
ranging from 0 to 300 s–1 (up curve 1) followed by decreasing the 
strain rate values from 300 to 0 s–1 (down curve) and increasing 
it again from 0 to 300 s–1 (up curve 2) to verify and guarantee 
the elimination of thixotropic effects. For the characterization 
of the rheological behavior, only the data from the 2nd up were 

The influence of temperature on viscosity of non-Newtonian 
fluids may be expressed in terms of the Arrhenius-type equation 
(Equation 1), which involves the absolute temperature (T), the 
universal gas constant R (8314 J.g–1mol–1K–1), the energy of 
activation for viscosity (Ea, J.mol–1), the Arrhenius Constant B 
(Pasn), and the apparent viscosity η (Pas) (STEFFE, 1996).

1ln .aE
T B

R
η − = +  

	
(1)

Since there is a significant change in the apparent viscosity 
when the fruit puree is heated, Maceiras et al. (2006) studied 
the effect of cooking on the rheological behavior of raspberry, 
strawberry, peach, and prune and reported that the fruit purees 
studied have a non-Newtonian behavior, well described by the 
Ostwald-de-Waelle and Herschel-Bulkley (HB) models. The 
apparent viscosity was influenced by cooking decreasing with 
the temperature and increasing with the solid content.

The pseudoplastic behavior was also used to describe the 
whole and centrifuged mango and pineapple pulps’ rheological 
behavior by Pelegrine  et  al. (2002), who fitted the data with 
Casson, Ostwald-de-Waelle and Mizrahi-Berk (M-B) models 
obtaining the best adjustment with M-B model.

Haminiuk et al. (2006) studied the influence of temperature 
on the rheological behavior of whole araçá pulp and found that 
it was well described by the power law model with the pulp 
showing a pseudoplastic behavior and the apparent viscosity 
decrease with an increase in the shear rate and temperature as 
expected for liquid foods. The Arrhenius equation was used to 
describe the influence of temperature on the apparent viscosity. 
The activation energy value at a constant shear rate of 50 s–1 was 
11.03 kJ.mol–1.

The rheological properties of another variety of blueberry – 
Highbush blueberry (Vaccinium corymbosum L.) were previously 
studied by Nindo et al. (2007), who analyzed the influence of 
temperature and solid content on the rheological behavior of 
blueberry puree. The authors found a non-Newtonian behavior 
with shear-thinning characteristics. The Herschel-Bulkley (HB) 
model was efficient for the adjustment of the experimental 
data. The activation energy increased with total solids content 
from 11.4 to 17.1 kJ.mol–1 for the purees with 10 and 25% total 
soluble solids, respectively, with respect to apparent viscosity 
determined at a shear rate of 100 s–1.

Since the rheological properties are important data in the 
definition of the processing operations and equipment design 
in food industry, the objective of this study was to determine 
the influence of temperature on the rheological behavior of 
blueberry puree and to determine the rheological equation that 
best describes the rheological behavior.

2 Materials and methods

2.1 Sample preparation

The blueberry fruits used in this work were obtained from 
Nutrisaúde Indústria e Comércio de Frutas Ltda., located in the 
city of Caxias do Sul in the state of Rio Grande do Sul, Brazil. 
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and various stresses) may have contributed to the differences 
between the results in those studies. Single genotypes of 
blueberries were reported to differ in the anthocyanin contents 
by 30% between seasons (KALT; MCDONALD, 1996). The 
storage of blueberries in the fresh state prior to freezing and 
the anthocyanins extraction and determination can have a great 
influence on the final results (KALT et al., 1999).

The moisture was lower than the value found by 
Stojanovic et al. (2007) (86,3% wet basis) and the water activity 
was higher than that found by the same author.

3.2 Rheological properties

Figure 1 represents a typical flow curve of blueberry at 25 °C. 
As shown in Figure 1, it is possible to observe a peak on the flow 
curve referring to the first cycle of shear denominated overshoot. 
When a shear rate is suddenly imposed on a viscoelastic fluid 
held previously at rest, the shear stress shows an initial peak 
before reaching the steady-state value (STEFFE, 1996). This 
peak on the stress value at the beginning of the flow represents 
the breakdown on the structure of the material.

The breakdown on the structure due to the shear applied, 
resulting the decrease of the viscosity, can be observed by the 
difference between the flow curves at different cycles of shear, 
an increase on the shear stress (Ascent 1) followed by a decrease 
on stress (Descending) and, after that, another increase of the 
shear stress (Ascent 2) indicating the presence of thixotropy, 
characteristic of a large part of the fluids and vegetable pastes.

Figure 1 also allows the verification that the beginning of 
the last cycle of the shear applied (Ascent 2) coincided with the 
final of the previous cycle (Descending) evidencing that the 
thixotropy of the system was eliminated after the first ascent 
of shear stress.

The flow curves at four different sample temperatures 
are shown in Figure 2 and the parameters of adjustment are 
presented in Table 3. All models presented the best adjustment 
of the data showing very good values for the coefficient of 
determination for the 5, 25, and 45 °C (R2 > 0.987). 

The 65 °C sample, however, did not show a R2 value close 
to the unit in all models applied and a great dispersion of the 

analyzed (BARNES, 1997). The flow curves were determined 
under four different temperatures, 5, 25, 45, and 65 °C. These 
temperatures had been selected because of their extensive use in 
the food industry, for example, 5 and 25 °C are used in storage 
and 65 °C in processes such as pasteurization and others. The 
temperature control was assured by a Peltier system installed 
in the inferior plate of the rheometer.

2.4 Rheological equations

The mathematical analysis of the rheograms obtained from 
the analyzed samples was made with the use of the Statistica 
5.0 software. The experimental data were applied to the 
rheological equations with the best fit based on the coefficient 
of determination (R2).

The rheological behavior of the samples was characterized 
by Ostwald-de-Waele (Power Law), Herschel-Bulkley (HB), 
and Mizhari Berk rheological equations, represented by 
Equations (3), (4), and (5), respectively.

Power Law: . nkσ γ= 	 (3)

Herschel-Bulkley: 

0 . nkσ σ γ= + 	 (4)

Mizhari Berk: 

0,5
0 . ( ) Mn

M Mk kσ γ− = 	 (5)

where σ is the the shear stress (Pa); γ  the shear rate (s–1); k and 
kM are the consistency coefficients (Pa)1/2(s)n ; n and nM the flow 
behavior indexes, 0σ the yield stress, and k0M the square root of 
the yield stress (Pa)1/2. 

3 Results and discussion

3.1 Physical and physicochemical characterization

The results of the physical and the physicochemical 
characterization of blueberries are shown in Tables 1 and 2, 
respectively. There is a large range of values for the anthocyanins 
concentration in blueberry fruits reported in the literature. 
Stojanovic et al. (2007) found 136 mg.100 g–1 (dry matter) of 
anthocyanins in rabbiteye blueberry (Vaccinium ashei Reade), 
which is similar to the value found by Prior  et  al. (1998) 
(124  mg.100 g–1) but differs considerably from the results 
reported by Moyer  et  al. (2002). They report a mean value 
of 406 mg.100 g–1, which was higher than those found in any 
other blueberry variety. In this work the total anthocyanins was 
156.20 mg.100 g–1, and this result is the same as those found 
by other authors. 

Environmental factors that influence the formation of 
anthocyanins (e.g., light, temperature, agronomic practices, 

Table 1. Physical characteristics of blueberry fruits.

Paramenter Values
Weight (g) 0.86 ± 0.30
Diameter (mm) 11.07 ± 1.34
Height (mm) 9.17 ± 1.24

Table 2. Composition of whole fresh blueberry fruits from Brazil.

Parameters Values
Moisture (g.100 g–1) (wet basis) 82.12 ± 0.54
Total sugar (g.100 g–1) 10.67 ± 0.09
Invert sugar (g.100 g–1) 10.61 ± 0.10
Protein (g.100 g–1) 0.52 ± 0.02
Ash (g.100 g–1) 0.20 ± 0.01
Carbohydrate (g.100 g–1) 17.05 ± 0.21
Soluble solids (°Brix) 14.46 ± 0.10
Acidity (gcitric acid.100 g–1) 0.66 ± 0.01
pH 2.98 ± 0.04
Total anthocianins (mg.100 g–1) 156.20 ± 6.64
Water activity 0.983 ± 0.003
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65 °C the effects were the opposite exhibiting elevated values. 
The viscosity of all samples decreased with an increase in the 
temperature.

A pseudoplastic behavior was also found in a great number 
of rheological characterizations of food materials: raspberry, 
strawberry prune, and peach purees (MACEIRAS et al., 2007); 
pineapple and mango pulps (PELEGRINE  et  al., 2002), and 
this behavior was already reported for blueberry (Vaccinium 
corymbosum L.) in a study conducted by Nindo et al. (2007).

According to Table 4, generally there is a decrease in the 
yield stress and in the behavior index as temperature increases, 

data at this temperature was observed. This behavior is due to 
the large amount of particles in suspension (solids dispersed 
in the liquid phase) that have the mobility increased with an 
increase in the temperature since the viscosity of the liquid 
phase had decreased.

The behavior index n is smaller than one indicating a 
non-Newtonian (pseudoplastic) behavior, in this case with 
the existence of yield stress. This behavior was observed by 
other authors, Grabowski et al. (2008) with sweet potato puree, 
Bhattacharya et al. (1999) with mustard paste.

The yield stress and behavior index decreased with an 
increase in the temperature for 5, 25, and 45 °C whereas for 

Figure 2. Flow curve for blueberry at different temperatures: a) Shear stress as a function of the shear rate; and b) apparent viscosity as a function 
of the shear rate.

Figure 1. Flow curve for blueberry at 25 °C: a) Shear stress as a function of the shear rate; and b) apparent viscosity as a function of the shear 
rate.
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the dispersion. Fruits with high amounts of solids in dispersion 
present inferior values for the activation energy than clarified 
juices or juices with less concentration of solids.

4 Conclusions
Blueberry presented a non-Newtonian (pseudoplastic) 

behavior with the existence of yield stress and the experimental 
data was well fitted in Ostwald-de-Waele (Power Law), Herschel-
Bulkley (HB) and Mizhari Berk models, presenting high values 
for the coefficient of determination (R2), except for the 65 °C 
sample that showed a much dispersed experimental data because 
of the high amount of dispersed solids. The sample temperature 
influences the rheological behavior, the viscosity decreased with 
an increase in the temperature, and this relation for the blueberry 
was well described by the Arrhenius equation. The activation 
energy at constant shear rate of 100 s–1 was 9.36 kJ.mol–1.
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except for the 65 °C sample which showed the opposite behavior 
and discrepant values.
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shear rate, behavior observed in pseudoplastic materials, is 
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materials, the apparent viscosity can be used in this relation. The 
Arrhenius equation was applied to the data observed for a 100 s–1 
shear rate, as shown in Figure 3. The adjustments parameters 
are shown in Table 5.

The blueberry showed activation energy of 9.39 kJ.mol–1, 
which is a low value due to the high content of solids within 
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