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1 Introduction
Dehydration is one of the most commonly used methods for 

fruit preservation. Its main objective aiming to improve the shelf 
life of foods is to reduce fruit moisture content to such extent 
that microorganisms cannot grow and deterioration reactions 
are minimized. However, it is well known that during convective 
hot-air drying, foods undergo physical, structural, chemical, and 
nutritional changes that can affect quality attributes like texture, 
color, flavor, and nutritional value (VEGA-GÁLVEZ  et  al., 
2009). The current degree of acceptance of dehydrated foods 
in the market can be further expanded with improvements in 
product quality and process applications. Therefore, consumers 
demand for healthy products requires the simulation and further 
optimization of the drying conditions to minimize detrimental 
quality changes that occur during processing (DI SCALA; 
CRAPISTE, 2008).

Artificial neural networks (ANN) are recognized as 
good tools for dynamic modeling. ANN modeling methods 
do not require parameters of physical models and have the 
ability to learn from experimental data. Furthermore, they 
are capable of handling complex systems with nonlinearities 
and interactions between decision variables, such as drying 
processes (CHEN; RAMASWAMY; ALLI, 2001; JINDAL; 
CHAUHAN, 2001; LERTWORASIRIKUL; TIPSUWAN, 2008; 
MOVAGHARNEJAD; NIKZAD, 2007; CHEGINI et al., 2008; 
TRIPATHY; KUMAR, 2009; FATHI; MOHEBBI; RAZAVI, 
2011; KHOSHHAL  et  al., 2010). The multi-layer perceptron 
(MLP) is one of the most commonly ANN type used in food 
engineering problems (CHEN; RAMASWAMY; ALLI, 2001; 
MOVAGHARNEJAD; NIKZAD, 2007; HERNÁNDEZ-
PÉREZ et al., 2004).

On the other hand, the genetic algorithm (GA) is one 
of the search methods and optimization techniques used for 
determining the optimal value of a complex objective function 
by simulation of the biological evolutionary process based, as 
in genetics, on crossover and mutation (FATHI; MOHEBBI; 
RAZAVI, 2011; DAM; SARAF, 2006; SHOPOVA; VAKLIEVA-
BANCHEVA, 2006; ERENTURK; ERENTURK, 2007; 
POONNOY; TANSAKUL; CHINNAN, 2007).

GA offers several advantages over the conventional 
optimization method such as less susceptibility to be stuck at 
local minima, requiring little knowledge of the process being 
optimized and capability to find the optimum conditions when 
the search space is very large (FATHI; MOHEBBI; RAZAVI, 
2011).

Therefore, the aim of this study were to develop an ANN 
to estimate quality index values of apples during convective 
hot-air drying and find the optimal process conditions that 
minimize product quality loss using GA based on a multi-
objective function.

2 Materials and methods

2.1 Raw material and drying conditions

Apples (Granny Smith) were purchased from a local 
market in the municipality of La Serena (Chile). They were 
hand-washed, and the stems were removed. Then, they were 
cut into cylindrical pieces with a diameter of 20±0.2 mm and 
5.00.2 mm of thickness. Hot-air drying process was carried 
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were performed, and the results were averaged. The total color 
difference (∆E) was calculated using Equation 1, where Lo, ao, 
and bo are the control values for fresh apple.
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Total phenolic content (TPC)

TPC was determined using the the Folin-Ciocalteau reagent 
(FC) according to Chuah et al. (2008) with modifications. An 
aliquot of 0.5 mL of the fruit extract solution was transferred 
to a glass tube and 0.5 mL of reactive FC was added after 
5 minutes; an aliquot of 2 mL of Na2CO3 solution (200 mg mL–1) 
was added, and the solution was shaken. The sample was then 
mixed using a vortex mixer, and the reaction proceeded for 
15 minutes at ambient temperature. Next, 10 mL of ultra-pure 
water were added, and the precipitate formed was removed by 
centrifugation for 5 minutes at 4000 xg. Finally, absorbance 
was measured using a spectrophotometer (Spectronic® 
20 GenesysTM131, Illinois, USA) at 725 nm and compared to 
a gallic acid (GA) calibration curve. The results were expressed 
as mg GAE/ 100 g dry matter. All reagents were purchased from 
Merck (Merck KGaA, Darmstadt, Germany). All measurements 
were performed in triplicate.

Water holding capacity (WHC)

The dried apple slabs were placed in distilled water at 40 °C 
for 6 hours, using a solid to liquid ratio of 1:50. The Water 
Holding Capacity was calculated from the amount of water 
removed following Equation 2, according to a previous study 
by Vega-Gálvez et al. (2009).
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where Wreh is the weight of the sample after the rehydration 
process, Xreh is the moisture content of the sample after the 
rehydration process on a wet matter, and Wl is the weight of the 
drained liquid after centrifugation. The WHC was expressed as 
g retained water/100 g water. All measurements were performed 
in triplicate.

2.4 ANN and optimization model

The Multi Layer Perceptron

An artificial neural network is a set of basic units 
interconnected in an adequate way. The basic processing unit in 
the MLP (also known as feed forward networks) is the neuron. 
Every neuron receives signals from the input or other neurons 
through weighted connections. The signals are then weighted-
added together before being applied to a transfer function to 
produce the output. The output signals are then propagated to 
other neurons until the output of the network is reached. For 
approximation tasks (i.e. mapping input vectors with output 
vectors), the MLP often has one hidden layer of neurons with 
sigmoid transfer functions followed by an output layer of 

out in a convective dryer (Figure 1) designed and built at the 
Department of Food Engineering of Universidad de La Serena- 
Chile (VEGA-GÁLVEZ  et  al., 2009). The air temperature 
and flow rate were 40, 60, and 80 °C and 0.5, 1, and 1.5 m/s, 
respectively. A raw material load density of 10.2 Kg/m2 was used. 
The experiments were finished at the point of reaching constant 
weight (equilibrium condition). Dried samples were packaged 
in polypropylene bags for further quality analysis.

2.2 Experimental design

The conditions applied in the experimental setups used 
for the drying of apples are based on a factorial design nm, in 
which n is the number of levels and m is the number of factors. 
Air-drying temperature and velocity were the two factors under 
study (m=2), each with three levels (n=3). Thus, 9 treatments 
were required. Table 1 shows the experimental design used to 
represent the experiments.

2.3 Measurements of quality index values

Surface color (∆E)

The colors of apple samples were measured using a 
colorimeter (HunterLab, MiniScanTM XE Plus, Reston, 
VA, USA). Color was expressed in CIE L* (whiteness or 
brightness), a* (redness/greenness), and b* (yellowness/
blueness) coordinates, standard illuminant D65, and observer 
10° (VEGA-GÁLVEZ et al., 2009). Five replicate measurements 

Figure 1. Drying equipment schematic diagram.

Table 1. Treatments applied to fresh apples.

Treatments Air temperature (°C) Air velocity (m/s)
T1 40 0.5
T2 40 1.0
T3 40 1.5
T4 60 0.5
T5 60 1.0
T6 60 1.5
T7 80 0.5
T8 80 1.0
T9 80 1.5
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hidden layer was plot (data not shown). It has been shown that 
taking the training error into consideration is enough for this 
choice.

Validation of the net (the process that can assure the 
generalization ability) was carried out using the leave-one-out 
approach. After training the net, a multi-objective GA was used 
to find the optimal drying conditions using the MLP model. The 
GA conducted the search of good values for the air temperature 
and air flow rate trying to minimize color, maximize total 
polyphenols content, and maximize water holding capacity, 
simultaneously. The neural networks as well as the optimization 
were developed using Matlab 7.8 software with Neural Network 
Toolbox Version 6, Genetic Algorithm, and Direct Search 
Toolbox Version 2.4.1 (Mathworks, Natick, MA).

The fit quality was evaluated using the Relative Error 
(RE, Equation  3) and the linear correlation coefficient (r2, 
Equation  4), which compares the values predicted by the 
artificial neural networks and the experimental data. 
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where ϕexp is experimental quality data and ϕcal is ANN- 
predicted quality data.

3 Results and discussion

3.1 Drying characteristics

Figure 2 shows the drying curves for the three temperatures 
at air velocities of 0.5, 1.0, and 1.5 m/ s. A clear influence of air 
drying temperature on the drying kinetics of the apple slabs can 

neurons with linear transfer functions (JINDAL; CHAUHAN, 
2001; HERNÁNDEZ-PÉREZ et al., 2004).

Neural network error estimation: Leave-One-Out

To estimate the error of the network, Leave-One-Out (LOO) 
cross-validation (PICARD; COOK, 1984) was applied. As the 
name suggests, LOO cross-validation involves the using of a 
single observation at a time from the original sample as the 
test data, and the remaining observations as the training data. 
This is repeated as many times as the number of data samples 
so that it assures that each observation in the sample is used 
once as test data. LOO process is usually very expensive from 
a computational point of view because of the number of times 
the training process is repeated. However, it is not a limitation 
in this case study application because of the small number of 
data available (ZOLLANVARI;  BRAGA-NETO; DOUGHERTY, 
2009).

LOO cross-validation has been shown to give an almost 
unbiased estimator of the generalization properties of statistical 
models, and therefore it provides a sensible criterion for model 
selection and comparison (ANCONA et al., 2005).

Genetic algorithms

GAs have been demonstrated to be appropriate tools for 
parameter optimization tasks, and they have been produced 
good results. GA is a search technique used to find good 
solutions to optimization and search problems. They belong to 
a particular class of evolutionary algorithms that use techniques 
inspired by evolutionary biology such as reproduction, 
inheritance, mutation, and selection. The problem to solve, 
usually a set of parameters to find, is coded as a vector, named 
an individual. The selection criterion is based on the fitness 
function. The fitness function plays the role of the environment 
to distinguish between good and bad solutions (SHOPOVA; 
VAKLIEVA-BANCHEVA, 2006). The GA creates an initial 
population (a set of initial solutions). This population will 
change due to the reproduction of individuals in the successive 
iterations. Occasionally, with some low probability, mutations 
will make changes in some individuals. The best individuals 
are selected so that each population will be better than the 
previous one. For the GA setting, some configurations must be 
determined, such as the population size, selection, reproduction 
and mutation methods, probability of mutation, stopping 
criteria, etc. (SHOPOVA; VAKLIEVA-BANCHEVA, 2006; 
ERENTURK; ERENTURK, 2007).

Proposed model and numerical resolution

A neural network having two inputs (air temperature and 
air flow rate), a hidden layer, and three outputs (color, total 
polyphenols content, and water holding capacity) was proposed. 
This network makes the mapping between inputs and output 
values. Once trained, it can give output values for new input 
values not included in the training set.

In order to find the number of neurons in the hidden layer, 
a typical learning error as a function of neurons number in the 

Figure 2. Drying curves at air temperatures of 40, 60, and 80 °C for 
three different air velocities.
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increase in drying temperature caused degradation of total 
phenolics with respect to corresponding content in the fresh 
sample (p<0.05). Prolonged drying time did not necessarily 
produce the strongest degradation (T1); a temperature rise is 
needed to cause degradation of total phenolics. The experimental 
results showed that TPC decreased with increasing temperature 
at air drying velocities of 0.5 and 1.0 m s–1, as observed in the 
treatments T1‑T4‑T7 and T2‑T5‑T8. However, this tendency 
changed completely as air-drying velocity was increased to 
1.5 m s–1. At 80 °C, the highest drying temperature, degradation 
of total phenolics is the lowest. This is probably due to high 
convective forces acting on the air-solid interface retarding 
heat diffusion into the solid apples. Internal resistance to heat 
diffusion is therefore an important parameter to be considered 
when quality is at stake during heat treatment in the drying 
process of apples. Increasing correlation between antioxidant 
activity and total phenolic content has been reported during 
food dehydration. However, data of the effects of drying on TPC 
and antioxidant activity of fruits are rather conflicting due to 
several factors such as the drying method, the type of extraction 
solvent, the antioxidant assays, and the interactions of several 
antioxidant reactions (MANZOCCO et al., 2001).

It can be seen in Table  4, the WHC changes as the air 
temperature increased at a constant air velocity (p<0.05). At 
constant air velocity of 1.5 m s–1, the difference in WHC obtained 
for the three temperatures is less pronounced. The maximum 

be observed. An increase in the drying temperature resulted 
in a decrease in the drying time. The time needed to achieve 
equilibrium moisture content in all experiments was between 
200 and 1000 minutes. Comparable results were reported by 
other authors working with different fruits (VELIĆ et al., 2004; 
LEMUS-MONDACA et al., 2009; URIBE et al., 2011). Drying 
time is the longest at 40 °C and at air velocity of 0.5 m s–1 (T1), 
while the shortest drying time occurred at 80 °C and at air 
velocity of 1.5 m s–1 (T9).

3.2 Quality parameters

Table 2 shows the experimental color difference (∆E) values 
for all drying treatments. Chromatic coordinates for fresh 
apples were 82.9±0.99, 0.64±0.25, and 21.4±0.58 for L, a, and b, 
respectively. At constant air-drying velocity, ∆E decreased with 
air-drying temperatures. Long drying times due to low process 
temperature could promote apple discoloration associated to 
formation of browning products. When analyzing the trend 
of ∆E at constant temperature, an increase in high air-drying 
velocity was observed (1.5 ms–1); however, this increment was 
not significant (p<0.05). It is also noticeable that treatments 
T7, T8, and T9 showed the lowest values of ∆E. Changes in 
∆E are brought about by simultaneous heat and mass transfer 
occurring at the surface of the apple samples and depended 
on the drying time and temperature. Only slight differences 
in ∆E were observed among the values obtained at the three 
different temperatures. At 40 °C, a prolonged processing time 
is observed in contrast to a higher heat flow at 80 °C, and in 
both cases browning was favored; at 60 °C, a decrease in both 
drying time and heat energy resulted in a weaker color change. 
Although at 60 °C heat energy increased under drying at 40 °C, 
processing time reduced to such an extent that less browning 
took place. At an air velocity of 1.0 m s–1

,
 the acting convective 

forces did not seem to be able to reduce the effect of heat energy 
and moisture accumulation at the surface of the samples. The 
effect of drying time was enough to cause a substantial color 
change at 40 and 60 °C; at 80 °C; this effect was even enhanced 
by a higher heat flow.

Table 3 shows the total phenolic content of the dehydrated 
apple samples. The initial TPC of the fresh sample was 
158.28±0.65 mg GAE/100 g sample. It was observed that an 

Table 2. Experimental and ANN-predicted surface color for 
rehydrated-dried apples.

Treatment 
∆E

%Relative error 
Experimental Predicted 

T1 35.70 ± 0.18 35.71 ± 0.18 0.72
T2 29.10 ± 0.93 29.10 ± 0.93 4.55
T3 37.17 ± 0.10 37.17 ± 0.10 0.38
T4 28.15 ± 0.04 28.15 ± 0.04 0.23
T5 28.89 ± 0.40 28.89 ±  0.40 1.99
T6 33.88 ± 0.48 33.88 ± 0.48 2.01
T7 18.75 ± 0.33 45.15 ± 0.93 2.51
T8 19.96 ± 0.98 18.89 ± 0.53 5.31
T9 27.04 ± 0.53 27.04 ± 0.53 2.77

Table 3. Experimental and ANN-predicted total phenolic content for 
rehydrated-dried apples.

Treatment 
TPC (mg GAE/100 g d.m.)

%Relative error 
Experimental Predicted 

T1 31.93 ± 0.96 31.93 ± 0.96 4.27
T2 27.39 ± 1.30 27.39 ± 1.30 6.71
T3 27.34 ± 0.48 27.34 ± 0.48 2.50
T4 40.15 ± 0.63 40.15 ± 0.63 2.22
T5 39.31 ± 0.55 39.31 ± 0.55 2.00
T6 33.62 ± 0.22 33.62 ± 0.22 0.93
T7 38.70 ± 0.44 38.70 ± 0.44 1.62
T8 44.82 ± 0.18 44.82 ± 0.18 0.58
T9 44.12 ± 1.20 44.12 ± 1.20 5.66

Table 4. Experimental and ANN-predicted water holding capacity for 
rehydrated-dried apples.

Treatment 
WHC (g retained water/100g water)

%Relative error 
Experimental Predicted 

T1 45.15 ± 1.93 45.15 ± 1.80 2.91
T2 56.30 ± 6.04 56.30 ± 5.29 0.74
T3 50.94 ± 3.68 50.94 ± 4.06 2.95
T4 51.66 ± 4.08 51.66 ± 5.13 0.35
T5 53.74 ± 2.12 53.74 ± 1.49 2.45
T6 44.12 ± 4.76 44.12 ± 4.89 3.85
T7 48.28 ± 2.23 48.28 ± 2.55 1.30
T8 45.46 ± 5.98 45.46 ± 5.72 2.11
T9 47.80 ± 2.79 47.80 ± 2.39 2.35
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4 Conclusions
A feed-forward neural network model for predicting 

color and functional properties of apples during drying 
(40‑80 °C and 0.5-1.0 m/s) was studied in this investigation. 
The Leave-one-out cross validation error was applied resulting 
in a 2.4 % error. A multi-objective Genetic Algorithm 
was coupled with the configuration of neural network to 
find optimal drying conditions. Optimal values of 26.37 
of ∆E, 42.05 [mg GAE/100 g d. m.] of TPC, and 51.61 
[g retained water/100 g water] of WHC were found at 62.9 °C 
and 1.0 m/s. The results indicated that the hybrid ANN-GA 
model could be effectively used not only to estimate the quality 
index values of dehydrated apples, but also to identify optimal 
drying conditions.
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