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1 Introduction
Lycium (Boxthorn) is a class of the nightshade family 

(Solanaceae), containing around 80 types of plants local all through 
the temperate and subtropical areas of the world (Xin et al., 2013). 
Lycium Barbarum, commonly named Wolfberry, Goji (Gouqi) 
in Chinese, is mostly found in dry, semi-saline environments. 
An extensive variety of Lycium Barbarum products have been 
produced in types of cosmetic products, dietary supplements, 
tea (Amagase, 2014), milk, juice, seed oil, and so on (Potterat, 
2010). For more than 4000 years Lycium Barbarum has been 
consumed as nourishment and in traditional prescription 
(Amagase & Farnsworth, 2011). Furthermore, the agriculture 
of Lycium Barbarum has been recorded for over 600 years 
in the Northwestern region of China, particularly Ningxia 
province which is additionally the authentic district of Chinese 
medication Lycii Fructus (Li, 2007; Potterat, 2010). Within 
the chemical composition of Lycium Barbarum, water-soluble 
glycoconjugates, (Lycium Barbarum polysaccharides or LBP) 
are the most researched components, which are evaluated to 
involve 5-8% of the dried Goji (Amagase & Farnsworth, 2011; 
Potterat, 2010).

Developing number of investigations of L. Barbarum, 
have led different clinical and fundamental examinations to 
look at the traditional impacts of the fruits given as a juice 
that is standardized for L. Barbarum polysaccharides (LBP) 

(Amagase & Farnsworth, 2011). Supporting the conventional uses 
and properties, recent investigations show that concentrates from 
L. Barbarum fruit, and its dynamic compounds, polysaccharides 
(LBP) have a scope of natural biological activities, counting 
impacts on neuro-protection, aging, diminish cholesterol level 
(Li, 2007), expanded digestion, glucose control in diabetics 
(Li, 2007; Potterat, 2010) glaucoma, anti-oxidant properties, 
improved immune responses (Bo et al., 2016), anti-tumor activity 
and cyto-protection (Amagase, 2014; Cui et al., 2012). Lycium 
Barbarum can be utilized as pharmaceutical for treatment and 
also as an ingredient in Chinese cooking (Xie et al., 2016).

Ultrasound has been utilized as a part of several food industry 
procedures, for example freezing, dehydrating (Fernandes et al., 2015), 
tempering, extraction, and cleansing (Chemat et al., 2011) due to 
its reduction in temperature, energy consumption, and production 
steps (Chemat et al., 2011). lately, ultrasound innovation has 
been observed to be a potential sustenance in food processing 
techniques (Ashokkumar, 2015). Ultrasound assisted extraction 
(UAE) is applied to recovering bioactive materials such as peptides 
(Kadam  et  al., 2015), polysaccharides (Cheung  et  al., 2013), 
polyphenolics, aromatic compounds, caffeine, theobromine 
(Peralta-Jiménez & Cañizares-Macías, 2013), and functional 
compounds from herbal and animal sources (Vilkhu  et  al., 
2008). Ultrasound waves after interaction with subjected plant 
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material modify its physical and synthetic properties and their 
cavitation impact enhances the extraction yield and upgrades 
the mass transport by disrupting the plant cell walls (Cravotto & 
Binello, 2016). UAE is a perfect strategy that limits the usage of 
considerable amount of solvents close by decreasing the working 
time (Chemat et al., 2011). Ultrasound can be easily examined 
on a laboratory scale, giving data suitable for large industrial 
scale (Cravotto & Binello, 2016). Diverse ultrasound modes have 
been utilized for the recovery of high value components from 
numerous raw materials. For instance multi-frequency sonication 
mode turned out to be more successful to enhance hydrolysis 
and transformation rate of corn gluten meal (Jin et al., 2015). 
Ultrasound multi-frequency mode notably affects the extraction 
and activity of natural products (Yang et al., 2017). Ideal conditions 
can differ as indicated by the substance of intrigue and crude 
materials (Azmir et al., 2013; Cravotto & Binello, 2016).

In this model, the optimization of polysaccharides extraction 
was carried out to find the optimum conditions using a 
single frequency ultrasound extractor. Later, these optimum 
conditions were applied on three ultrasound modes with 
different frequencies. The first mode was the energy aggregation 
counter flow single-frequency ultrasound extractor. The second 

mode was the energy aggregation counter flow dual-frequency 
ultrasound extractor. And the third mode was the opposite-sit 
dual-frequency ultrasound extractor (Figure 1a, b and c).

2 Materials and methods
2.1 Materials

The Lycium Barbarum (Goji) samples were provided by our 
school and purchased from Ningxia province. Dried Lycium 
Barbarum fruits were grounded by an electrical multi-function 
grinding machine (model LD-T400A, Meetingpoint trading 
company, China), into powder and sieved with a manual sieve 
size (0.4) mm and stored for farther use.

2.2 Methods

Single frequency UAE optimization of crude polysaccharides

As the first step of this study, the optimal conditions for the 
ultrasound assisted extraction (Time, Temperature, Solid/Liquid 
ratio) were investigated using an energy aggregation counter 
flow single-frequency ultrasound extractor Figure 1a. The fixed 
parameters were ultrasound power density of 300 W/L, On/Off 
ultrasound time 5 sec/2 sec, and at a chosen frequency 28 kHz.

Figure 1. a) The energy aggregation counter flow single-frequency ultrasound extractor, b) The energy aggregation counter flow dual-frequency 
ultrasound extractor, and c) The opposite-sit dual-frequency ultrasound extractor.
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The first condition to be tested was the time, ranged 
20, 30, 40, 50 and 60 mins at a temperature of 50 °C and 
solid/liquid ratio of 15 g/600 mL. The optimum extraction 
time obtained was applied to find out the perfect extraction 
temperature between 30, 40, 50, 60 and 70 °C with a solid/liquid 
ratio of 15 g/600 mL. Two thermostat-controlled water baths 
were used to maintain the desired temperature controlled and 
constant. The circulation of the heated water and the sample 
in and out of the extractor was done by two circulation pumps 
-one for the sample and another for the temperature control- to 
maintain the temperature controlled.

And for the last condition, solid/liquid ratio of 5, 10, 15, 20 and 25 g 
- at a fixed volume of distilled water 600 ml - was investigated 
using the optimum time and temperature obtained above. These 
tests were triplicated to reduce error.

Hot water extraction

Hot water extraction process was conducted as a control 
experiment. The extraction temperature was 90 °C for 60 mins 
and solid/liquid ratio was 20 g/600 mL using a magnetic stirring 
hot water bath apparatus (DF-101S, Xiang Tian Experimental 
Instrument Factory, Changzhou, china) at a speed of 100 rpm.

Extraction of crude polysaccharide

After UAE, samples were centrifuged at 4000 rpm for 15 mins 
each. The volume of the collected supernatant was then reduced 
to one-fifth using a rotary evaporator at 60 °C under vacuum. 
The remaining solution was mixed with four times the volume 
of Ethanol (ethanol final concentration, 100%) (Wu et al., 2007) 
and kept overnight at 4 °C (DuBois  et  al., 1956). Later the 
sample was centrifuged and freeze dried for 48 hours. The crude 
polysaccharides were weighed and the percentage yield of 
the crude Lycium Barbarum polysaccharide (L.B.P%), were 
determined from the Equation 1 as follows (Raza et al., 2017; 
Wang et al., 2009).

. .  % 100WL B P
Wo

= × 	  (1)

W (g) is the L.B.P dry weight, Wo (g) is the raw material dry weight.

The conditions resolving the highest percentage yield of 
crude polysaccharide were based on the optimum conditions 
for a single frequency ultrasound extractor.

UAE modes comparison

The second part of the study was to apply the optimum 
conditions on the three UAE modes to compare the extracted 
crude polysaccharide. First mode was the energy aggregation 
counter flow single-frequency ultrasound extractor Figure 1a, 
consisting frequencies of 20, 28, 35, 40 and 50 kHz. Secondly, 
energy aggregation counter flow dual-frequency ultrasound 
extractor Figure 1b with (20/28), (20/35), (20/40) and (20/50) 
kHz. And the third mode was the opposite-sit dual-frequency 
ultrasound extractor Figure 1c, having only three frequencies 
options (20, 16, and (20/16) kHz).

3 Results and discussion
3.1 Optimal conditions of L. Barbarum crude 
polysaccharides UAE

Effect of extraction time on L. Barbarum crude polysaccharides yield

Figure 2 shows the effect of extraction time on percentage 
yield of crude polysaccharide. The percentage yield increased 
as the extraction time increased from 20 to 30 min and then 
decreased as the extraction time increased to 60 min. This shows 
that the highest percentage yield of crude polysaccharides (23.55%) 
was obtained at extraction time of 30 min. Similar observations 
were obtained by (Wang  et  al., 2016; Ying  et  al., 2011) who 
respectively, reported that the yield of Artemisia selengensis Turcz 
polysaccharides and mulberry leaves polysaccharides decreased 
as the extraction time increased. The Minitab 17 software was 
used to apply the Tukey’s Test to compare to the difference 
between the means in all treatments. Means that share same 
letter are (not significantly different).

The greater part of the polysaccharides inside the cells were 
discharged at the beginning of the extraction, and expanded 
extraction time would lead to degradation of polysaccharides 
(Esclapez et al., 2011; Hromádková et al., 1999).

Effect of extraction temperature on L. Barbarum crude 
polysaccharides yield

Figure 3 shows the percentage yield of L. Barbarum crude 
polysaccharides at five temperatures (30, 40, 50, 60, and 70 °C) 
at the optimal extraction time of 30 min. The extraction yield 
started with 17.26% at temperature of 30 °C, then elevated to 
19.46% and 22.95% at 50 °C and 60 °C, respectively. The extracted 
yield decreased when the temperature exceeded to 70 °C to give 
18.20%. (Zhu et al., 2016) studied the extraction of Polygonum 
multiflorum polysaccharide, and stated that high temperature 
could allow the release of polysaccharides from cells to the 
solvent. These outcomes were likewise because of the impacts 
of acoustic cavitation and diffusion through the cell walls, 

Figure 2. The effect of time on the extracted yield of L. Barbarum crude 
polysaccharides values are means ± SD.
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which were improved by the extraction temperature. As the 
temperature increased, the viscosity coefficient and the surface 
tension coefficient decreased, which made it less demanding 
to strengthen the cavitation impact and produce the cavitation 
bubble (Bai et al., 2017).

However, when the temperature increased further, the 
vapor pressure increased and this resulted in the decrease of 
cavitation strength or cavitation effect causing the damping of 
the ultrasonic wave (Zhao et al., 2007). Resulting, the optimum 
temperature was 60 °C. Using the Tukey’s Test, the results showed 
(no significant difference).

Effect of solid/liquid ratio on L. Barbarum crude 
polysaccharides yield

Figure 4 demonstrates the impact of solid/liquid ratio on the 
yield of L. Barbarum crude polysaccharides. The solid/liquid ratio 
affected the extraction yield significantly. As the solid/liquid ratio 
increased from 5 g/600 mL to 20 g/600 mL, the percentage yield 
increased from 11.53% to 26.38%. Under the high temperature 
condition, the increase of solid/liquid ratio led to increase in 
liquid viscosity. Because of the expansion in fluid consistency 
(viscosity), the volume of the cavitation bubbles and the quality 
of the air bubble fall expanded (Yan et al., 2016), which facilitated 
the extraction of polysaccharides. Further increase of solid/liquid 

ratio to 25 g/600 mL led to decrease in the percentage yield. 
This could be attributed to the fact that when the liquid viscosity 
was too high, it would cause the decrease of bubble number and 
the difficulty of collapsing, which decreased the cavitation effect 
finally. The optimal sample concentration recovered from this 
test was 20 g/600 mL as shown in (Figure 4).

The control sample was done by the hot water extraction 
procedure, using the optimal solid/liquid ratio recovered 
previously. Since the first, second, third, and forth solid/liquid 
ratios results don’t share letters, thus they are (significantly 
different). At temperature of 60 oC for 30 mins and solid/liquid 
ratio 20 g/600 mL, the crude polysaccharides percentage was 
22.45% (Figure 5 and 6).

Yield of crude polysaccharides using single-frequency UAE mode

The optimum conditions obtained from the previous part 
of the study – (extraction time 30 mins, extraction temperature 
60 °C and solid/liquid ratio 20 g/600 mL) - were applied to the five 
frequencies of the single-frequency ultrasound extractor. Figure 5a 
shows the percentage yield of crude polysaccharides of the control 
sample and the five frequencies (20, 28, 35, 40, and 50 kHz). 
Results showed that the crude polysaccharides yield increased 
from 19.53% at the first frequency 20 kHz, to 26.38% at 28 kHz. 
With the increase of ultrasonic frequency, the cavitation effect 
of ultrasound increases (Yusof  et  al., 2016). The mechanical 
impacts required in ultrasound can permit more penetration of 
solvent into the sample matrix, the disturbance of the organic 
cell walls while the ultrasonically actuated cavitation encourages 
and increments the release of substance (Dolatowski et al., 2007).

However, when the ultrasound frequency elevated to 35 kHz 
and 40 kHz the extraction yield dropped to 22.71% and 23.51%, 
respectively, and finally decreased to 11.88% at the frequency 
50 kHz. When the ultrasonic frequency was too high, the time 
of acoustic expansion became relatively shorter, leading to 
insufficient time to form the cavitation bubble that generates 
ultrasonic effect and when the cavitation bubble was formed, the 
compression phase of acoustic wave was too short, which might be 
not enough for the cavitation bubble to collapse, thus, a decrease 
in the cavitation effect occurred (Esclapez et al., 2011; Kentish 
& Ashokkumar, 2011). The Tukey’s Test showed that the results 
of 28 kHz and 50 kHz are (significantly different). Therefore, 
from this result, the optimal frequency for single-frequency UAE 
mode was 28 kHz. (Figure 5a) also showed that the extraction 
yield at frequency of 28 kHz was 17.5% greater than the control’s.

Yield of crude polysaccharides using dual-frequency UAE mode

The dual-frequency ultrasound extractor is equipped with 
four dual-frequencies options, (20/28), (20/35), (20/40) and 
(20/50) kHz. As shown in Figure 5b, the two frequencies options 
(20/40) and (20/28) kHz gave the highest results of 38.93% and 
38.25%, respectively. The higher extract of L. Barbarum crude 
polysaccharides could be clarified by the expanded cavitation 
bubble crash which brought on additional diminishment in 
particle measure and advanced leaching. Chukwumah et al, 
correspondingly detailed that the effect of multi-frequency 
UAE, is more proficient than single frequency UAE during the 

Figure 3. The effect of temperature on the extracted yield of L. Barbarum 
crude polysaccharides, values are means ± SD.

Figure 4. The effect of the solid/liquid ratio on the extracted yield of 
L. Barbarum crude polysaccharides. Values are means ± SD.



Food Sci. Technol, Campinas, 38(Suppl. 1): 160-166, Dec. 2018164   164/166

Ultrasound assisted extraction of Goji Polysaccharides

Figure 5. The yields of L. Barbarum crude polysaccharides using: a) single-frequency ultrasound extractor, b) dual-frequency ultrasound extractor, 
and c) opposite-sit dual-frequency ultrasound extractor. Values are means ± SD.

Figure 6. Comparison between control sample and the highest crude polysaccharides extraction yields achieved by each one of the three 
ultrasound extractors. Values are means ± SD.
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between the control and the dual-frequency ultrasound extraction 
(20, 40) kHz. This also caused a reduction in temperature and 
extraction time to 33.3% and 50% respectively.

4 Conclusion
The UAE has been considered an effective method for the 

extraction of bioactive components from plants. The first aim 
of this study was to find out the optimal condition for Lycium 
Barbarum crude polysaccharides by UAE. The extraction optimal 
conditions were as follows: extraction time of 30 mins, extraction 
temperature of 60 °C, and solid/liquid ratio of 20 g/600 mL. Under 
these conditions, the Lycium Barbarum crude polysaccharides 
yield was 26.38% for single frequency at 28 kHz.

The second aim of the study was to apply these extraction 
conditions on three UAE modes to test different frequencies. 
The energy aggregation counter flow dual-frequency UAE 
mode gave the highest yield of 38.93% at the dual-frequency 
of (20, 40) kHz.

This study clearly showed that the dual frequency mode 
gave a higher polysaccharides extraction compared to the 
single-frequency mode and the traditional hot water extraction.
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