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1 Introduction
Mycotoxins are toxic substances produced naturally as 

secondary metabolites by several filamentous fungi. These 
compounds are considered food contaminants, responsible by 
agriculture and public health problems (International Agency 
for Research on Cancer, 1993; Peraica et al., 1999; International 
Agency for Research on Cancer, 2002; Murphy et al., 2006; Zain, 
2011; Rocha et al., 2014).

Aflatoxins B1, B2, G1 and G2, deoxynivalenol, fumonisins 
B1 and B2, ochratoxin A and zearalenone have been established 
as the main mycotoxins detected in cereals and cereal-based 
products and their contamination levels have been regulated 
in food worldwide (Lee & Ryu, 2017; Food and Agriculture 
Organization of the United Nations, 2004; European Commission, 
2006a; Brasil, 2011; Brasil, 2017). Other mycotoxins, such as 
sterigmatocystin (Mol et al., 2016) and hydrolyzed fumonisins 
(Dombrink-Kurtzman & Dvorak, 1999), have also been found 
in these foods. Aflatoxins M1 and M2 can also be produced 
by fungi, albeit in minor amounts (Bräse et al., 2009; Filazi & 
Sireli, 2013) and have been reported in both milk and other 
foodstuffs, such as cereals (Shotwell et al., 1976; Vesonder et al., 
1991; Ren et al., 2007; Huang et al., 2010; Ezekiel et al., 2012; 
Sartori et al., 2015).

Several mycotoxins, mainly deoxynivalenol and zearalenone, 
have been reported in wheat and wheat products in several countries 
(Pussemier et al., 2006; Tanaka et al., 2010; González-Osnaya & 
Farrés, 2011; Mishra et al., 2013). In Brazil, a high occurrence 
of deoxynivalenol in wheat has been described (Lamardo et al., 
2006; Santos et al., 2011). However, scarce studies directed to the 
determination of mycotoxins in wheat products in the country 
are available (Oliveira et al., 2000; Almeida et al., 2016).

In 2015, Brazil produced 5 to 6 million tons of wheat 
(Instituto Brasileiro de Geografia e Estatística, 2015) and domestic 
consumption was of approximately 11 million tons (Empresa 
Brasileira de Pesquisa Agropecuária, 2015). Wheat is the raw 
material for the manufacture of many products consumed daily 
by the population (Almeida et al., 2016). Brazil is the second 
largest biscuit producer, producing over one million tons in 2013. 
The per capita consumption of this product in Brazil in 2015 
was of 8.47 kg, and crackers were responsible for 21.4% of this 
consumption. In 2014, 354 thousand tons of cracker and water 
and salt crackers were sold, the second most commercialized 
type of biscuit in Brazil (Associação Brasileira das Indústrias de 
Biscoitos, Massas Alimentícias e Pães & Bolos Industrializados, 
2015). Crackers are an industrialized product containing 90% 
wheat in their formulation (Scudamore et al., 2009). Despite 
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the relative importance to consumer health due to the high 
consumption of this product, only one study has reported 
contamination by deoxynivalenol in crackers in the country 
(Souza et al., 2015).

Diverse analytical approaches have been developed aiming 
at the determination of mycotoxins in food, highlighting the 
growing application of the liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) technique in the last years (Krska et al., 
2008; Cigić & Prosen, 2009; Köppen et al., 2010; Ediage et al., 
2011; Turner et al., 2009; Turner et al., 2015; Berthiller et al., 
2016; Berthiller et al., 2017). The selectivity of this technique 
has enabled the simultaneous analysis of different mycotoxin 
classes in different food matrices with only minimum sample 
treatment (Sulyok et al., 2007; Mol et al., 2016; Chiaradia et al., 
2008; Frenich et al., 2009; Lacina et al., 2012).

In this context, the aim of this study was to validate an 
analytical method suitable for the routine analysis of mycotoxins 
in crackers by ultra-performance liquid chromatography-tandem 
mass spectrometry (UPLC-MS/MS). Sample treatment method 
comprises simultaneous extraction and clean-up (deffating) 
steps, followed by extract concentration. The analytical method 
was applied to 60 cracker samples obtained in the metropolitan 
region of Rio de Janeiro, RJ, Brazil. Additionally, the results 
were used to estimate population exposure to deoxynivalenol 
by cracker consumption.

2 Materials and methods
2.1 Reagents and chemicals

Ammonium formate (>99%) and formic acid (mass spectrometry 
grade) were acquired from Sigma-Aldrich (St. Louis, MO, USA), 
acetonitrile and methanol (HPLC-grade) were obtained from J.T. 
Baker (Phillipsburg, NJ, USA), while n-Hexane (purity > 96%), 
ethyl acetate (for analysis) and potassium hydroxide (pellets for 
analysis) were obtained from Merck (Darmstadt, Germany). 
Ultrapure water from a Milli-Q Gradient water system was used 
(Millipore, Bedford, MA, USA).

2.2 Standard solutions

Solid aflatoxin standards, namely B1, B2, G1, G2, M1, 
M2, ochratoxin A and sterigmatocystin, were purchased from 
Sigma‑Aldrich (St. Louis, MO, USA). Stock ochratoxin A 
(40 µg mL-1) solutions were prepared in toluene/acetic acid 
(99:1, v/v). Individual sterigmatocystin and aflatoxin stock solutions 
(10 µg mL-1) were prepared in acetonitrile. The standard solution 
concentrations were determined by UV spectrophotometry 
(Horwitz & Latimer, 2005), and their stability was verified by 
UV spectrophotometry at least every twelve months. Stock 
fumonisin B1 and B2 (50 µg mL-1) solutions in acetonitrile/water 
(1:1, v/v) and deoxynivalenol in acetonitrile (100 µg mL-1) were 
obtained from Fluka/Sigma-Aldrich (St. Louis, MO, USA). 
Stock zearalenone solutions in acetonitrile (100.7 µg mL-1) were 
purchased from Biopure (Tulln, Austria). Hydrolyzed fumonisins 
B1 and B2 were prepared by the hydrolysis of fumonisin 
B1 and B2, according to Dall’Asta et al. (2009). Briefly, 5 mL of a 
standard solution containing fumonisin B1 and B2 (50 µg mL-1) 
in acetonitrile/water (1:1, v/v) was evaporated to dryness under 

a nitrogen flow at 40 °C using a controlled water bath. Residues 
were dissolved in 5 mL of a 2 mol L-1 KOH solution and left at 
room temperature for 12 h. The hydrolyzed fumonisins were 
then extracted thrice with 10 mL of ethyl acetate, combined and 
then again evaporated in the same conditions. The residues were 
finally dissolved in 5 mL methanol. No native fumonisins were 
detected in this final solution by UPLC-MS/MS, indicating that 
total conversion to the hydrolyzed forms was achieved. Thus, 
hydrolyzed fumonisin B1 and B2 concentrations in methanol 
were calculated as 28.1 and 27.6 µg mL-1, respectively. All standard 
solutions were stored at -18 °C.

2.3 UPLC-MS/MS analysis

Liquid chromatography was carried out using an 
ACQUITY UPLCTM system (Waters). A BEH C18 column 
(100 mm × 2.1 mm i.d., 1.7 μm particle size) maintained at 
35 °C was used as the stationary phase. The mobile phase flow 
rate was set at 0.3 mL min-1. Two elution gradients were used 
in this study to avoid the presence of fumonisin carryover 
(Sartori et al., 2017). The aqueous mobile phase of the elution 
gradient used to determined fumonisins, hydrolyzed fumonisins 
and sterigmatocystin was 0.3% acid formic solution, with the 
gradient beginning at 60% methanol, increasing to 80% for 
3 min, held at 80% for 1 min. Following these steps, the system 
was re‑equilibrated with 60% methanol for 2 min. The aqueous 
mobile phase of the elution gradient used to determine M2, M1, 
B2, B1, G2 and G1, ochratoxin A, deoxynivalenol and zearalenon 
was a 5 mmol L-1 formate ammonium solution, beginning at 
10% methanol, increasing to 100% during 4 min and held at 
100% for 1.5 min. The system was then re-equilibrated for 
2  min with 10% methanol. A 5 μL injection volume was used 
for both gradients.

A tandem quadrupole mass spectrometer (Waters, Quattro 
PremierTM XE) equipped with an electrospray ionization (ESI) 
source operated in the positive and negative ionization modes 
was used for analyte detection. The following parameters were 
set: capillary voltage at 3.5 kV, extractor voltage at 3 V, rf lens 
at 0.1 V, multiplier at 750 V, desolvation temperature at 350 °C 
and source temperature at 120 °C. Nitrogen was used both as 
cone and desolvation gas, at 50 L h-1 and 750 L h-1, respectively. 
Argon was applied as the collision gas at 4 × 10-3 mbar. The two 
selected ion transitions (m/z) for each mycotoxin and their 
acquisition conditions are presented in Table 1 and 2.

2.4 Sample preparation

The method reported by Sartori et al. (2017) was used for 
sample preparation, as follows. About 3 g of each sample was 
weighed in 50 mL centrifuge tubes, followed by the addition of 
5 mL n-hexane, 5 mL of a 3% formic acid solution and 10 mL 
acetonitrile. Each tube was vortex-shaken (IKA Works) for 2 min, 
then sonicated for 10 min and then centrifuged at 3,000 rpm for 
7 min (Hitach- HIMAC CF 7D2). Subsequently, 5 mL aliquots 
of the extracts (acetonitrile/water) was concentrated to dryness 
as previously described, at 50 °C in a controlled water bath 
(Turbo‑Vac LV). Finally, residues were dissolved in 1 mL of 
methanol/water (1:1, v/v) and the resulting solutions were filtered 
through 0.22 μm PVDF membrane filters. After filtration, the 
solutions were transferred to vial sand taken to the equipment.
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2.5 Validation

An analytical method for the determination of aflatoxins M2, 
M1, G2, G1, B2, B1, deoxynivalenol, ochratoxin A, fumonisins 
B1 and B2, hydrolyzed fumonisins B1 and B2, zearalenone and 
sterigmatocystin in crackers (cream crackers and water and salt 
crackers) was validated. The following analytical performance 
parameters were assessed: selectivity, matrix effect, linearity, 
trueness, precision (repeatability and intermediate precision), 
limit of detection (LOD) and limit of quantification (LOQ).

The method selectivity was evaluated by analyzing matrix 
blank samples, to evaluate the presence of interfering signals 
in all cracker samples.

For the investigation of matrix effects, calibration curves for 
each compound in each matrix extracts (cream cracker and water 
and salt cracker) and in methanol/water (1:1, v/v) were prepared at 
six concentration levels, ranging from 0.5 to 25 ng mL-1 (aflatoxins 
M2, M1, G2, G1, B2, B1 and ochratoxin A and sterigmatocystin), 
1 to 100 ng mL-1 (zearalenone), 2.5 to 125 ng mL-1 (hydrolyzed 
fumonisins B1 and B2), 1.5 to 75 ng mL-1 (fumonisins B1 and B2) 
and 5 to 250 ng mL-1 (deoxynivalenol). The calibration curve 
slopes were compared by the t-test (Souza, 2007). The effect of 
sample dilution on the matrix-effect was also evaluated.

Matrix-matched calibration curves at the same concentration 
levels used to study the matrix effect were used to assess linearity 
(Souza & Junqueira, 2005). The homocedasticity, independency 
and normality of the regression residuals were checked. Outliers 
were successively investigated by the Jacknife standardised residuals 
test (Belsley  et  al., 1980). The homocedasticity of residuals, 

verified by a modified Levene test (Brown & Forsythe, 1974) 
for all the calibration curves was confirmed (p-values > 0.05). 
The independency of residuals, verfiied by the Durbin-Watson 
statistic (Durbin & Watson, 1951) for all calibration curves 
was confirmed (p-values > 0.05). The normality of residuals, 
checked by the Ryan-Joiner test (Ryan & Joiner, 1976) for all the 
calibration curves was confirmed (p-values > 0.05). The regression 
significance and the lack-of-fit were performed by an analysis 
of variance (ANOVA) (Draper & Smith, 1998).

Method trueness and repeatability were investigated by 
carrying out recovery studies using cracker samples spiked with 
the evaluated mycotoxins at three concentration levels, using 
four replicates for each level. Intermediate precision was assessed 
by analyzing spiked samples at the same concentrations as the 
first concentration level, all analyzed within four days, by four 
different analysts. Repeatability and intermediate precision are 
expressed by the relative standard deviation (RSD %), while 
trueness is expressed by recovery values.

Cracker samples spiked with each investigated compound at 
the lowest concentration level applied in the recovery studies were 
used to determine the method limit of detection (LOD) and limit 
of quantification (LOQ), considering 3 and 10 signal‑to‑noise 
ratios, respectively.

2.6 Cracker biscuit samples

A total of 60 cracker samples (cream crackers, n = 30 and 
water and salt crackers, n = 30) were randomly purchased from 
local supermarkets in the metropolitan region of Rio de Janeiro, 

Table 1. UPLC-MS/MS parameters for fumonisins, hydrolyzed fumonisins and sterigmatocystin.

Mycotoxins tR
(min)a

Quantifier 
transition ion

Q (m/z)

Qualifier 
transition ion

q (m/z)
Q/qb

Energy 
collision

(eV)c

Cone voltage
(V)

Dwell time
(s)

Hydrolyzed fumonisin B1 1.60 (1) 406.3 > 388.3 406.3 > 370.3 1.2 (±0.2) 20 / 20 30 0.05
Fumonisin B1 1.75 (1) 722.2 > 334.3 722.2 > 352.3 1.2 (±0.2) 40 / 40 50 0.05
Hydrolyzed fumonisin B2 2.47 (2) 390.3 > 372.3 390.3 > 354.3 1.3 (±0.3) 20 / 20 30 0.02
Fumonisin B2 2.72 (2) 706.2 > 336.3 706.2 > 318.3 2.0 (±0.4) 35 / 35 50 0.02
Sterigmatocystin 3.00 (2) 325.2 > 281.2 325.2 > 310.2 1.1 (±0.2) 35 / 25 45 0.02
ESI in positive mode for all analytes; interchannel delay and interscan delay were both 0.005 s; aacquisition windows given in parentheses; brelative ion transition intensities (Q/q) and 
maximum permitted tolerances given in parentheses (European Commission, 2002); cvalues are given as quantifier transition ion/qualifier transition ion.

Table 2. UPLC-MS/MS parameters for deoxynivalenol, aflatoxins M2, M1, B2, B1, G2 and G1, ochratoxin A and zearalenone.

Mycotoxins tR
(min)a

Quantifier 
transition ion

Q (m/z)

Qualifier 
transition ion

q (m/z)
Q/qb Energy collision

(eV)c
Cone voltage

(V)
Dwell time

(s)

Deoxynivalenol 2.15 (1) 297.1 > 249.1 297.1 > 231.1 2.2 (±0.6) 25 / 25 25 0.15
Aflatoxin M2 2.91 (2) 331.3 > 273.3 331.3 > 285.2 1.9 (±0.4) 25 / 25 45 0.15
Aflatoxin G2 3.04 (3) 331.3 > 245.3 331.3 > 285.3 1.5 (±0.3) 30 / 30 40 0.015
Aflatoxin M1 3.05 (3) 329.2 > 273.2 329.2 > 259.2 2.1 (±0.5) 25 / 25 50 0.015
Aflatoxin G1 3.16 (3) 329.2 > 243.2 329.2 > 283.2 1.5 (±0.3) 25 / 25 45 0.015
Aflatoxin B2 3.28 (3) 315.2 > 287.0 315.2 > 259.2 1.0 (±0.2) 25 / 30 50 0.015
Aflatoxin B1 3.38 (3) 313.0 > 269.2 313.0 > 285.2 1.8 (±0.4) 35 / 25 40 0.015
Ochratoxin A 3.75 (4) 404.2 > 239.2 404.2 > 358.2 1.6 (±0.3) 25 / 15 25 0.15
Zearalenone 4.23 (5) 316.9 > 174.8 316.9 > 130.8 1.3 (±0.3) 25 / 30 50 0.15
ESI in positive mode for all analytes, except for zearalenone; Interchannel delay and interscan delay were both 0.005 s; aacquisition windows given in parentheses; brelative ion transition 
intensities (Q/q) and maximum permitted tolerances given in parentheses (European Commission, 2002); cvalues are given as quantifier transition ion/qualifier transition ion.
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RJ, Brazil between 2015 and 2016, from 13 different companies, 
representing 16 different brands. The samples were ground and 
passed through a 0.84 μm sieve and then stored at -20 °C until 
analysis.

3 Results and discussion
3.1 Method validation

No interfering signals were observed eluting at the same 
time as the analytes for all studied crackers. Mycotoxins in 
samples were identified by comparing analyte retention times to 
standard solution retention times. Confirmation in each sample 
was obtained by comparison of the signal intensity ratios of the 
quantifier and qualifier ion transitions of each analyte with those 
in standard solutions, considering the maximum permissible 

limits according to the European Union (European Commission, 
2002). Figure 1 displays chromatograms of a cracker sample 
fortified with the investigated mycotoxins. Retention times, ion 
ratios and the maximum permissible limits for the obtained ion 
ratios for each assessed mycotoxin are also displayed.

Significant differences (p> 0.01) were detected between 
the slopes of the solvent calibration curves and in the 
matrices for most mycotoxins (except sterigmatocystin in 
cream crackers and aflatoxins M1 and M2, and hydrolyzed 
fumonisin B1 in water and salt crackers), demonstrating a 
significant matrix effect for most of the assessed compounds. 
Sample dilutions (final extracts) were investigated aiming 
at reducing or eliminating matrix effects. Sample dilution 
effects were assessed using two matrix amounts in the final 
extract (0.1 and 1 g mL-1). Results are displayed in Table 3. 

Figure 1. Chromatograms of a cracker sample fortified with the mycotoxins investigated herein.
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A decreased was observed matrix effect for certain mycotoxins 
with increasing sample dilution. Despite a still significant 
matrix effect for most mycotoxins, sample dilution was effective 
in eliminating the matrix effect for deoxynivalenol. For the 
analytes displaying matrix effects, matrix-match calibrations 
were used in routine analyses.

Concerning the linearity studies, the following aspects 
were confirmed for all the calibration curves: homoscedasticity, 
independency of the residuals, and normality of the residuals 
(p values >0.05). In addition, high regression significance 
(p-values < 0.001) and non-significant lack-of-fit (p-values > 0.05) 
were also noted, attesting curve linearity. Linearity results are 
displayed in Table 4.

Recovery values ranged from 70 to 110%, with RSD lower 
than 14% for all investigated mycotoxins under repeatability 
conditions. The RSD obtained in the intermediate precision 
study was always lower than 17%. Thus, results were deemed 
satisfactory according to Commission Decision 2002/657/EC 
(European Commission, 2002) and Commission Regulation 
EC 401/2006 (European Commission, 2006b).

LOD and LOQ values are also displayed in Table 5. Method 
sensitivity was considered suitable for the routine analysis of 
the assessed mycotoxins in crackers, in view of the maximum 
permissible limits for regulated mycotoxins (Brasil, 2011; European 
Commission, 2006a; Food and Agriculture Organization of the 
United Nations, 2004).

Table 3. Matrix effects (%) for the investigated mycotoxins at different extract dilutions.

Mycotoxins
Matrix-effect (%)a

Cream crackerb Cream cracker (diluted)c Water and salt crackerb Water and salt cracker (diluted)c

Deoxynivalenol -29.0 -0.4 -42.3 4.8
Aflatoxin M2 4.9 0.4 -4.5 3.4
Aflatoxin M1 8.1 -5.3 -2.4 3.3
Aflatoxin G2 -52.0 -14.0 -61.3 -9.3
Aflatoxin G1 -57.0 -12.0 -66.6 -15.2
Aflatoxin B2 -58.2 -19.2 -68.8 -21.7
Aflatoxin B1 -57.1 -18.6 -66.3 -21.2
Fumonisin B1 -27.4 -5.7 -19.8 2.0
Fumonisin B2 -19.7 -0.95 -16.1 4.2
Hydrolyzed fumonisin B1 -26.4 -5.5 -13.9 6.6
Hydrolyzed fumonisin B2 -16.4 9.5 -0.2 23.9
Ochratoxin A -24.0 -1.5 -43.0 -0.1
Zearalenone -42.6 -9.2 -58.6 -7.3
Sterigmatocystin -4.2 -4.1 -7.1 9.3

Table 4. Linearity results for the matrix-matched calibrations.

Mycotoxins
Cream cracker Water and salt cracker

Linear range
(ng mL-1) Equation r2 Linear range

(ng mL-1) Equation r2

Deoxynivalenol 5 - 250 y  32.5 x  59.9= + 0.99 5 - 250 y  26.5 x  116.6= + 0.99
Aflatoxin M2 0.5 - 20 y  946.6x  307.2= + 0.99 0.5 - 25 = −y  861.2x  59.0 0.99
Aflatoxin M1 0.5 - 25 = −y  999.8 x  19.2 0.99 0.5 - 25 = −y  902.6x  219.0 0.98

Aflatoxin G2 0.5 - 25 y  391.3x  79.8= + 0.99 0.5 - 25 y  316.9x  4.6= + 0.98
Aflatoxin G1 0.5 - 25 y  1219.3x  416.9= + 0.99 0.5 - 25 y  946.3x  64.6= + 0.99
Aflatoxin B2 0.5 - 25 y  1061.1x  71.3= + 0.99 0.5 - 25 y  791.3x  125.5= + 0.99
Aflatoxin B1 0.5 - 15 y  1448.3x  745.0= + 0.99 0.5 - 25 y  1136.9x  88.9= + 0.99
Fumonisin B1 1.5 - 45 y  438.5 x  1214.2= + 0.99 1.5 - 45 y  484.4x  532.9= + 0.99
Fumonisin B2 1.5 - 45 y  1084.5 x  2414.6= + 0.99 1.5 - 45 y  1133.6x  1081.0= + 0.99
Hydrolyzed fumonisin B1 2.5 - 125 y  548.0x  631.1= + 0.99 2.5 - 125 = −y  640.8 x  1403.3 0.99
Hydrolyzed fumonisin B2 2.5 - 75.0 y  750.2x  1867.3= + 0.99 2.5 - 125 = −y  895.5 x  1536.6 0.99

Ochratoxin A 0.5 - 25 y  598.0x  189.8= + 0.99 0.5 - 25 y  449.1x  120.8= + 0.99
Zearalenone 1.0 - 50 y  1009.1x  961.6= + 0.99 1.0 - 50 y  726.9x  385.9= + 0.99
Sterigmatocystin 0.5 - 25 = −y  1995.1x  282.3 0.99 0.5 - 25 = −y  1933.2x  174.0 0.99
r2: determination coefficient.
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3.2 Sample analysis

The validated analytical method was applied for the 
determination of the 14 target mycotoxins (aflatoxins M2, 
M1, G1, B2, B1, deoxynivalenol, ochratoxin A, fumonisins B2 
and B1, fumonisins B2 and B1 hydrolysates, zearalenone and 
esterigmatocistin) in 60 cracker samples.

Deoxynivalenol was found in 60 (100%) of the analyzed 
cracker samples. The mean concentration for the cracker samples 
was 481.14 μg kg-1. In cream cracker samples, concentrations 
ranging from 66.4 to 1507.4 μg kg-1 were found, with a means 
of 437.4 μg kg-1. Similar levels (between 73.4 and 1444.8 μg kg-1, 
with a mean of 524.9 μg kg-1) were found in the water and 
salt cracker samples. The maximum concentration found for 
deoxynivalenol (1507.4 μg kg-1) was lower than the maximum 
level (5295 μg kg-1) found in the study conducted by Souza et al. 
(2015) with 23 cracker samples from Rio Grande do Sul, Brazil. 
Compared to studies conducted in other countries evaluating 
deoxynivalenol contamination, the maximum level found in 
the present study was higher than the values found by Savi et al. 
(2016) in crackers (1159 μg kg-1) and Tanaka et al. (2010) in 
wheat-based biscuits (791 μg kg-1), and similar to the value found 
by Almeida et al. (2016) in crackers (1720 μg kg-1). The incidence 
of deoxynivalenol in the present study was higher than the 78% 
and 30% reported by Souza et al. (2015) and Savi et al. (2016) 
and similar to the 98% found by Tanaka et al. (2010).

Zearalenone was found in 30 (50%) of the 60 analyzed 
samples, in concentrations ranging from the LOD tp 14.83 μg kg-1, 
with means of 6.22 μg kg-1. Similar levels were found for this 
mycotoxin in the cream cracker and water and salt crakers, in 
13 cream cracker samples (LOD to 13.58 μg kg-1) and in 17 water 
and salt crackers samples (LOD to 14.83 μg kg-1).

In a study carried out by Andrade (2016) in Brasilia, all 
14 (100%) analyzed cracker samples were contaminated with 
zearalenone and the means found was of 560.0 μg kg-1, above 
that found in the present study. In a study carried out in Japan 

by Tanaka et al. (2010), the levels found are in agreement with 
those found in the present study, although the incidence of 
zearalenone-contaminated samples was lower (2%).

Fumonisin B1 was detected (> LOD) in 17 (28%) of the 
analyzed samples, 8 cream cracker and 9 water and salt cracker 
samples. No studies were found on the presence of fumonisins 
in crackers, but their presence has been reported in wheat. 
In the south of Brazil, Mallmann et al. (2001) found fumonisin 
B1 in one wheat sample. Stankovic et al. (2012) analyzed Serbia 
wheat samples and found fumonisin B1 in 92 of the 103 analyzed 
samples, in concentrations ranging from 750 to 5400 μg kg-1. 
Li et al. (2015) found fumonisin B1 in 22 (6%) out of 369 wheat 
flour samples in China, at concentrations ranging between 
0.3 and 34.6 μg kg-1. The fumonisin contamination found in the 
samples analyzed herein may be due to the possible presence of 
corn starch in the samples.

In the present study, four samples showed simultaneous 
contamination by deoxynivalenol, zearalenone and fumonisin B1. 
Stankovic et al. (2012) analyzed 103 wheat samples and reported 
that 47.8% of the samples contained deoxynivalenol, zearalenone 
and fumonisin B1, also indicating simultaneous contamination 
by these compounds.

The concentrations found herein were evaluated according 
to RDC Resolution No. 07/2011, in force during the sample 
collection period, that establish the maximum permissible level 
of 200 and 1750 μg kg-1 for zearalenone and deoxynivalenol in 
crackers, respectively (Brasil, 2011). The results were also evaluated 
according to RDC No. 138/2017, in effect from January 2017, 
establishing maximum permissible level of 100 and 1000 μg kg-1 
for zearalenone and deoxynivalenol in crackers, respectively 
(Brasil, 2017). No samples exceeded the maximum permissible 
level according to RDC No. 07/2011 for deoxynivalenol and 
zearalenone. However, if we consider RDC No. 138/2017, a total 
of 7 (11.7%) samples would exceed the maximum permissible 
level for deoxynivalenol. A summary of the results found for 
the analyzed samples is exhibited in Table 6.

Table 5. Validation parameters of the analytical method.

Mycotoxins LOD LOQ
1 µg kg-1 a 5 µg kg-1a 15 µg kg-1a

Rec RSDr RSDR Rec RSDr Rec RSDr

Deoxynivalenol 3.68 12.27 77.9 6.2 5.0 91.2 8.3 82.2 1.5
Aflatoxin M2 0.23 0.78 76.2 3.0 7.4 109.6 9.9 84.7 4.3
Aflatoxin M1 0.40 1.33 85.3 12.2 13.3 107.6 9.0 79.0 10.2
Aflatoxin G2 0.88 2.93 104.4 7.2 16.7 109.8 5.9 86.5 4.8
Aflatoxin G1 0.43 1.44 70.0 3.3 3.8 91.2 8.5 78.6 2.4
Aflatoxin B2 0.41 1.38 70.3 12.3 4.0 106.7 9.1 86.3 1.8
Aflatoxin B1 0.33 1.11 72.3 13.4 5.4 91.4 8.1 75.9 2.1
Fumonisin B1 0.51 1.71 83.6 8.0 4.0 96.2 3.9 85.0 3.6
Fumonisin B2 0.44 1.47 80.2 10.1 6.4 93.8 2.9 87.0 5.3
Hydrolyzed fumonisin B1 2.22 7.41 71.5 11.0 8.8 91.6 2.7 77.9 5.7
Hydrolyzed Fumonisin B2 1.26 4.20 70.5 9.9 6.6 89.4 0.9 73.0 3.4
Ochratoxin A 0.09 0.31 88.0 7.6 5.1 99.5 7.3 79.3 7.9
Zearalenone 0.68 2.25 75.6 1.9 4.6 101.0 6.2 88.7 1.3
Sterigmatocystin 0.06 0.20 70.9 4.9 6.3 87.0 4.1 73.9 5.5
aSpiked concentration levels for aflatoxins M2, M1 G2, G1, B2 and B1, ochratoxin A and sterigmatocystin (one hundred times higher for deoxynivalenol and ten times higher for 
fumonisins and hydrolyzed fumonisins); LOD: Limit of Detection (µg kg-1); LOQ: Limit of Quantification (µg kg-1); Rec: Recovery (%); RSDr (%): Relative Standard Deviation (intra‑day, 
n = 4); RSDR (%): Relative Standard Deviation (inter-ddayay, n = 3).
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3.3 Estimation of deoxynivalenol exposure in cream crackers 
and water and salt crackers

The maximum tolerable intake represents the maximum 
human exposure allowed as a result of the natural occurrence 
of a certain substance in food, without damaging the health 
of the individual. To calculate this, the levels established by 
government agencies should be considered (Souza et al., 2015).

The Brazilian Association of Biscuit Industries estimated 
that per capita Brazilian consumption of biscuits was of 8.47 kg 
in 2015, with the consumption of crackers corresponding to 21% 
of this total (Associação Brasileira das Indústrias de Biscoitos, 
Massas Alimentícias e Pães & Bolos Industrializados, 2015). 
Based on these data, cracker consumption was estimated at 4.8 g 
per capita per day. Exposure to deoxynivalenol through cracker 
consumption was then estimated according to previously published 
studies (Ibáñez-Vea et al., 2011; Pacin et al., 2010). Exposure to 
deoxynivalenol through crackers was estimated considering that 
this mycotoxin was present in all samples. The mean amount of 
deoxynivalenol found in biscuits, of 481 μg kg-1, would result in 
a daily intake of 0.04 μg kg-1 of body weight per day considering 
a 60 kg adult. This value would not exceed the limit proposed by 
the JECFA safety authorities (Joint FAO/WHO Expert Committee 
on Food Additives, 2001), which is of 1.0 μg kg-1 body weight 
per day. Considering the highest concentration found in the 
analyzed samples (1507.4 μg kg-1), 0.12 μg kg-1 of body weight 
per day would be ingested by a 60 kg person, which would also 
not exceed the maximum limit allowed. Thus, cracker and salt 
and water crackers can contribute to 3.8% of total deoxynivalenol 
consumption recommended by JECFA.

Souza  et  al. (2015) and Savi  et  al. (2016) also estimated 
deoxynivalenol intake in crackers, which did not exceed the limit 
recommended by JECFA. In the study carried out by Savi et al., 
cracker consumption contributed to 3% of deoxynivalenol 
ingestion, in agreement with the values observed in the present 
study. The deoxynivalenol concentrations present in the biscuit 
samples of this study did not exceed the acceptable value defined 
by JECFA, but it is worth noting that cracker and salt and water 
crackers are not the only dietary source of deoxynivalenol, 
since wheat is present in many other products consumed daily. 
In addition, the estimated consumption data did not consider 
a higher daily intake or intake by different age groups.

4 Conclusions
An analytical method for the determination of fourteen 

mycotoxins in crackers by UPLC-MS/MS was validated. The method 
includes major regulated mycotoxins in wheat‑based products 
(deoxynivalenol and zearalenone). The sample treatment method 

developed herein is useful for routine analyses, since it involves 
a simple simultaneous extraction/clean-up step followed by 
concentration of the obtained extracts. The validated method 
was applied to the determination of target mycotoxins in 
60 cracker samples (cream cracker and water and salt crackers). 
Deoxynivalenol, zearalenone and fumonisin B1 were found, 
respectively, in 100, 50 and 28% of the analyzed samples.
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