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1 Introduction
Pork is delicious and rich in nutrients. It is the main 

consumption type of meat products, accounting for 37% (Food and 
Agriculture Organization of the United Nations, 2014). The food 
safety of pork products, especially freshness has increasingly 
been addressed. Generally, there are two main ways to assess 
meat freshness: Sensory evaluation and physical or chemical 
analysis (Gil et al., 2011). The former is subjective and boring, 
while the latter is accurate and reliable with high repeatability. 
The physical and chemical indexes include flesh color (Chun et al., 
2014), total viable count (Li et al., 2016; Tao & Peng, 2015), total 
volatile basic nitrogen content (Huang  et  al., 2014), K value 
(Qiu  et  al., 2016), pH (Liu  et  al., 2014) and biogenic amine 
content (Wang et al., 2014), etc. Among those, the K value has 
attracted wide attention as an index of meat freshness, and is 
proved to be feasible in pork freshness detection in recent years 
(Cheng et al., 2016; Gil et al., 2011).

After slaughter, ATP is gradually decomposed according to the 
following sequence: ATP→adenosine diphosphate (ADP)→adenosine 
monophosphate (AMP)→inosine monophosphate (IMP)→inosine 
(HxR)→hypoxanthine (Hx) (Shahidi  et  al., 1994). Based on 
ATP-related breakdown compounds, the K value is obtained 
by Equation 1, indicating the degree of ATP decomposition:

HxR HxK 100%
ATP ADP AMP IMP HxR Hx

+
= ×

+ + + + + 	 (1)

K value is usually obtained by high performance liquid chromatography 
(HPLC) (Mora et al., 2010). This method is accurate and reliable, 
but time-consuming, destructive, and consumes large amounts 
of chemical reagents, which can not meet the requirements of 
rapid measurement in production. Therefore, the determination 
of K value in pork by non-destructive detection techniques is 
becoming an important research focus. In this paper, terahertz 
(THz) spectroscopy was used to determine K value, which can 
perform nondestructive detection of pork freshness.

THz is situated between infrared light and microwave radiation, 
with both photons and electron properties (Ferguson & Zhang, 
2002). It belongs to far infrared band and the frequency is in the 
range of 0.1THz~10THz. THz wave diversity makes many chemical 
molecules exhibit molecular motion characteristics in THz band 
different from other wavelengths. Biological macromolecules, 
such as amino acids (Li et al., 2017), peptides (Zhang et al., 2016), 
DNA (Zhang et al., 2013) and biological small molecules, such 
as nucleotides (Shen et al., 2003), can absorb THz wave due to 
molecule rotation, molecule vibration and overall vibration of 
molecular clusters. Therefore, polymeric biomaterials can be 
analyzed nondestructively by characteristic peaks and data of 
biomaterial THz spectra. THz spectroscopy is widely used for 
detection of food quality, such as deterioration of wheat grains 
(Ge et al., 2014), geographical origin discrimination of olive oils 
(Liu et al., 2018), tetracycline hydrochloride residues in milk 

Preliminary investigation of Terahertz spectroscopy to predict 
pork freshness non-destructively

QI Liang1,2 , ZHAO Maocheng1,3*, ZHAO Jie1,4, TANG Yuweiyi1

a

Received 06 Aug., 2018 
Accepted 03 Jan., 2019
1	Mechanical and Electronic Engineering School, Nanjing Forestry University, Nanjing, PR China
2	Center for Analysis and Testing, Nanjing Normal University, Nanjing, PR China
3	Taizhou University, Taizhou, PR China
4	Department of Energy and Electrical Engineering, Nanjing Institute of Industrial Professional Technology, Nanjing, PR China
*Corresponding author: mczhao@njfu.edu.cn

Abstract
Freshness, a very important criterion for pork quality control, is normally assessed by the index of K value. In this paper, 
Terahertz (THz) spectroscopy was employed to predict K value of pork nondestructively. The THz spectra (0.2~2.0THz) of 
80 pork samples with different freshness in the attenuated total reflectance (ATR) mode were acquired. Simultaneously, their 
K values were determined by high performance liquid chromatography (HPLC). A back propagation artificial neural network 
(BP-ANN) prediction model of K value was established. The precision of BP-ANN was further improved after optimization by 
the algorithm of Adaptive boosting (AdaBoost), whose root mean square error of prediction (RMSEP) and correlation coefficient 
(RP) were 9.89% and 0.84 respectively in the prediction set, indicating that the non-linear models (BP-ANN and BP-AdaBoost) 
were superior to the linear principal component regression (PCR) model. The topological neural network architecture was 
much more suitable for analyzing complicated regression relationship between K value and THz spectra. It can be concluded 
that the THz spectral coupled with BP-AdaBoost algorithm is capable of predicting the pork K value.

Keywords: pork; K value; THz spectroscopy; chemometry; BP-ANN adaptive boosting; non-destruction.

Practical Application: Pork freshness non-destructive detection using Terahertz spectroscopy

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0652-066X


Food Sci. Technol, Campinas, 39(Suppl. 2): 563-570, Dec. 2019564   564/570

Pork freshness detection by Terahertz spectroscopy

(Qin et al., 2017) and detection of transgenic food (Liu et al., 
2015). There are some studies on the identification of biological 
tissue in THz spectrum. Moisture content of muscle is different 
from that of fat tissue, which causes different absorption of 
THz wave. It could be used to detect water content distribution 
diagram of fresh pork, mutton, chicken and deli meats in THz 
band (Hoshina et al., 2009; Singh et al., 2008; Wang et al., 2010). 
However, there is no report available on the detection of meat 
freshness by THz spectra.

Therefore, the objective of this study was to explore the THz 
spectroscopy technique to detect pork freshness rapidly and 
nondestructively. In the meantime, the different classification 
algorithms were applied for qualitative analysis of THz spectra. 
The specific research work was carried out according to the 
following four steps: (1) THz spectra data acquisitions, (2) spectra 
preprocessing, (3) principal component analysis (PCA), and (4) 
developing K value prediction models. In step (4), three different 
prediction algorithms, namely principal component regression 
(PCR), back propagation artificial neural network (BP-ANN), 
and BP net adaptive boosting (BP-AdaBoost), were used to 
develop the prediction models, respectively, and the optimal 
model was obtained from the three models.

2 Materials and methods
2.1 Preparation of pork samples

Fresh pork’s longissimus muscles from 8 Landrace pigs 
(approximately 24 h postmortems) were purchased from Nanjing 
Metro Supermarket and taken to Non-Destructive-Testing 
Laboratory of Nanjing Forestry University in 30 min by ice boxes 
with an inner temperature of 2~6 °C. Test samples were trimmed 
into 80 pieces of 2.5×2.5×0.5cm (length×width×thickness) 
on a sterile surface and packed separately in commercial 
food grade polyethylene bags. The samples were placed 
orderly in a lab refrigerator (Siemens Company, Chuzhou, 
China) and stored at 4 °C for 0-7 days. On each day of the 
experiment, 10 samples were withdrawn randomly for THz 
spectra and reference K value analysis. Day 0 samples were 
used immediately before storage.

2.2 Spectra acquisitions

The THz spectra acquisitions were performed in the 
attenuated total reflectance (ATR) mode using the TAS7500 
spectrometer (Advantest Co., Kitakyushu, Japan). Each spectrum 
was the average of 2048 automatical scans to improve spectral 
signal noise ratio (SNR). The spectral range was 0.2~2THz 
and frequency resolution was 7.6GHz; thus, each spectrum 
is consisted of 250 spectral variables (i.e., data points). Each 
sample was placed on the ATR inspection window surface and 
collected three times by each side to reduce the random error. 
Six spectra collected from the same meat sample were averaged for 
further analysis. During spectra acquisitions, THz spectrometer 
is sensitive to the change of outer temperature and humidity. 
Therefore, all measurements were carried out at 25±1 °C, under 
the circumstance of a dry air purged container with the relative 
humidity less than 5% (±0.1%).

2.3 ATP-related compounds extraction and HPLC analysis

After scanned by the THz spectrometer system, ATP-related 
breakdown compounds (ATP, ADP, AMP, IMP, HxR, and Hx) 
of the pork sample were determined immediately according to 
HPLC procedure of Özogul et al. (2010) with some modifications. 
Two grams of minced pork meat was homogenized for 1 min 
with 20 mL of 10% chilled perchloric acid at 4 °C. The obtained 
homogenate was centrifuged for 10 min at 4 °C with the revolving 
speed of 8000 rpm and the supernatant was decanted. Then, the 
precipitate was re-extracted by another 20 mL of 5% chilled 
perchloric acid by repeating the above operations. The supernatant 
from the two extractions were merged and neutralized to 
pH of around 6.5 with 1 mol/L sodium hydroxide solution. 
The precipitated sodium perchlorate was removed by filtration 
after centrifugal process at 8000 rpm for 10 min at 4 °C.Finally, 
the filtrate was diluted to 50 mL with ultrapure water prior to 
storage at -20 °C until further HPLC analysis.

The HPLC analysis was performed on a AQ-C18 column 
(4.60×250mm) (Hypersil GOLD, Thermo-Fisher Co., MA, USA) 
with ultraviolet detection at 254 nm equipped in a Finnigan 
Surveyor (Thermo-Fisher Co., MA, USA) HPLC apparatus. 
The injection volume was 1μL, and the flow rate was modified at 
200μL/min. The chromatographic separations were achieved by 
using phosphate buffer solution (0.05 mol/L tripotassium phosphate 
dissolved in ultrapure water). The contents of the ATP-related 
compounds were determined according to the standard curve by 
the peak area of each compound in the range of 0~0.5 mmol/L, 
and the K values were calculated. ATP-related compounds 
standards were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). All other reagents used were analytical grade with HPLC 
reagents being exception which were chromatographic grade.

2.4 Spectral preprocessing

Figure 1a presented the raw spectra profile of pork samples, 
and raw spectra data needed further preprocessing. A spectra 
preprocessing method named first order derivative (FD) was 
applied in this study. It could remove slope variation and reduce 
the background interference. This transformation was done 
for each spectrum individually as illustrated in the following 
equation 2:

x(i g) x(i)x (i)
g

+ −′ =  	 (2)

where is the variable in spectrum after FD preprocessing, is the 
variable in raw THz spectrum, and is the width of differential 
window. The spectra after FD preprocessing were presented in 
Figure 1b.

In order to weaken noise generated by derivative calculation, 
the Savitzky-Golay (SG) polynomial smoothing was adopted 
after the derivative pretreatment. In the derivation process, 
differential width selection is very important: if the width is too 
small, the noise will be great, affecting the quality of the model 
built; if the width is too large, the smooth will be great and lose a 
lot of detailed information (Chen et al., 2011a; Chia et al., 2012). 
This paper studied the modeling performance of spectral data 
within the differential width of 25.
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2.5 Data analysis method

The large amount of information provided by spectral data 
required advanced data analysis approaches. This could be 
achieved through the integration of modern analytical platforms 
with computational and chemometric techniques (Miller & 
Miller, 2005). In this study, the multivariate statistical analysis 
methods including the linear regression methods of PCR and 
the non-linear method of BP-ANN, BP-AdaBoost were used to 
develop the prediction models, as considering that the growth 
of microorganisms in meat is a complex process.

BP-ANN simulates the cognitive function of human brain 
through a feed-forward multilayer network. It is a powerful tool 

to explore and reveal complex relationship between inputs and 
outputs (Hong et al., 2015; Timsorn et al., 2016). The topological 
structure of neurons is usually designed with 3 layers (an input 
layer, a hidden layer and an output layer) of unidirectional 
connections from input to output (Wang et al., 2015). Weights 
of connections are modified by several iterations according to 
the minimization of the output error (Prevolnik et al., 2009).

The Adaptive Boosting (AdaBoost) algorithm was introduced 
by Freund & Schapire (1997) and Zhang et al. (2005), and a lot of 
practical problems have been solved in the past few decades. It is 
one of the most popular techniques for generating and boosting 
ensembles due to its adaptability and simplicity. BP-AdaBoost 
algorithm was used to optimize BP-ANN prediction model. 
Calibration set samples were trained in BP-ANN model and 
several predictors with different prediction errors were obtained. 
Integration weights were calculated according to prediction error. 
In a word, the higher the prediction accuracy, the bigger weight 
ratio used; On the contrary, the lower the prediction accuracy, 
the smaller weight ratio adopted. Although the weak predictor 
had poor performance, a stronger predictor could still be formed 
by integration of weak predictors with bigger weights.

The BP-AdaBoost algorithm is presented as following 
5 detailed steps (Cao et al., 2012):

(1) Initialization:

Configure the network structure and parameter of BP-ANN 
weak predictor based on the input and output dimension. Determine 
the prediction error threshold (Φ). Initialize the distribution 
weight of example in training dataset as following equation 3:

tD (i) 1 / n= ( i 1, 2, , n= 
)	 (3)

where n indicates the size of training dataset.

(2) Train weak predictor:

Use the training dataset to trained the tht  weak predictor of 
BP-ANN and obtain the predicted value tŷ (i) of example, and then 
calculate the error of er(i) illustrated in the following equation 4:

tˆer(i) y (i) y(i)= −  (t 1, 2, ,T= 
) 	 (4)

where T is the size of the weak predictors, y(i)  is the actual value.

(3) Calculate the sum error tε  and the weight of weak 
predictor tw  as following equations 5 and 6:

t t
i:er(i)

D (i)
>Φ

ε = ∑  	 (5)

t
t

t

1w 0.5 ln( )− ε
= ×

ε
 	 (6)

(4) Set the t 1D +  according to tD  by following equations 7 and 8:

t t

t
t 1

t

t

exp(w ) D (i) ,er(i)
B

D (i)
D (i) ,er(i)

B

+

× > Φ= 
 ≤ Φ


 	 (7)

n
t t 1i 1B D (i)+== ∑  	 (8)

where tB  is the normalization factor.

Figure 1. Raw THz spectra of pork (a) and FD preprocessing ( g 15= ) 
THz spectra of pork (b).
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(5) Output strong predictor:

Steps between (2) to (4) are repeated by T times, T weak 
predictors are obtained as tf ,(t 1, 2, ,T=  )and they are combined 
to strong predictor F(x) as following equation 9:

T
t t

t 1
F(x) w f

=
= ×∑  	 (9)

2.6 Software

THz spectra of the pork meat samples were acquired and 
stored by software (Spectroscopy analysis system, Advantest 
Co., Japan). All algorithms were implemented in Matlab R2009b 
(Mathworks, MA, USA) under Windows 7.

3. Results and discussion
3.1. Reference HPLC analysis

The statistics of reference K values measured by traditional 
HPLC method were shown in Table 1. It could be concluded that, 
the mean values of K index increased gradually as storage time 
extended. The freshness loss was caused by microbial growth 
and activity in pork. As the K value covered a wide range (from 
22.89% to 96.26%), results in Table 1 should be appropriate to 
achieve a robust model for K value prediction.

All 80 samples were divided into two subsets randomly. 
The division of samples in the calibration and prediction sets was 
2/1 (Cai et al., 2011). The first subset was called calibration set to 
be used for building model, while the other was called prediction 
set to be used for testing the robustness of the model. As shown 
in Table 2, the ranges of reference K values in the calibration set 
almost covered the range in the prediction set, and their standards 
deviations in the calibration and prediction sets exhibited no 
significant differences. Therefore, their distributions of the 
samples were appropriate in the calibration and prediction sets.

3.2 Prediction models of K value in pork meat

From the above discussion, the content of ATP related 
product would change during the pork corruption, and these 
biological molecules had sensitive spectral response of THz 
wave, the THz spectra could reflect the change of molecular 
content. Therefore, there was an indirect correlation between 
THz spectral data and pork freshness. This work used nonlinear 
algorithm named BP-ANN to verify this relationship, and used 
the BP-AdaBoost to optimize the performance of BP-ANN, by 
comparing with the linear PCR algorithm, constructed a more 
effective THz spectra model for predicting pork K value.

For each spectrum, there were 250 variables (data points), 
the number of these variables was much larger than the number 
of samples. If it was used directly for regression analysis, there 
would be over fitting, which would reduce the prediction 
accuracy and stability of the model. At the same time, there was 
some redundant information, such as collinear variables, which 
would cause severe difficulty to build the regression model. This 
problem could be solved by principal component analysis (PCA) 
which compressed spectral information by data reconstruction 
and dimensional reduction (Aït-Kaddour et  al., 2018). After 
compression, several top principal components (PCs) were 
extracted from the original spectral data.

In this study, BP-ANN was used to construct a prediction 
model for the K value in pork meat. The PCs resulting from the 
above-mentioned PCA analysis were subjected to the BP-ANN 
model as the input layer, and the output layer contained one 
node for the prediction of K value. The number of nodes in the 
hidden layer was optimized based on the empirical equation 10.

m n l a= + + 	 (10)

where m is the number of nodes in the hidden layer, n is the 
number of nodes in the input layer, l is the number of nodes in 
the output layer, and a is a constant from 1 to 10 (Xu et al., 2013). 
The transfer function was ‘logsig’ for the hidden layer nodes and 
‘tansig’ for the output layer nodes in constructing the BP-ANN 
models in this study. The learning rate and momentum factor 
were set as 0.1, the initial weight was set as 0.3.

The number of nodes in the hidden layer was optimized by 
cross-validation, and determined by the lowest root mean square 
error of cross validation (RMSECV). Figure 2 shows the RMSECV 
of BP-ANN model according to the different number of nodes 
in the hidden layer and differential width by cross-validation.

As shown in Figure 2, the maximum discrimination rate by 
cross-validation is 18.1% when number of nodes in the hidden 
layer is 9 and differential width is 13. The result of optimal 
BP-ANN model is showed in Table 3.

We proposed a strong algorithm BP-AdaBoost to improve 
the BP-ANN model performance for K value prediction. 
The prediction error threshold (Φ) had a significant influence 
on the accuracy of BP-AdaBoost model, thus, it was determined 
by the minimum of RMSECV during cross-validation. Firstly, 
the threshold (Φ) was optimized in a lager scope (0.05~0.23) 
by the step of 0.01. Change of RMSECV is shown in Figure 3a. 
We found that when the parameter (Φ) was selected within 

Table 1. K values measured by HPLC.

Storage 
period

Sample 
number

Max 
(%)

Min 
(%)

Mean 
(%)

0d 10 39.62 22.89 31.96
1d 10 47.25 37.17 41.99
2d 10 51.93 39.91 48.11
3d 10 53.40 44.78 51.41
4d 10 56.46 48.17 54.04
5d 10 68.73 49.93 59.09
6d 10 93.19 64.84 81.54
7d 10 96.26 91.66 94.53

Table 2. Statistic information of all samples in the calibration and 
prediction sets.

Sets Sample 
number

Range of K 
value (%)

Mean 
(%)

Standard 
deviation (%)

All 80 22.89-96.26 57.84 19.95
Calibration 54 24.86-95.96 58.07 19.17
Prediction 26 22.89-96.26 57.35 21.87
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optimum BP-AdaBoost model was achieved with Φ= 0.136. 
The parameter was substituted into the BP-AdaBoost algorithm, 
and 10 weak BP-ANN predictors and 1 strong predictor were 
obtained. The performance is shown in Table 4. It was clear that 
the performances of these weak predictors were different, the 
2nd and 8th weak predictor had better prediction performance 
on small RMSEC and sum error tε , so these two weak predictors 
have greater weight in strong predictor after iteration. On the 
contrary, the performance of the 6th weak prediction was worse 
with large RMSEC and sum error tε , so it had minimum weight 
with little contribution on the strong predictor after integration. 
Although prediction performances of these 10 weak predictors 
were not ideal, strong predictor obtained the best prediction 
performance after weighted integration. Figure 4 is the scatter 
plot between reference HPLC measurements of K values and 
BP-AdaBoost predicted results.

Principal component regression (PCR) can also estimate 
calibration model between the THz spectra and reference K 
values using cross validation. PCs from the above-mentioned 
PCA analysis were subjected to the PCR model as the input data. 
The FD width of the spectral preprocessing is selected according 
to the model prediction, such as the maximum correlation 
coefficient and the minimum RMSEP. The performance of the 
model is shown in Table 3.

As shown in Table 3, the appropriate difference width of 
spectral data preprocessing is 13 (BP-ANN or BP-AdaBoost 
model) or 15 (PCR model), too small or too large differential 
width would reduce the prediction performance of the model. 
The nonlinear model BP-AdaBoost combined with AdaBoost 
algorithm improved the K value prediction performance, which 
was better than the linear model PCR.

3.3. Discussion

As for the reasons why THz spectroscopy with BP-AdaBoost 
algorithm could obtain such good prediction results, we could 
give detailed explanations from the following three aspects.

Firstly, K value was determined by the ratio of 6 kinds of ATP 
content. According to Shen et al. (2003), the correlation between 
these contents and spectral data in spectrum is nonlinear, so 
the fitting effect of nonlinear model is better than that of linear 
model. Secondly, the pork deterioration is a complex chemical 
process. Under the action of several kinds of spoilage bacteria, 
the protein in muscle is hydrolyzed into polypeptide, and then 
into amino acid, and further decomposed into various organic 
substances. THz spectra can reflect the content changes of 
biological molecules such as protein, polypeptide and amino 
acid. However, there were so many kinds of biological molecules 
in pork that the characteristic spectra of various molecules 
will overlap at room temperature. THz spectrum expresses not 
only the change of K value, but also the complex changes of all 
chemical components in pork. Therefore, there is a complex 
nonlinear relationship between K value and THz spectrum, 
which can not be explained by linear model. Thirdly, from the 
principle and structure point of the modeling algorithm, the 
nonlinear model was better than the linear model in self-learning 
and self-adjustment, and the network topology of BP-ANN is 

Figure 2. Relationship among RMSECV, differential width and node 
number of the hidden layer in BP-ANN prediction model (The minimum 
value of RMSECV was marked by red circle).

Table 3. Comparison of regression results of K values from three models.

Model Differential 
width

Calibration set Prediction set

RC RMSEC (%) RP RMSEP (%)

BP-ANN 13 0.77 12.51 0.75 14.36
BP-AdaBoost 13 0.86 9.05 0.84 9.89
PCR 15 0.78 11.91 0.63 16.78

Figure 3. Relationship between RMSECV and threshold a (Φ= 0.05~0.23) 
or b (Φ= 0.13~0.14).

0.13~0.14, the model was ideal. Then, within this range, the 
performance of the model was examined with a smaller step 
size of 0.001, as shown in Figure  3b. We could see that the 
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more suitable for the analysis of complex chemical components 
(Chen et al., 2011; Lin et al., 2009). Moreover, the BP-AdaBoost 
algorithm integrates the BP-ANN weak predictors gradually, and 
makes out the strong prediction model finally. Therefore, the 
BP-AdaBoost model exhibited better prediction performance 
than the BP-ANN model.

In addition, the nonlinear model BP-AdaBoost can be 
further optimized. Because of the complex ingredients, there 
were no absorption peaks or characteristic bands obviously in 
THz spectrum. Some characteristic bands were closely related 
to K value in THz spectrum, which can be found out by filtering 
the influence of freshness unrelated substances. A more suitable 
model can be developed by reflecting the complex nonlinear 
relationship between K value and THz spectrum to improve 
the accuracy of the prediction.

4 Conclusion
The overall results indicated that the THz spectroscopy 

technique coupled with prediction model has the high potential 
ability to detect pork freshness. In this study, THz spectra of fresh 

pork in the range of 0.2~2 THz was obtained by ATR model. 
After FD preprocessing and SG smoothing, K value prediction 
model was constructed to detect pork freshness rapidly and 
nondestructively. Three regression algorithms (i.e. PCR, BP-ANN, 
and BP-AdaBoost) were attempted comparatively to develop 
the prediction model. Among them, BP-AdaBoost revealed 
its superiority in the solution to complicated regression. It can 
be concluded that THz spectroscopy technique coupled with 
BP-AdaBoost regression algorithm is capable of predicting the 
freshness K value of other meat or food nondestructively.
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