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1 Introduction
The proximate composition of biomass is necessary to 

analyze the overall process of any thermochemical conversion. 
The proximate composition is an important property for 
food industries utilization and for heat and power generation 
(Hosseinpour et al., 2017). Focusing on the proximate analyses, 
it is possible to determine a large number of fuel and bioproducts 
parameters. In this way, the proposed models would assist in the 
optimal use of the feedstock based on this biomass properties 
(Feng et al., 2015).

Near infrared spectroscopy (NIRS) is one technique that 
measure the vibration of functional groups, relating the chemical 
composition and spectral data that allows for the development 
of multivariate calibration models (Rambo et al., 2016; Xu et al., 
2013). NIRS has been shown to be fast and precise in the prediction 
of proximate analysis from biomasses using multivariate models 
(Qi et al., 2016; Rambo et al., 2015a). Such models have been 
frequently used in combination with different pretreatment 
methods for treating the complex spectroscopic data.

Recently relationships were developed using proximate 
analyses and chemometrics (NIRS coupled to multivariate 
methods). Hosseinpour et al. (2017, 2018) developed a prediction 
method to estimate higher heating value (HHV) using iterative 

neural network-adapted partial least squares (INNPLS) and 
iterative network-based fuzzy partial least squares coupled with 
principle component analysis (PCA-INFPLS), respectively. Good 
correlations were found (R2> 0.86). Uzun et al. (2017) developed 
a prediction method using artificial neural network models, 
taking the data from proximate and ultimate analyses. The model 
presented a considerably higher correlation coefficient (0.96) 
and low root mean square error (0.375). Qi et al. (2016) using 
proximate analysis of sawdust biomass with NIR spectroscopy and 
locally weighted partial least squares, obtained good prediction 
results (> 0.80).

This study aims to create correlation models for predicting 
the contents of moisture, ash, fixed carbon (FC), organic matter 
(OM) and volatile matter (VM) in coconut and coffee biomasses, 
so facilitating the application of the screening analysis in 
biorefinery industries.

2 Materials and methods
2.1 Coconut and coffee samples

Thirty two samples of coconut were collected in Brazil; from 
them, 21 came from the Southeast regions where the others 
12  ones came from the North region. Also, 16 coffee husks 
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samples (previously collected) were used. From each biomass a 
sufficient amount was collected, dried at 105 °C, ground using 
a Romer micromill (RomerLabs, São Paulo, Brazil), sieved for 
20 min and the fractions of 48 mesh were used.

2.2 Proximate analysis

The proximate analysis is performed according to the 
American Society for Testing and Materials (ASTM).

The ASTM D 3173-87 (American Society for Testing 
and Materials, 2003) was using for the moisture content 
determination, after the sample was heated in an oven at 
105° ± 5 °C (SP 100, SP Labor) during 12 hours, or until constant 
mass. The volatile matter (VM) was determined by the ASTM 
D 3175-07 (American Society for Testing and Materials, 2007) 
using 1g of sample, previously dried in muffle (1200DRP7, SP 
Labor) at 800 ± 10 °C for 8 minutes. The sample was removed 
and placed in a desiccator to be cooled for 60 minutes, finally 
being weighed and its VM content was calculated.

The ASTM D 3174-04 (American Society for Testing and 
Materials, 2004) was using for the ash content determination, 
involved the removal of organic constituents through high 
temperatures in furnace (1200DRP7, SP Labor) by 4 hours at 
600 ± 10 °C.

The values of fixed carbon (FC) and organic matter (OM) 
were indirectly obtained by using the following equations:

( )%FC   100  VM   Ash= − −  	 (1)

( )% : –OM   100  Ash  	 (2)

2.3 Near infrared spectroscopy

The near-infrared spectra (triplicate) were obtained (FOSS, 
Hillerød, Denmark instrument) between 1100–2500 nm in 
a diffuse reflectance detector, with 1 nm increments and by 
averaging 32 successive scans.

2.4 Multivariate data analysis

The UNSCRAMBLER 10.3 software (Camo Software, Oslo, 
Norway) was using for the multivariate data analyses.

PLS-1 (Martens & Naes, 1996) was used for constituent 
quantification of moisture, ash, FC, VM and OM. The data 
were pre-treated by mean-centering and to determine the 
number of latent variables (LV) in the models, the leave-one-out 
cross‑validation method was used.

Several transformations were applied to choose the 
pre‑treatment with the best results. Initially the raw data was 
tested, followed by the second (D2) derivative, and by combining 
the D2 with Detrend (DT) and D2 with standard normal variate 
(SNV) (Wise et al., 2006). The size of the optimal window to be 
used in the Savitzky-Golay algorithm (Enke & Nieman, 1976; 
Savitzky & Golay, 1964) was also evaluated.

Different statistical parameters were evaluated based on 
the coefficients of determination (R2

cal and R2
val); the root mean 

square error of calibration (RMSEC); root mean square error 
of cross validation (RMSECV); root mean square error of 
prediction (RMSEP); bias; the relative standard deviation (RSD); 
the relative error of calibration and prediction sets (RE%); the 
range error ratio (RER), LV numbers and the outliers excluded 
(using the Student residues versus Leverage). The equations for 
the calculation of all the figures of merit used in this work are 
according to Rambo et al. (2013).

To assure a good prediction for new samples, the data set 
was split into calibration (75% of the samples) and in external 
validation set (25% of samples), randomly.

According the International Organization for Standardization 
(1994), the residual distribution and the linearity were analyzed 
by the graphical evaluation.

According to the ASTM E1655-00 (American Society for 
Testing and Materials, 2005), the bias and the R2 values were 
investigated by a t-test and F-test, respectively.

The regression coefficient plots were interpreted for the 
parameters ensuring a real correlation and not due to chance.

3 Results and discussion
3.1 Reference analysis

The Figure 1 shows the NIR raw spectra of the coconut and 
coffee samples. At 1450/1470 nm, 1920 nm, and 2090 nm are 
located the main absorption bands, associated respectively to 
H-bonds of the OH groups; O–H stretch from water and the 
O–H combination from polysaccharides.

Less intense bands appearing at 1170/1270 nm and 2274 nm, 
associated respectively to lignin and polysaccharides components, 
in the C–H stretch 2nd overtone and O–H stretch of combination 
bands (Shenk et al., 2008).

The results for the descriptive analysis are listed in 
Table 1. The highest variability was observed for FC and ash, 
both for coconut samples, with a high coefficient of variation 
(37.1 and 35.0, respectively).

Figure 1. Raw coconut and coffee NIR spectra.
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Parameters with low variations (VM and OM) were easier 
to be modeled, because they present a small range for fitting the 
models. Although the external set to contain only 7 samples, 
a good variation for all parameters was observed, it is very 
important for the future prediction for the calibration models.

The mean values found for coconut and coffee samples are 
consistent with those obtained in literature for these constituents 
(Balasundram et al., 2017; Oliveira et al., 2018a). The composition 
of the raw coconut and coffee samples usually varies because it 
depends on factors such as cultivation conditions, crop variety, 
and the processing method, which explains the differences in 
the composition reported by other authors (Araújo et al., 2017; 
Oliveira et al., 2018b).

3.2 Pre-treatments

The best pre-treatment on the spectra was selected based 
on the regression models that provided the lowest RE (%) and 
the highest RER values (Figure 2).

The second one derivative from the Savitzky-Golay algorithm 
(second‐order polynomial) with a window of 7 points (SG7) 
combined with detrend or SNV for the moisture parameter was 
the best choice. For the ash and volatile matter models, the D2 
(SG7) provided the best results. For the organic matter constituent, 
the raw spectra presented the highest RER value. Caliari et al. 
(2017) when comparing different spectral treatment, found that 
the best choice to be used was taking the first derivative with 
SG5 in sugarcane biomass when building regression models to 
estimate the cellulose crystallinity.

Xie et al. (2018) found the multiplicative scatter correction 
(MSC) + D2 as the best pre-treatment when modeling ash, FC 
and VM of biochar from very different feedstocks.

3.3 Partial least square regression

To evaluate the prediction performance of the PLS models, 
the predicted physico-chemical constituents of coconut and 
coffee biomasses were plotted against reference values for all 
dataset (Figure 3). The agreement between these values shows 
that the models fit well and are not over fitted (built with a low 
number of factors). One forced fit use more PLS components 
in the model what need, where R2 have a high value, but the 
model fail in predicting new samples (Strandberg et al., 2017).

The samples are linearly distributed around a diagonal 
line in the reference versus predicted values by PLS models 
plot (Figure 3). The PLS residuals are distributed randomly in 

the plots as shown the Figure 3 (B, D) indicating absence of 
systematic trends in the building models, that they presented a 
normal distribution with satisfactory linearity.

From the results summarized in Table 2, it is possible to 
verify that the models show good correlation coefficient of 
calibration (R2

cal) cross validation (R2
cv) and prediction (R2

pred) 
for ash (R2

cal 0.83, R2
cv 0.72 and R2

pred 0.79), and reasonable 
for moisture and OM. Low (< 2.0%) and quite close RMSEC 
and RMSECV values were observed, except for OM, where a 
significant difference was observed. Also, the OM model was not 
able to predict (R2

pred < 0.70). FC and VM were the parameters 
that presented poor results (R2

cal,val < 0.70), independently of the 
pre-treatment applied. These poor values ​​can be attributed to 
an indirect measure calculated for these parameters.

All the models were built with a maximum of 7 LV and no 
more than 8.3% of outliers were remove. It is possible to observe 
that Gómez  et  al. (2018) have developed predictive models 

Table 1. Descriptive statistics for proximate analysis (%) of coconut and coffee samples.

Statistic parameters/
constituents Mean value Minimum value Maximum value Range Standard deviation Variance

Moisture 9.56 4.22 13.7 9.49 2.29 5.27
Ash 1.41 0.36 3.24 2.88 0.72 0.52
FC 9.76 2.36 15.55 13.19 3.16 10.0
OM 98.6 96.8 99.64 2.88 0.71 0.51
VM 88.9 82.1 97.17 14.99 3.22 10.4

FC: fixed carbon; OM: organic matter; VM: volatile matter.

Figure 2. Values of relative error (RE) and range error ratio (RER) for 
the PLS models built applying different pretreatments.
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for ash, VM and FC using PLS models and fourier transform 
infrared spectroscopy (FTIR) for coal samples. For the validation 
parameters were necessary to use 6 and 8 LV, respectively, for 
ash and VM, and RSD of 20.89% and 1.95% were found. In the 
present work, similar values of RSD and LV were obtained.

Still, the models obtained in this study when compared 
with literature data, (Xue et al., 2015) required lower numbers 

of LV, similar RSD and better R2
cal,cv (except for ash model, 

however they have used 11 LV). Strandberg et al. (2017), using 
multivariate analysis for predict the fuel properties of biomass, 
found low RMSEP (0.54) and high R2 > 0.9 for VM. The RSD 
was high only for ash model (26.3%). Satisfactory results of 
RSD were found for the other models (≤14%), as well as good 
RER values, above > 5.0 indicating the calibration is acceptable 
for sample screening. It is considered that the RER value is a 

Figure 3. Plot of reference vs. predicted values of calibration and cross validation for (A) moisture and (C) ash of coconut+coffee models. (B) Plot 
of predicted vs. residual values of cross validation for (B) moisture and (D) ash from coconut+coffee models.

Table 2. Parameters and figures of merit for validation of the best PLS models.

Constituents Pretreatment LVs Outliers R2
cal R2

cv R2
pred RMSEC RMSECV RMSEP RSD RER

Moisture 2D(7)+Detrend 4 4 0.74 0.65 0.72 1.085 1.367 1.308 13.3 5.2
Ash 2D(7) 5 3 0.83 0.72 0.79 0.286 0.385 0.367 26.3 5.4
FC - - - - - - - - - - -
OM Raw 7 3 0.86 0.71 - 0.236 0.356 - 0.40 5.7
VM - - - - - - - - - - -

FC: fixed carbon; OM: organic matter; VM: volatile matter; LVs: latent variables; R2
cal: coefficient of calibration; R2

cv: coefficient of cross validation; R2
pred: coefficient of prediction; root mean 

square error of calibration (RMSEC); root mean square error of cross validation (RMSECV); root mean square error of prediction (RMSEP); RSD: standard error; RER: range errror ratio.
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better parameter to test the quality of the fit, since no outliers 
are more present in the models and so the concentration range 
of the constituent is well represented (Hayes, 2011).

The number of LVs used to explain the variability for the 
models were high for OM, due to the existence of different types 
of molecular interactions.

The cross-validation and external validation results showed 
that the models developed here are promising for prediction future 
proximate analysis of coconut and coffee biomass. The results 
showed that one independent validation with new biomass 
species/samples was able to predict chemical composition and 
to make the NIR spectroscopy more robust and practical for 
industrial applications. Liu et al. (2010), used one independent 
validation including a different species than was used for 
calibration, and good results were obtained, with RSD < 14%.

Fagan et al. (2011) predicted the moisture, ash and carbon 
content of two crops (164 samples) using PLS and NIR obtaining 
a RMSECV above R2 > 0.88, except for ash with a R2 210 of 
0.58, 211 demonstrating the application for screening calibration, 
while Rambo  et  al. (2016), using 26 samples were able to 
determine the ash and moisture content with R2 212 >0.80, 
similar to Gómez et al. 213 (2018) with only 28 samples they 
got models with a true correlation between the reference and 
214 predicted values wit error less than 1.2%.

The results showed that the NIR in combination with PLS is 
able to quantify the composition of samples using multi-product 
calibration models.

In order to establish whether there is a true difference 
between the standard errors values (RMSEC and RMSEP) the 
Ftest was applied. All Fcalc were lower than Ftab, (at 95% confidence 
level), it can be concluded that there is no statistically significant 
difference between the values, except for the OM model that was 
inaccurate for external validation. All the t value is less than the 
critical t value, suggesting that the results provided by the models 
show the same values ​​as the standard method.

Finally, the low bias values are indicative of the absence of 
systematic errors, with little significance.

3.4 Regression coefficients interpretation

The interpretation of the regression coefficients is necessary 
to avoid possible accidental correlations (Rambo et al., 2015b). 
So,  it is important to assign the observed signals to the 
constituents in question. Figure  4  (A) shows the regression 
vectors for moisture, where the significant bands at 1350 nm and 
1920 nm are assigned to the water. The weak band at 2270 nm 
(O-H stretch/C-O stretch combination) confirms the contribution 
of polysaccharides. The negative regions correlated with moisture 
were mainly due to the presence of carboxylic acids (1885 nm), 
which together with the alkyl stretching of the first supernatant, 
can be attributed to fatty acids. Proteins (1640 nm) and cellulose 
(2000 nm) also present a negative correlation with the moisture 
content (Yonenobu et al., 2009).

For the ash vector the interpretation of the regression 
coefficients (Figure  4B) is not straightforward, since the 

correlation is probably indirect, and the NIR spectroscopy 
is limited to organic substances. But a more general analysis 
allows correlating inorganic complex compounds with the 
ash content, though with spectral bands broader and fewer in 
number (Rambo et al., 2013a). A correlation with the crystalline 
(1480 nm) and semi‑crystalline cellulose (1488 nm), assigned 
to 1st overtone of O-H stretch, (Gómez et al., 2018; Zidan et al., 
2012) was observed. A negative correlation with water was 
observed at 1780 nm attributed to H-O-H symmetric bending 

Figure 4. Regression coefficients of the (A) moisture, (B) ash and (C) 
OM for the PLS models.
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and OM parameters. The regression coefficients have shown a 
real correlation with the modeled parameter. Thus, the proposed 
method is useful for screening routine analyses (RER  >  5), 
providing fast and inexpensive results for ash, moisture and 
OM parameters. For the VM and FC models, the calibration 
accuracy were inadequate (R2<0.70) and could not be applied 
for screening analysis in coconut/coffee biomasses.
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