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1 Introduction
Ischemic stroke has the high recurrence rate, disability rate 

and mortality rate, which seriously endangers the health and 
life of people (Skajaa  et  al., 2021). At present, the treatment 
principle for this disease is mainly to dissolve the thrombus and 
restore the blood supply. However, the reperfusion after cerebral 
ischemia can aggravate the pathological damage of ischemic 
brain tissues and worsen the cerebral injury, which is called the 
cerebral ischemia-reperfusion injury (CIRI) (Pan et al., 2007). 
Reducing CIRI has become an important link in the treatment of 
ischemic cerebrovascular diseases. The pathological mechanism 
of CIRI is complex. It involves the energy depletion, calcium 
overload, production of inflammatory mediators, production of 
free radicals, activation of apoptosis pathway, and so on (Cao & 
Phillis, 1995; Zhao et al., 2013; Zhang et al., 2016; Liu & Zhang, 
2019). The inflammatory response plays a very important role in 
the physiological and pathological development of CIRI. Seeking 
drugs for preventing and treating CIRI through inhibiting the 
inflammatory response has become a research hotspot (Xian et al., 
2019; Zheng et al., 2019). It is found that, p38 mitogen-activated 
protein kinase (p38 MAPK)/nuclear factor kappa B (NF-κB) 
is a classical inflammatory pathway, which can regulate the 
expression of a variety of inflammatory factors, thus regulating 
the inflammatory response (Li et al., 2012). Hydroxysafflor yellow 
A (HSYA) is the main active component of traditional Chinese 
medicine safflower (Carthamus tinctorius L.) (Bai et al., 2012). 

Its molecular formula is C27H32O16, with molecular weight of 
612.53. Pharmacological and clinical studies have shown that 
HSYA has the anti-inflammatory (Chen et al., 2008), antioxidant 
(Chen et al., 2016), platelet aggregation-inhibitory (Zang et al., 
2002) and other effects. It is applied to treating of ischemic heart 
disease (Ji et al., 2009), preventing hypoxia injury (Ye & Gao, 
2008) and protecting against chronic liver fibrosis (Zhang et al., 
2011). In view of this, this study intended to extract HSYA from 
safflower and investigate the preventive effect of HSYA on CIRI 
in rats and the related mechanisms.

2 Materials and methods
2.1 Extraction of HSYA

Safflower powder (500 g) was added into microwave digestion 
tank, followed by adding 10 L of 50% ethanol-water solution. After 
vortex shaking for 1 min, the microwave-assisted extraction was 
performed for 30 min. After cooling to room temperature, the 
mixture was filtered. The filtrate was concentrated by vacuum. 
The crude extract was obtained, and was dissolved in water. After 
standing at 4 °C over night, the mixture was filtered. The filtrate 
was loaded to X-5 macroporous resin column. The concentration 
of HSYA in load sample was adjusted to 1.0 mg/mL, and the load 
flow rate was 10 BV/h. Then, 70% ethanol-water solution was 
used for elution, and the elution flow rate was 5 BV/h. The effluent 
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was collected, and concentrated by vacuum. The concentrated 
product was dissolved in water, followed by load on silica gel 
column. The elution was performed using ethyl acetate-95% 
ethanol (3: 1) solution. The effluent was collected, followed by 
vacuum concentration and freeze drying. Finally, the refined 
HSYA product was obtained. The high performance liquid 
chromatography showed that the purity of HSYA was 89.78%.

2.2 Establishment of CIRI model.

Ninety Sprague Dawley rats (280-300 g) were randomly divided 
into sham-operated, model, low-dose HSYA, high-dose HSYA 
and nimodipine groups, with 18 rats in each group. The CIRI 
model was established in latter four groups using the right middle 
cerebral artery embolization (MCAO) method. The rats were 
anesthetized with isoflurane. A median incision was made in 
the neck. The common carotid artery, external carotid artery 
and internal carotid artery were isolated. The internal carotid 
artery was clamped using the arterial clamper. An incision was 
made at the bifurcation of external carotid artery and internal 
carotid artery. A nylon thread was inserted into the internal 
carotid artery for about 22 mm distance until there was a slight 
sense of resistance. After 2 h of occlusion for ischemia, the nylon 
thread was removed for reperfusion. In sham-operated group, 
the surgical operations were the same as those in other groups, 
excepting insertion of nylon thread into internal carotid artery. 
The room temperature was kept at 23-25 °C during the surgery.

2.3 Treatment

After 30 min from the ischemia beginning, the rats in low‑dose 
HSYA group and high-dose HSYA group were treated with 2 and 
4 mg/kg HSYA via tail-vein injection, respectively. The rats in 
nimodipine group were treated with 2 mg/kg nimodipine via 
tail-vein injection. The rats in sham-operated group and model 
group were treated with the same volume of normal saline via 
tail-vein injection.

2.4 Neurological symptom scoring

After 3 h, 6 h 12 and 24 h from ischemia, the neurological 
symptoms of rats were evaluated according to the scoring system 
as follows: 0 point: no symptom of neurological deficit, normal 
activity; 1 point: the rats could not fully extend the forepaws on 
hemiplegic side; 2 points: the rats turned around to the hemiplegic 
side; 3 points: the rats tilted to the hemiplegic side; 4 points: the 
rats could not spontaneously walk, with loss of consciousness; 
5 points: the rats died.

2.5 Determination of serum inflammatory factors

After the last neurological symptom scoring, the rats were 
anaesthetized with 10% chloral hydrate. The blood was collected 
from the heart in supine position. The blood samples were 
centrifuged at 1500 r/min for 20 min, the serum was taken 
and stored at -20 °C for testing. The serum interleukin 6 (IL-6) 
interleukin 1β (IL-β) levels were determined using enzyme‑linked 
immunosorbent assay. The operations were according to the 
instructions of kits

2.6 Measurement of brain water content
Six rats in each group were randomly taken. The rats were 

sacrificed, and the brain was immediately taken. The brain was 
rinsed with normal saline. The liquid on the surface was sucked 
dry using filter paper. The brain was weighed to obtain the wet 
mass. Then, the brain was dried in an oven at 100 °C to constant 
weight to obtain the dry mass. The brain water content was 
calculated as follows: brain water content (%) = [(wet mass - dry 
mass) / wet mass] × 100%.

2.7 Determination of brain infarction area
Six rats in each group were randomly taken. The rats were 

sacrificed, and the brain was immediately taken. The brain tissue 
slices with 2 mm thickness were prepared. The slices were stained 
in 1% 2,3,5-triphenyltetrazolium chloride solution at 37 °C 
for 20 min, followed by fixation with 10% paraformaldehyde. 
The normal brain tissue area presented rose red, and the infarction 
area presented white. The sections were photographed and 
analyzed using the ImageJ software. The percentage of brain 
infarction area was calculated.

2.8 Western blotting
The remaining six rats in each group were sacrificed, and the 

brain was immediately taken. The brain tissues were homogenized 
with RIPA lysate. After centrifugation, the supernatant was extracted 
and the protein content was determined by bicinchonininc acid 
method. A 20 μg of crude protein sample was loaded on sodium 
dodecyl sulfonate-polyacrylamide gel electrophoresis. The separated 
proteins were transferred to the polyvinylidene fluoride membranes. 
After blocking using 1% bovine serum albumin, the membranes 
were incubated with primary antibody (anti-p-p38 MAPK, 1: 1000; 
anti-p-NF-κB p65, 1: 2000; anti-glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), 1: 5000) at 4 °C overnight, respectively. 
After rinsing with Tris buffered saline Tween (TBST) for three 
times, the membranes were incubated with the second antibody 
horseradish peroxidase-labeled anti-IgG (1: 2000) at 37 °C for 
1.5 h. After rinsing with TBST for three times, the membranes 
were visualized using the enhanced chemiluminescence reagent. 
The absorbance of strips was measured by Image J software. Using 
GAPDH as internal reference, the expression level of the target 
protein is expressed according to the absorbance ratio of the target 
protein strip to the GAPDH strip.

2.9 Statistical analysis
The analysis was performed using SPSS 20.0 statistical 

software. All data were represented as mean±standard deviation. 
The data were analyzed using one-way analysis of variance 
followed by Bonferroni test to determine the difference among 
groups. Significant differences were accepted for P < 0.05.

3 Results
3.1 Comparison of neurological symptom score among five 
groups

Table 1 showed that, at 3 h, 6 h 12 and 24 h after ischemia, 
the neurological symptom score in model, low-dose HSYA, 
high‑dose HSYA and nimodipine groups was obviously higher 
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than that in sham-operated group, respectively (P < 0.05). 
Compared with model group, the neurological symptom score 
in high-dose HSYA and nimodipine groups at 3 h and 12 h and 
in low-dose HSYA, high-dose HSYA and nimodipine groups at 
6h and 24 h were significantly decreased, respectively (P < 0.05).

3.2 Comparison of brain water content among five groups

At 24 h after ischemia, the brain water content in sham‑operated, 
model, low-dose HSYA, high-dose HSYA and nimodipine 
groups was (55.18±7.69)%, (85.20±7.80)%, (82.20±9.13)%, 
(70.12±9.59)% and (68.90±5.29)%, respectively. Compared 
with sham-operated group, the brain water content in model, 
low-dose HSYA, high-dose HSYA and nimodipine groups was 
obviously increased, respectively (P < 0.05). Compared with 
model group, the brain water content in high-dose HSYA and 
nimodipine groups was significantly decreased, respectively 
(P < 0.05) (Figure 1).

3.3 Comparison of percentage of brain infarction area 
among five groups

At 24 h after ischemia, percentage of brain infarction area 
in sham-operated, model, low-dose HSYA, high-dose HSYA 
and nimodipine groups was (0.00±0.00)%, (46.34±5.87)%, 
(40.76±7.32)%, (38.18±5.76)% and (33.39±4.45)%, respectively. 
There was no brain infarction area in sham-operated group, 
with obvious brain infarction area in model, low-dose HSYA, 
high-dose HSYA and nimodipine groups. Compared with model 
group, the percentage of brain infarction area in high-dose HSYA 
and nimodipine groups was significantly decreased, respectively 
(P < 0.05) (Figure 2).

3.4 Comparison of serum IL-6 and IL-1β levels among five 
groups

At 24 h after ischemia, compared with sham-operated 
group, the serum IL-6 and IL-1β levels in model, low-dose 
HSYA, high‑dose HSYA and nimodipine groups was obviously 
increased, respectively (P < 0.05). Compared with model group, 
the serum IL-6 and IL-1β levels in low-dose HSYA, high-dose 
HSYA and nimodipine groups were significantly decreased, 
respectively (P < 0.05). In addition, the serum IL-1β level in 
high-dose HSYA group was significantly lower than that in 
nimodipine group (P < 0.05) (Table 2).

3.5 Comparison of brain tissue p-p38 MAPK and p-NF-κB 
p65 protein expression levels among five groups

Table 3 showed that, at 24 h after ischemia, the brain tissue 
p-p38 MAPK and p-NF-κB p65 protein expression levels in 
model, low-dose HSYA, high-dose HSYA and nimodipine 
groups were obviously higher than those in sham-operated 

Table 1. Comparison of neurological symptom score among five groups (n = 18).

Group
Neurological symptom score (points)

3 h 6 h 12 h 24 h
Sham-operated 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Model 2.83 ± 0.23# 3.51 ± 0.48# 3.97 ± 0.63# 4.32 ± 0.81#

Low-dose HSYA 2.80 ± 0.47# 3.12 ± 0.31#$ 3.56 ± 0.52# 3.47 ± 0.77#$

High-dose HSYA 2.59 ± 0.42#$ 2.75 ± 0.69#$% 3.27 ± 0.49#$ 2.82 ± 0.59#$%

Nimodipine 2.53 ± 0.36#$% 2.61 ± 0.47#$% 2.88 ± 0.58#$%^ 2.62 ± 0.43#$%

Data were represented as mean ± standard deviation. #P < 0.05 compared with sham-operated group; $P < 0.05 compared with model group; %P < 0.05 compared with low-dose HSYA 
group; ^P < 0.05 compared with high-dose HSYA group. HSYA, hydroxysafflor yellow A.

Figure 1. Comparison of brain water content among five groups 
(n = 6). Data were represented as mean ± standard deviation. #P < 0.05 
compared with sham-operated group; $P < 0.05 compared with 
model group; %P < 0.05 compared with low-dose HSYA group. HSYA, 
hydroxysafflor yellow A.

Figure 2. Comparison of percentage of brain infarction area among five 
groups (n = 6). Data were represented as mean ± standard deviation. 
#P < 0.05 compared with sham-operated group; $P < 0.05 compared 
with model group; %P < 0.05 compared with low-dose HSYA group. 
HSYA, hydroxysafflor yellow A.
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group, respectively (P < 0.05). Compared with model group, 
the p-p38 MAPK and p-NF-κB p65 levels in low-dose HSYA, 
high-dose HSYA and nimodipine groups were significantly 
decreased, respectively (P < 0.05). In addition, the brain tissue 
p-NF-κB p65 level in nimodipine group was significantly lower 
than that in high-dose HSYA group (P < 0.05).

4 Discussion
In this study, HSYA was successfully extracted from safflower. 

The purity of HSYA product was 89.78%. This shows that the 
HSYA extraction technology in this study is feasible. CIRI is the 
secondary damage to brain tissue caused by cascade reaction 
due to blood flow reperfusion. It often leads to the neurological 
deficit, cerebral infarction and brain edema, and can cause the 
hemiplegia, aphasia and even death in severe cases (Wang et al., 
2017a). This study investigated the preventive effect of HSYA on 
CIRI in rats. Results showed that, compared with model group, 
in HSYA groups the neurological symptom score, brain water 
content and percentage of brain infarction area were obviously 
decreased. It is suggested that HSYA can alleviate the CIRI in 
rats, thus exerting certain neuroprotective effect.

Inflammatory response plays an important role in CIRI 
(Zhong et al., 2019). Many inflammatory cells and mediators are 
involved in the inflammatory response. Inhibition of inflammatory 
response and reduction of brain tissue damage is one of the 
important means for treatment of stroke (Duris et al., 2018). 

Interleukin is produced by a variety of cells and plays an important 
role in inflammatory response and humoral immunity. IL-6 can 
induce the leukocyte adhesion, and activate the complement, 
thus blocking the microcirculation and damaging the tissue cells 
(Lokau et al., 2017). IL-1β is an important medium to trigger 
the immune and inflammatory responses. Study has shown that 
IL-1β is in a biphasic release mode in the CIRI model, and its 
level is obviously increased in CIRI (Yang et al., 2016). In the 
present study, at 24 h after ischemia, compared with sham-
operated group, the serum IL-6 and IL-1β levels in other groups 
was obviously increased. This confirms that the inflammatory 
response is involved in CIRI. Compared with model group, the 
serum IL-6 and IL-1β levels HSYA groups were significantly 
decreased. This suggests that, HSYA can reduce the inflammatory 
response, thus alleviating the CIRI in rats.

NF-κB is an important transcription activator, and its regulatory 
genes can encode the cytokines, immune regulatory molecules, 
etc.. It participates in the inflammatory response (Li  et  al., 
2008). During cerebral ischemia, NF-κB is phosphorylated by 
inflammatory factors, cytokines, calcium overload and other 
factors. The p-NF-κB can induce the expression of cytokines, 
adhesion molecules, and inflammatory enzymes, forming a 
vicious circle of inflammatory response, which leads to brain 
tissue edema and nerve cell damage (Zhang et al., 2005; Ridder 
& Schwaninger, 2009). p38 MAPK, as a member of MAPK 
family, plays an important role in inflammatory response and 
its regulation (Ki et al., 2013). After stimulation, p38 MAPK 
is phosphorylated to form a specific substrate p-p38 MAPK. 
p-p38 MAPK is the upstream signal molecule of NF-κB. It can 
promote the phosphorylation of NF-κB to form p-NF-κB 
p65, thus regulating the transcription of inflammatory genes 
(Wang  et  al., 2017b). Results of our study showed that, the 
brain tissue p-p38 MAPK and p-NF-κB p65 protein expression 
levels in CIRI rats were obviously higher than sham-operated 
rats. This indicates that, the activation of p38 MAPK/NF-κB 
signal pathway is involved in the CIRI of rats. Compared with 
model group, the p-p38 MAPK and p-NF-κB p65 levels HSYA 
groups were significantly decreased. This indicates that, the 
HSYA can inhibit the p38 MAPK/NF-κB pathway to reduce 
the inflammatory response in CIRI rats.

5 Conclusion
In conclusion, HSYA product with 89.78% purity is 

successfully extracted from safflower. HSYA can inhibit the 
p38 MAPK/NF-κB pathway and reduce the inflammatory 
response, thus exerting the preventive effect on CIRI in rats. 
This study may provide a reference for further clarifying the 
action mechanism of HSYA in prevention of CIRI. This study 
still has some limitations. Firstly, the sample size of this study 
is relatively small. Secondly, other mechanisms related to the 
prevention of HSYA on CIRI have not been investigated. These 
issues should be solved in further studies.
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