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1 Introduction
The growth of the world population has increased anthropic 

activities with the purpose of providing means for survival. 
Industrial and agricultural areas grow in proportion to the 
number of inhabitants, in order to meet the needs generated. 
Food supply must be associated with food safety, which is a 
public health concern (Arisseto-Bragotto et al., 2017).

There is an increase in the consumption of vegetables that 
is related to the growing awareness of the nutritional value of 
plant foods, as they are an important source of carbohydrates, 
vitamins, minerals and fiber (Hadayat et al., 2018). However, 
studies have pointed out the risks of foods contaminated by 
trace-level toxic metals (Gupta et al., 2021; Kasozi, et al., 2021; 
Reboredo et al., 2019; Thompson & Darwish, 2019; González et al., 
2019), with several studies carried out in Asia (Ahmed et al., 
2019; Sawut et al., 2018; Hu et al., 2017; Hu et al., 2013), in North 
and South America (Araújo et al., 2019; Dala-Paula et al., 2018; 
Hadayat et al., 2018; Correia et al., 2018; França et al., 2017; 
Corguinha et al., 2015), in Africa (Edogbo et al., 2020; Hattab et al., 
2019; Ametepey et al., 2018) and in Europe (Defarge et al., 2018; 
Hurtado-Barroso et al., 2019).

It should be noted that the food chain is an important 
route for human exposure to toxic metals, as these have a great 
capacity for bioaccumulation in plants and a long half-life of 
10 to 35 years (World Health Organization, 2020; Gupta et al., 
2019; Correia et al., 2018; Paltseva et al., 2018).

Human exposure to cadmium (Cd), undesirable even in trace 
concentrations, occurs mainly through food consumption (World 
Health Organization, 2020). However, there are several sources of 
food contamination by Cd: deposition of particulate matter with 
a metal associated with it from pollution caused by industrial 
and vehicular emissions (Gupta et al., 2019; Kibblewhite, 2018; 
França et al., 2017); contaminated soil (Yang et al., 2018); irrigation 
with contaminated water (Ahmed et al., 2019; Islam et al., 2018); use 
of pesticides or chemical fertilizers during cultivation (Wang et al., 
2018; Reboredo et al., 2019; Parente et al., 2019), among others.

Cd is highly undesirable even in trace concentrations, as it 
causes adverse effects in the human body, such as disturbances 
in calcium metabolism, osteomalacia and osteoporosis, bone 
fractures, renal dysfunction, coronary heart disease and 
hypertension, endocrine dysfunction, cancer (lung, kidneys 
and prostate), mutagenicity and genotoxicity (World Health 
Organization, 2020; Duncan  et  al., 2018; El-Kady& Abdel-
Wahhab, 2018; Dala-Paula et al., 2018; Barregard et al., 2016).

Due to the public’s growing concern with nutritional safety and 
quality, the consumption of organic foods is increasing (Aitken et al., 
2020). In addition to reducing pesticides, these organic foods have 
higher amounts of polyphenols and, in general, lower amounts of 
trace-level toxic metals, such as Cd (Hurtado-Barroso et al., 2019).

In general, consumers believe that organic foods are safer and 
healthier than conventional ones (Gomiero, 2018). It is noteworthy 
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that truly comparative studies between conventional and organic 
foods are recent (Cámara-Martos et al., 2021; Araújo et al., 2019; 
González et al., 2019; Gomiero, 2018; Hadayat et al., 2018; Hurtado-
Barroso et al., 2019; Garcia & Teixeira, 2016; Bressy et al., 2013). 
Doubtful and questionable data have already been obtained in this 
comparison, thus, there is still controversy as to whether organic 
products are safer from the point of view of contamination by 
toxic metals at a trace level than conventionally grown products 
since, despite the organic label, it is very likely that environmental 
contamination occurs in both forms of cultivation (Siwulski et al., 
2021; González et al., 2019; Gomiero, 2018; Krejčová et al., 2016).

Hattab  et  al. (2019), through graphite furnace atomic 
absorption spectrometry (GFAAS), observed that concentrations 
of Cd in organic lettuce showed an increase of up to 7.6 times 
when compared to conventionally cultivated. Unexpectedly, in 
organic lettuce, the value found for Cd was 0.47 μg g-1, higher 
than the maximum limits allowed in the standard guidelines 
Food and Agriculture Organization (2016).

Krejčová et al. (2016) evaluated essential and toxic metals 
in conventionally and organically grown carrot samples. In this 
study, it was found that there was no difference between the 
two forms of cultivation, and no potential damage resulting 
from contamination was diagnosed. Li et al. (2015) determined 
the concentration of Cd in several vegetables, with the highest 
concentrations found in lettuce leaves. Gaweda  et  al. (2012) 
evaluated trace-level toxic metals, including Cd, in carrot samples 
produced in conventional and organic cropping systems. The 
authors found concentrations of about 15-20% lower in organic 
cultivation compared to those produced conventionally.

Thus, establishing acceptable limits for metals in food is an 
important tool for ensuring the food safety of a population, regulating 
food production and ensuring public health (Liu et al., 2018). 
Several indices can be used to assess the intake and harmful effects 
of chronic exposure to toxic metals at the trace level, including the 
Provisional Tolerable Monthly Intake (PTMI), which represents the 
amount of the substance present in the food that can be ingested daily 
throughout life without adverse health effects. The PTMI for Cd is 
25 μg kg-1 body weight/month (World Heatlh Organization, 2021).

In this work, lettuce (Lactuca sativa L.) and carrot (Daucus 
carota L.) were studied, which, according to the last report of the 
Program for the Analysis of Pesticide Residues in Food (PARA), 
carried out in Brazil, presented pesticide residues not allowed 
for their culture, thus bringing risks to consumers (Brasil, 2020).

Given the above, the occurrence of toxic trace metals in 
foods, regardless of their organic or conventional origin, needs 
to be monitored. Therefore, the aim of this study was to compare 
Cd concentrations in lettuce and carrot samples grown using 
conventional and organic techniques, with certification seal, sold 
in retail markets in the North Zone of Rio de Janeiro - RJ, and 
assess the health risk of Cd intake through food consumption.

2 Materials and methods
2.1 Materials and reagents

All plastic material and glassware used were decontaminated 
for 24 hours in a 5% Extran solution (CAS No: 1310-73-2) (v v-1) 

and 48 hours in a 10% nitric acid solution (v v-1). Subsequently, 
they were rinsed three times with deionized water and dried at 
40 °C, as described in the 3050B method (Hadayat et al., 2018; 
United States Environmental Protection Agency, 1996).

The reagents used in preparing the solutions and in the chemical 
analysis of the process are analytical grade (PA) or suprapur. The 
provenances of the reagents used were Extran Merck (Elmsford, 
NY USA), nitric acid (CAS No: 7697-37-2; Merck 65% PA) and 
30% hydrogen peroxide (CAS No: 7722-84-1; Merck).

The standard solution was prepared each day of analysis by 
appropriate dilutions of the Multi-element standard solution 
(Merck) was used with appropriate dilution to prepare the 
calibration curve.

2.2 Collection and preparation of vegetable samples

Three samples of lettuce and carrots cultivated by conventional 
methods and three samples organically cultivated certified with 
the organic label of the Brazilian System of Organic Conformity 
Assessment - SisOrg (Brasil, 2014) were acquired in markets in 
the North Zone of the Metropolitan Region of Rio de Janeiro, 
Brazil, from December 2019 to March 2020, totaling 12 samples, 
which were analyzed in triplicate.

The samples were ground and homogenized using a Mixer 
(Philips, Brasil) with a stainless steel blade. After that, the 
samples were placed in a previously decontaminated watch glass 
and submitted to an oven at 65 ºC / 72 h (Hadayat et al., 2018).

2.3 Sample digestion and analysis

The extraction procedure was based on the 3050B method 
with modifications. 0.5 g of dry sample was weighed in falcon 
tubes, in triplicate, using an analytical balance (Ohaus, Brazil). 
After adding 5 mL of 1:1 nitric acid (HNO3), the tubes were placed 
in an ultra thermostatic water bath (Fanen, Brazil) at 100 ºC / 5 h. 
After cooling to room temperature, 1 mL of hydrogen peroxide 
(H2O2) was added. After 24 hours, the samples were filtered on C41 
quantitative filter paper and bulked up in 20 mL falcon tubes with 
deionized water. Then, the samples were centrifuged at 3,000 rpm 
for 10 minutes to check for the presence of supernatants. In all 
extraction procedures, a blank was performed.

2.4 Determination of Cd using GFAAS

After digestion of the lettuce and carrot samples, the extracts 
were analyzed to determine the cadmium concentration in a 
Graphite Furnace Atomic Absorption Spectrometer (GFAAS; 
AA Perkin Elmer PINAAcle 900T). The Software used to process 
the data was WinLab32.

In programming the equipment, the operating parameters 
were: wavelength (228.8 nm), slit (0.7 nm), detection level 
(0.002 mg L-1), sensitivity (0.025 mg L-1) and linear range (up 
to 2.0 mg L-1).

The instrumental parameters used are shown in Table 1. 
The injection temperature was 20 0C and the diluent used in the 
samples was 0.2% HNO3. The volume of modifier (palladium 
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FFQ initially asked “How many times have you consumed this 
food item in the last 3 (three) months?”, with the options ≥ 2 
times/day; 1 time/day; 2-4 times/week; 1 time/week, 2-3 times/
month; 1 time/month or never. Regarding the quantity, the 
questionnaire asked “When you consume the vegetable, how 
much?”. Possible answer choices were 2, 3, or 5 tbsp (tablespoons/
time). According to the table for evaluating food consumption 
in household measures, each tablespoon represents, when used 
for lettuce, 8 g each, and for carrots, 12 g (Pinheiro et al., 2005).

The responses obtained were statistically analyzed (Microsoft 
Office - Excel version 15.0.4569/2013 integrated with Action 
Stat Pro 3.4.124.1308-3).

2.6 Health risk assessment of vegetable consumption

Chronic exposure to Cd from the consumption of contaminated 
food can be a relevant risk to human health in many regions 
(Åkesson et al., 2014). According to the WHO Codex Alimentarius 
(Food and Agriculture Organization, 2016), the daily exposure 
to metals can be assessed using the metal concentration values in 
the vegetable, the daily vegetable consumption and the average 
body weight of the population.

To estimate health risk from exposure to metals, several studies 
have used the concepts of daily dietary intake of metals (DDI) or 
estimated daily intake (EDI), Hazard Index (HI), Target hazard 
quotients (THQ), and Target Cancer Risk (TCR) (Gebeyehu & 
Bayissa, 2020; Gupta et al., 2019; Guo et al., 2019; Liang et al., 
2019; Alam et al., 2018; Varol et al., 2017; Antoine et al., 2017).

Exposure to trace-level toxic metals through vegetable 
consumption can be estimated using the EDI, presented in 
Equation 3 (Gebeyehu & Bayissa, 2020; Guo  et  al., 2019; 
Sultana et al., 2017).

        
0.001

 x 
f D IR M F

W A

E E F C C
EDI

B T
× × × ×

= × 	 (3)

Where Ef is the frequency of exposure (days in the year), ED is 
the exposure time (average age of the population studied, in 
years), FIR is the average consumption of the vegetable per day 
(g person-1 day-1), CM is the metal concentration (mg kg-1), CF 
is the conversion factor from concentration to weight of fresh 
vegetables to dry weight (0.085), BW is the average adult weight 
in the studied population and TA is the average exposure time 
for non-carcinogens (365 days/year x ED). The value 0.001 
represents a unit conversion factor.

nitrate and magnesium nitrate) injected was 20 µL and the 
sample volume injected was 10 µL.

The analytical curve (0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 µg L-1) was 
prepared on each day of analysis using Multi-element standard 
solution (Merck) and used for sample quantification. Linearity 
was obtained by linear regression using the least squares method, 
where R2 > 0.99. The limit of detection (LOD) and the limit of 
quantification (LOQ) were estimated using values obtained by 
extrapolating three calibration curves at five concentration levels 
in triplicate. The values were determined according to Equations 
1 and 2 (Brasil, 2003a):

3,3    XLOD
SV

σ
= 	 (1)

10    XLOQ
SV

σ
= 	 (2)

Where, σ = standard deviation of the three values of the area 
where each line intersects the y axis, SV = mean of the three 
slope values of the calibration curve (SV = slope variation).

The LOD and LOQ were 0.004 and 0.012 mg kg-1 for cadmium. 
The limits of detection (LOD) and quantification (LOQ) of 
each analyte were calculated as the analyte concentration that 
corresponded to three and ten times, respectively, the triplicate 
standard deviation of the intercept of the calibration curve with 
the y axis, divided by the mean of the triplicates of the slope of 
the calibration curve.

2.5 Lettuce and carrot consumption by the studied population

In order to obtain the consumption of the studied vegetables, 
in the usual way over a period, the Food Frequency Questionnaire 
(FFQ) was used, a method commonly used to verify the association 
of diet and disease (Pedraza & Menezes, 2015). The FFQ allows 
the assessment of food consumption in the usual way over a 
period, being a retrospective method, which ensures that its 
application will not influence the results (Araujo et al., 2010).

The FFQ, created on Google Forms, a survey management 
application, was randomly sent to adult consumer groups and 
residents of the metropolitan region of Rio de Janeiro, through 
Whatsapp.

In the present study, 300 people answered the questionnaire 
sent electronically, where they were asked about lettuce and 
carrot consumption and food frequency. The semi-quantitative 

Table 1. Temperature program for cadmium determination in lettuce and carrot samples.

Stage Temperature (0C)
Time (s) Gas flow (mL min-1) (Argon)

Note
Ramp Hold (0-300)

1 110 1 30 250
2 130 15 30 250
3 500 10 20 250
4 850 10 20 250
5 1600 0 5 0 Absorbance Reading - 

Atomization
6 2400 1 3 250 Cleaning
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lettuce samples and the conventional lettuce samples presented 
values ​​below the established limits. However, two samples of 
conventional lettuce had concentrations of 1.2 (0.2378 mg kg-1) 
and 1.3 (0.2542 mg kg-1) times higher than the established 
limit. This fact may be associated with some increase in lettuce 
exposure to possible sources of Cd.

Hadayat et al. (2018), evaluated concentrations of several 
metals, including Cd, in a total of 120 samples of potato, lettuce, 
tomato, carrot and onion, conventionally and organically cultivated 
in California, USA. The mean concentrations of Cd found were 
9.17 µg kg-1 and 15.3 µg kg-1 in organic and conventional foods, 
respectively. However, all values ​​were below the concentrations 
allowed by Food and Agriculture Organization (2016). This 
represents a 1.7 times greater contamination by Cd in conventional 
foods when compared to organic ones, which corroborates the 
results of the present study.

In this study, the concentrations of Cd in carrots cultivated 
conventionally showed a concentration of Cd approximately 
10% higher when compared to the concentrations of samples of 
organic carrots. Comparing the mean concentrations obtained 
with the acceptable limits by RDC nº 42 (Brasil, 2013), both 
the organic carrot samples and the conventional carrot samples 
showed values ​​below the established limits. However, observing 
the individual samples, three samples of conventionally cultivated 
carrots presented concentrations from 1.4 to 3.1 times higher 
(0.1428, 0.1730 and 0.3135 mg kg-1) than the established limit.

The difference in Cd concentration found between carrot 
cultures agrees with the study carried out by Gawęda et al. (2012), 
who, when evaluating Cd concentrations between organically 
and conventionally produced carrots, found that organic carrots 
contained up to 28% less Cd than conventionally grown carrots.

In the present study, it was observed that lettuce, a leafy 
vegetable, had a higher concentration of Cd than carrots, which 
were tubercles. In the study by Douay et al. (2013), lettuce showed 
a greater tendency to accumulate Cd (8.6 times), when compared 
to potatoes, for example, which is also a tuber.

Hu et al. (2017) and Sultana et al. (2017) concluded that 
leafy vegetables accumulate higher concentrations of metals, 
probably due to the high rate of transpiration performed by the 
plant, in order to maintain the growth and moisture content of 
these plants, thus offering a greater risk to health when compared 
to tubers and fruits.

3.2 Quantitative result of lettuce and carrot consumption

In total, 231 individuals answered all FFQ questions. Based on 
the answers, it was possible to calculate the average consumption 
of those vegetables from that respondent population and the 
amount consumed. When asked about the amount of lettuce 
and carrot consumption, most of the respondent population 
(37% and 60%, respectively) consume 16 g of lettuce at a time 
and 24 g of carrots at a time.

3.3 Estimated Daily Intake and Target hazard quotients

Both EDI and THQ were used in our study, following the 
models used by Gebeyehu & Bayissa (2020). FFQ data indicated 

The THQ assesses the non-carcinogenic risk of vegetable 
consumption through the EDI values (mg.day-1 kg-1 of body 
weight) and the RfD (mg kg-1 day-1), which is the oral reference 
dose. The RfD is characterized by the maximum amount accepted 
for consumption of metals per kg of body weight (Bw), within 
the safety values. According to the Integrated Risk Information 
System (International Toxicity Estimates for Risk Assessment, 
2013), the RfD value for Cd is 0.01 mg kg-1 day-1.

In the non-carcinogenic risk assessment of vegetable 
consumption, a THQ result < 1 indicates that non-carcinogenic 
health effects are not important. However, at THQ values > 1, 
there is a possibility that adverse health effects may occur in 
the long term (Gebeyehu & Bayissa, 2020; Gupta et al., 2019; 
Guo et al., 2019; Liang et al., 2019; Alam et al., 2018; Varol et al., 
2017; Antoine et al., 2017).

In order to assess the potential non-carcinogenic risk through 
the consumption of vegetables possibly contaminated by Cd, 
the THQ was calculated, according to Equation 4 (Gebeyehu 
& Bayissa, 2020):

EDITHQ
RfD

= 	 (4)

2.7 Statistical Analysis

To prepare the linear regression curve in the working range, 
with the mean, standard deviation and variance, Excel 2013 for 
Windows was used to evaluate the variance values. Statistical 
analysis was performed using Student’s t test at a significance 
level of 5% to reveal significant differences between conventional 
and organic farming cultivation.

3 Results and discussion

3.1 Cd contents in organic and conventional vegetables

According to Brazilian legislation (Brasil, 2013), leafy 
vegetables such as lettuce and tubers such as carrots should contain 
Cd concentrations lower than 0.20 mg kg-1 and 0.10 mg kg-1, 
respectively. Table  2 shows the mean concentrations of Cd, 
amplitude and standard deviation in mg kg-1 found in the 
studied vegetables.

When comparing the mean concentrations obtained with the 
acceptable limits by RDC nº 42 (Brasil, 2013), both the organic 

Table 2. Mean concentration of Cd, amplitude and standard deviation 
in mg kg-1 in samples of organic and conventional vegetables.

Conventional vegetables
Mean  

(mg kg-1)
Standard deviation 

(mg kg-1)
Amplitude
(mg kg-1)

Lettuce 0.1549 0.0266 0.0707 - 0.2542
Carrot 0.1174 0.0780 < LQ - 0.3135
Organic vegetables

Mean
(mg kg-1)

Standard deviation 
(mg kg-1)

Amplitude
(mg kg-1)

Lettuce 0.0811 0.0367 0.0208 - 0.1576
Carrot 0.1064 0.0553 0.0296 - 0.2236
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more expressive concentration of cadmium, despite the average 
concentration being lower than that established by Brazilian 
legislation.

THQ values were less than 1, which suggests an acceptable level 
of risk where non-carcinogenic health effects are not important.

It is noteworthy that the present study evaluated a metal, 
Cd, through the consumption of only two vegetables, lettuce and 
carrot, which may underestimate the risks of consuming food 
contaminated by metals, since the population may be exposed 
through from several other sources at the same time, as discussed 
in the present study, thus covering a potential health risk for the 
exposed population. It should also be taken into account that 
chemical contaminants can act synergistically, which would 
increase health risks.

Based on this study, further evaluation is recommended 
to study the concentrations of other toxic metals at the trace 
level, in order to establish and adopt measures to reduce their 
concentrations in vegetables and, ultimately, prevent avoidable 
health problems.

Thus, given the above, it is expected that agricultural policies 
pay more attention to organic, agroecological and low-input 
agriculture, and for this, it is necessary to invest in research 
and innovation, since, in general, it can be said that organic 
agriculture can provide important benefits for human health 
and the environment.
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