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1 Introduction
Despite the significant advances in treatments (Fornasini et al., 

2010), heart diseases remain a major threat to human’s life, 
such as acute myocardial infarction (AMI) (Roger  et  al., 
2011; Thygesen et al., 2007). In AMI, almost half of all cases 
appear ventricular dysfunction (Esposito et al., 2010), usually 
complicated with acute heart failure (AHF). AHF imposes a 
burden to the medical care industry and society due to its high 
morbidity, high mortality, high readmission rate (Chen et al., 
2013; Hunt et al., 2009; Najafi et al., 2008). Therefore, even after 
overcoming the challenge by AMI, AHF is still a difficult task. 
Reducing cardiac contractility effectively functions in systolic 
AHF, leaving positive muscle strength an important part of 
treatment (Partovian  et  al., 2012). Milrinone, could be used 
to alleviate of adenosine monophosphate-camp degradation, 
which accumulates calcium ion and improves myocardial 
contractility (Alousi & Johnson, 1986; Shipley & Hess, 1995) 
possibly by increasing the concentration of cAMP (Silver et al., 
1989), which in turn causes cell relaxation and vasodilation. 
Milrinone has been widely applied to cases of severe AHF and 
acute exacerbation of chronic heart failure (HF) to facilitate 
circulation (Jessup et al., 2009). However, it is not appropriate 
for AHF following AMI because of concerns that it may cause 
arrhythmias (DiBianco  et  al., 1989). Some previous studies 
have assessed the effectiveness and safety of milrinone in AHF 

patients after AMI, but still no trial with large sample size could 
support a clear conclusion.

Mesenchymal stem cells (MSCs) have been used for tissue 
regeneration. This kind of cells has low immunogenicity and is not 
prone to rejection. MSCs could differentiate into cardiomyocytes in 
vitro and have unique immunomodulatory effects. The therapeutic 
potential of MSCs for HF has been frequently reported and the 
effectiveness has been confirmed (Jessup et al., 2009). Therefore, 
this study intended to examine their potential to alleviate heart 
damage. Compared with other stem cells like embryonic stem 
cells, MSCs own potentials of self-renewal, proliferation, and 
differentiation (Caplan, 2009; Caplan & Correa, 2011). They also 
have low immunogenicity and rarely express MHC II and T cell 
stimulating molecules (Jiang et al., 2008), indicating that they 
are immunologically inert. Easy collection, and less sensitivity to 
genetic mutations and proliferative capacity leaves MSCs available 
for cell therapy. Animal experiments have demonstrated that 
MSC transplantation would enhance neovascularization, increase 
cell survial and restore heart functions in AMI (Amado et al., 
2005; Nagaya et al., 2005; Schuleri et al., 2009; Silva et al., 2005; 
Toma et al., 2002; Valina et al., 2007). Additionally, MSCs can 
repair DNA damage (Sugrue et al., 2013). In a recent study using 
two cloned mouse MSC lines MS5 and ST2, MSCs essentially 
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express DDR proteins, such as ATM to enhance healing of 
strand breaks and improve survival after heavy ion irradiation 
(Yu et al., 2018). MSCs effectively improve DNA DSB through 
activation of signaling pathways.

Bone mesenchymal stem cells (BMSCs) have attracted much 
attentions from researchers because of their great differential 
potentials and rare immune and rejection reactions (Gnecchi et al., 
2012; Hatzistergos et al., 2010; Wei et al., 2012). In recent years, 
animal experiments have confirmed that BMSC transplantation 
obtained improved heart function (Li et al., 2012; Tokunaga et al., 
2010; Vassalli & Moccetti, 2011; Wen et al., 2011). However, the 
efficacy of BMSC transplantation in previous clinical studies is 
not satisfactory. BMSCs used for transplantation are not purely 
cultured; therefore, less transplanted cells survive to differentiate 
(Hilfiker et al., 2011; Menasche, 2011). Therefore, many studies 
on the treatment of heart disease are trying to improve cell 
survial and affect differentiation into cardiomyocytes. In this 
study, we established a rat HF model and administered milrinone 
and BMSCs to the animals, and then examined the effect of 
combined treatment on heart function. Assays were carried 
out to assess cell survial and examine the level of myocardial 
proteins, providing new ideas for the treatment of HF.

2 Materials and methods

2.1 Animals

Forty male (6-7 weeks old, 200-220 g) were purchased to 
establish a model of HF as previous description (13). Briefly, 
the animals received intraperitoneal injection of adriamycin 
2.5 mg/kg 3 times in one week. After an interval of two weeks, 
doxorubicin was given for another week with total dosage of 
15 mg/kg. This study followed the Guide for the Care and Use of 
Laboratory Animals from the National Institutes of Health and 
obtained approval by the IACUC of the First Affiliated Hospital.

2.2 Cell culture

The rat femur and tibia were dissected, and the epiphyseal 
plates were exposed. Following rinsing the bone marrow with 
PBS, the marrow was blown into the cell suspension and 
centrifuged at 1500 rpm. The pellet was incubated in DMEM 
and prepared into the cell suspension, and placed it in a culture 
flask. When the confluency reached > 80%, the cells were 
digested and passaged, as the cell morphology was detected by 
a phase-contrast microscope, and cells were labeled. The cells 
were seeded in a 25 mm petri dish. When the confluence reached 
60%, bromodeoxyuridine was added to the cells (10 mol/L). After 
48 h of incubation, the mixture was subjected to centrifugation 
and the cells were kept in ice.

2.3 Grouping

With some healthy rats untreated (normal group) and HF 
rats treated with normal saline (HF group), other rats were 
administered with BMSCs through tail vein injection (BMSCs 
group) and/or 15 g/kg/day of milrinone (milrinone group and 
BMSCs + milrinone group) through the jugular vein injection 
(n = 8) for 4 weeks. .

2.4 Echocardiogram

An 11.4 MHz high-frequency ultrasound examination was 
performed along the chest wall with an l0S probe, with depth 
of 2.0 cm and total dose of intraperitoneal injection 800 mg/kg 
(20%). Two-dimensional ultrasound and m-mode ultrasound 
were used to detect LVSD, LVDD, LVSV, and LVDV. Each 
parameter was measured three times under a continuous full 
heartbeat cycle and the average value was calculated. Simpson 
method measured LVEF and LVFS.

2.5 Detection of heart function

Under anesthesia, the catheter was inserted into the left 
ventricle after separation of the right common carotid artery. 
A Doppler recorder examined the LVSP, LVDP, heart rate and 
left ventricular pressure (dp/dtmax).

2.6 Detection of serum BNP

Blood sample was collected from the tail vein of fasting rats 
in the morning before and after 4 weeks of treatment. The sample 
was centrifuged and the serum was collected. The serum BNP 
level was detected by ELISA (Boster Company, Wuhan, China).

2.7 Western blot

Proteins extracted from tissues were subjected to Western 
blot analysis with primary antibodies against cTnI (1:3000), 
Cx43 (1:300) and GATA-4 (1:200) (Wuhan Bobst Company).

2.8 Statistical analysis

Data were analyzed by SPSS 16.0 software. The measurement 
data were analyzed by paired-sample Student’s t test and Spearman 
rank test assessed the correlation between the data. p < 0.05 
indicates significant difference.

3 Results

3.1 Animal model

Of all rats, only 34 ones survived for further experiments 
and 4 rats died suddenly of unknown reasons, and the other 
2 died of massive ascites. The echocardiography revealed 
insignificant difference on LVDD and LVSD before and after 
modeling (p ≥ 0.05) as well as LVEF and LVFS with significant 
difference. According to the standard of HF model, LVEF and 
LVFS shall decrease by 20-30%. The ventricles of the 5 rats did 
not show significant dilation, and their LVEF value did not 
decrease significantly, so these animals were excluded. 29 rats 
meeting the criteria survived.

3.2 Comparison of cardiac function

The echocardiogram of the heart failure group confirmed 
the impaired left ventricular function with increased LVSD 
and LVDD, and decreased LVFS and LVEF. Treatment with 
either BMSCs, milrinone or the combination of them resulted 
in significant differences in LVSD, LVDD, LVEF, LVFS and 
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HF (p < 0.05), improving the ventricular function. Among the 
three groups, the BMSCs + Milrinone group most significantly 
improved the contractile function (p < 0.05). However, the 
difference between the BMSCs group and the milrinone group 
did not reach significance (p ≥ 0.05; Table 1).

3.3 Hemodynamic index

After 4 weeks of treatment, hemodynamic indicators varied 
among the groups (p < 0.05). The BMSCs, milrinone and BMSCs 
+ milrinone groups all had increased LVSP and dp/dtmax, and 
decreased LVDP value (P&lt;0.01), indicating improvements 
in the heart function, but there is no significant improvement 
compared with the normal group (p ≥ 0.05). Of all groups, the 
dp/dtmax of the BMSCs with milrinone group was the highest, 
as the difference between the BMSCss group and the milrinone 
group was not significant (p ≥ 0.05; Table 2)

3.4 Changes in serum BNP levels

The BNP level of each group decreased, and it restored 
significantly after treatments. Before treatment, the BNP levels 
of the BMSCs group, the milrinone group, and the BMSCs + 
milrinone group did not vary significantly (p > 0.05). After the 

intervention, the level of BNP increased (p < 0.05) with lowest level 
indicated in the BMSCs + milrinone group (p < 0.05) (Table 3).

3.5 Specific proteins

After 4 weeks, we checked up the level of proteins. Treatment 
with BMSCs and/or milrinone restored the expressions of GATA-4, 
cTnI, and Cx43 (p < 0.05), especially BMSCss + milrinone group 
having the highest expressions (p < 0.05). The expression level 
of GATA-4 in the BMSCs group increased more significantly 
(p < 0.05; Figure 1).

3.6 Discussion

Heart function changes following cardiac diseases are 
essentially caused by degeneration and necrosis of myocardial 
cells. Conventional treatments for heart failure can only 
alleviate the symptoms instead of preventing the progression. 
Considering the insufficient donors and transplant rejection, 
heart transplantation is not available enough. Myocardial 
tissue to replace the damaged tissues has a broader application 
prospect. Therefore, repair and replacement of cardiomyocytes 
and stem cells is expected as a promising option (Arnous et al., 
2012; Hoover-Plow & Gong, 2012; Oh et al., 2012).

Table 1. Echocardiographic analysis of heart function in rats with heart failure 4 weeks after injection (mean ± sd).

Group n LVDD (mm) LVSD (mm) LVEF (%) LVFS (%)
Normal group 6 4.21 ± 0.09 1.03 ± 0.21 74.21 ± 1.49 44.21 ± 1.78
HF group 6 6.75 ± 0.42a 4.25 ± 0.12a 47.75 ± 2.42a 20.15 ± 1.04a

BMSC group 8 5.56 ± 0.71b 2.26 ± 0.91b, c 55.56 ± 2.73b, c 25.26 ± 1.91b, c

BMSC + Milrinone group 8 5.32 ± 0.65b, c 2.32 ± 0.06b, c 65.32 ± 4.35b-d 29.12 ± 1.05b-d

Milrinone Group 7 6.23 ± 0.61 3.33 ± 0.41 56.65 ± 3.61b 24.23 ± 1.61
LVDD = left ventricular end-diastolic diameter; LVSD = left ventricular end-systolic diameter; LVEF = left ventricular ejection fraction; LVFS = left ventricular shortening rate; 
a = p < 0.05 vs. normal group; b = p < 0.05 vs. HF group; c = p < 0.05 vs. milrinone group; d = p < 0.05 vs. BMSC group.

Table 2. Hemodynamic index of rats with HF 4 (mean ± sd).

Group n LVSP (kPa) LVDP (kPa) +dp/dtmax (kPa/sec) -dp/dtmax (kPa/sec)
Normal group 6 21.24 ± 1.09 21.24 ± 1.09 974.21 ± 71.39 974.21 ± 71.39
HF group 6 14.35 ± 2.62 14.35 ± 2.62 14.35 ± 2.62 14.35 ± 2.62
BMSCs group 8 16.56 ± 2.73a 16.56 ± 2.73a 16.56 ± 2.73a 16.56 ± 2.73a

BMSCs + Milrinone group 8 18.02 ± 3.85ab 18.02 ± 3.85ab 18.02 ± 3.85ab 18.02 ± 3.85ab

Milrinone Group 7 16.03 ± 3.31a 16.03 ± 3.31a 16.03 ± 3.31a 16.03 ± 3.31a

LVSP = left ventricular systolic pressure; LVDP = left ventricular diastolic pressure; dp/dtmax = the maximum change in left ventricular pressure; a = p < 0.05 vs. normal group or HF 
group; b = p < 0.05 vs. milrinone group or BMSC group.

Table 3. Serum BNP levels (ng/L, mean ± sd) 4 weeks after injection.

Group n Pre-injection Pre-injection
Normal group 6 75.04 ± 7.28 75.04 ± 7.28
HF group 6 554.15 ± 32.60 554.15 ± 32.60
BMSC group 8 566.86 ± 19.53 566.86 ± 19.53a, b

BMSC + Milrinone group 8 571.62 ± 13.67 571.62 ± 13.67a-c

Milrinone Group 7 402.71 ± 15.76a, b 402.71 ± 15.76a, b

a = p < 0.05 vs. normal group or HF group; b = p < 0.05 vs. pre-injection group; c = p < 0.05 vs. Milrinone group or BMSC group.
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Though Milrinone does not damage heart, it might accumulate 
cGMP relaxing smooth muscle cells and decreasing pressures 
on vessels and heart, thereby improving cardiac function. 
Additionally, milrinone hinders the reabsorption of sodium 
relieving load through enhancement of filtration (Bocchi et al., 
2013; Iglesias et al., 2006; Mills et al., 1999). Milrinone impacts 
the blood pressure, volume, and electrolyte balance, restoring 
cardiac function. With no positive inotropic effect, milrinone 
hardly imposes oxygen consumption.

Dobutamine mainly improves cardiac contractility and 
mitigates resistance through agonistic effect with significantly 
cardioprotective effect. Nevertheless, in the case of increased 
cardiac contractility, administration of high-dose dobutamine 
might accelerate the ventricular rate and blood pressure will 
increase, which might affect the condition of AMI.

4 Conclusion
Rats with a 20-30% reduction in LVEF were selected 

as experimental models. In this study, our results indicated 
that BMSCs transplantation could restore heart function, 
but the degree was limited. BMSCs exerted similar effect 
on the heart function as milrinone with no significant 
difference. Compared with simple cell transplantation, 

BMSCs transplantation incorporated with milrinone more 
significantly improved HF.

A controversial issue on cell transplantation is the possibility 
of transplanted cells to be induced into cardiomyocytes. 
BMSCs transplantation is confirmed to exert protective effect 
on heart. But this approach hardly cures the condition and its 
long-term efficacy remains elusive. Few evidences indicated the 
potential of BMSCs to differentiate into cardiomyocytes, but it 
has been acceptable that cell transplantation can angiogenesis 
and resist myocardial apoptosis through paracrine instead of 
differentiation. In this study, BMSCs transplantation induced 
increased expression of GATA-4 in myocardial tissue which 
correlates to cardiomyocyte differentiation. The lower level of 
GATA-4 expression in HF model rats treated with milrinone 
may be due to the presence of cell division. In the presence of 
BMSCs and milrinone, the expression of GATA-4 as well as Cx43 
and cTnI increased. Whether the above changes result from 
enhancing the differentiation of BMSCs into cardiomyocytes, or 
enhancing BMSC survival and whether the efficacy of combined 
treatment is the sum of the two approaches or the synergistic 
effect deserves further analysis.
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Figure 1. Western blot detection of rat GATA-4, Cx43 and cTnI protein expression. (A) GATA-4 protein; (B) Cx43 protein; (C) cTNI protein; 
(D) β-actin. Group 1: HF group; group 2: milrinone group; group 3: BMSC group; group 4: BMSC + milrinone group.
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