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1 Introduction
Seed vigor is an important indicator that affects seed growth, 

which can determine the activity of seed embryos during the 
emergence of seedlings and the sum of all characteristics (Fan et al., 
2020). The detection of seed vigor can reflect the performance of 
the potential quality of seeds during planting or storage conditions, 
and is a key factor affecting the growth and development of seeds. 
With the extension of storage time, seed vigor decreases with 
changes in lipid peroxidation (Kandpal et al., 2016). High vigor 
seeds are easier to germinate and produce robust seedlings under 
favorable conditions, so the non-destructive testing of seed vigor 
is of great significance for optimizing seed varieties and reducing 
planting costs (Pang et al., 2021). Peanuts are one of the most 
important economic crops in the world. In the world, China 
accounts for 40% of peanuts. At the same time, peanuts have 
important economic and nutritional value. They can be used to 
produce peanut butter, peanut oil, desserts or eat directly. After 
soaking peanuts, the protein, fat and carbohydrate content will 
change, and the content of the substances will also change after 
aging (Yulianti et al., 2022). Peanuts are of great significance as 
raw materials for oil (Zhang et al., 2022) and lactobacillus (Shori 
& Al Zahrani, 2022). In the past 20 years, Chinese peanut export 
volume has been among the top in the world, accounting for more 
than 25% of the international market share, and has a certain 
competitive advantage in the international market (Sun et al., 
2020). Peanuts have high nutritional value and commercial 
value. Scientific research shows that peanuts have anti-cancer, 
anti-oxidation, anti-inflammatory and other biological properties 
(Menis Candela et al., 2020). Goudoum et al. (2016) have found 
that the content of protein, fat, starch and free carbohydrates 
in peanuts will decrease during storage. As the main species of 

legume, peanut is an important source of vegetable oil protein, 
minerals and vitamins, and occupies an important agricultural 
economic position in world agriculture (Chen et al., 2020a). In 
the past 10 years, the world peanut trade has increased from 
1.705 billion US dollars to 2 billion US dollars, an increase of 
17.3% (Jain et al., 2021). The annual international trade volume 
of peanuts is 1.5*106t. China, the United States, Argentina and 
India have always been the four largest peanut exporters in the 
world (Sadighara & Ghanati, 2021). Therefore, the prediction 
of peanut seed vigor is of great significance to the impact of 
peanut yield and quality.

Hyperspectral imaging is a fast non-destructive testing 
technology that combines machine vision and spectroscopy. 
This technology has been widely used in the field of agricultural 
production and processing, and the morphology, internal structure 
and chemical composition characteristics of the tested raw 
materials can be obtained (Dana & Ivo, 2008). Zhou et al. (2020) 
proposed to use hyperspectral imaging technology to predict 
the germination of sugar beet seeds, and the final classification 
prediction accuracy rate reached 89%. Zou et al. (2019) classified 
peanut maturity through hyperspectral images, using visual 
classification and digital imaging methods to identify mature 
pods and immature pods, the highest classification accuracy rate 
reached 97.18%. Antoine Laborde et al. (2021) used hyperspectral 
imaging and multivariate curve resolution analysis to detect 
peanut powder adulteration in chocolate powder. They used 
different mixing ratios of the two powders to prepare samples, 
and conducted a preliminary principal component analysis (PCA) 
to study the data structure, and used the detection Algorithm for 
classification. Liu et al. (2020) used convolutional neural networks 
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and hyperspectral images to identify moldy peanut kernels, and 
the supernet-pseudo-random model finally constructed had 
the highest average accuracy, reaching 92.07%. Wang & Cheng 
(2018) used hyperspectral nondestructive testing technology 
to study the characteristics of peanut internal protein content. 
After the establishment of the PLSR model, 8 characteristic bands 
were extracted, and finally the protein prediction showed good 
performance. He et al. (2021b) used visible light and near-infrared 
hyperspectroscopy combined with spectral and texture features to 
classify aflatoxin B1 naturally contaminated peanuts, using RBF 
kernel support vector machine with the highest accuracy, and 
the accuracy of the calibration set and verification set reached 93 
respectively. % And 94% (He et al., 2021b). Wang et al. (2021a) 
used hyperspectral image technology combined with physical 
and chemical index attributes to study the sugar content and 
pH value of green vegetables, with high modeling accuracy. 
Chen et al. (2020b) used leaf hyperspectral and drone data to 
detect early peanut bacterial wilt. Research can determine the 
severity of peanut disease in time, and effective measures can be 
taken in advance to control. Hyperspectral imaging technology 
can also study peanut leaf spot disease, analyze the correlation 
between the spectral index and the disease index, and establish 
a model for detection (Chen et al., 2019). Zhang et al. (2020b) 
used hyperspectral non-destructive analysis of the germination 
rate, germination potential and simple vitality index of wheat 
seeds during storage, and established a more comprehensive 
wheat seed vitality classification system. Wang et al. (2021b) 
established a multi-classification model of corn seeds to study their 
maturity through near-infrared spectroscopy, and established a 
PLS-DA model. Finally, the classification accuracy of this model 
reached 98.7% and 100% respectively. Zhang  et  al. (2020a) 
established a deep forest model to identify rice freeze-damaged 
seeds, and adopted three spectral preprocessing methods, three 
characteristic band extraction methods, and three algorithm 
models, and the overall classification effect reached 99.33%. 
Li et al. (2016) analyzed the characteristic test methods of pears 
based on near-infrared spectroscopy technology, and used 4 types 
of algorithms to perform spectral analysis on pear samples to 
detect the SSC, hardness and variety of pears. Tan et al. (2018) 
used hyperspectral imaging technology to build the SNV-SPA-
GS-SVM model to accurately identify the degree of bruising of 
apples. The final result showed that the prediction accuracy of 
the four degrees of bruising of apples was 95%. In the future, 
peanut detection technology will be more diverse, and peanut 
by-products will be used in the chemical industry (Kou et al., 
2022; Zhao et al., 2021a, b).

In this study, peanut seeds were used as experimental 
materials, and the spectral information of three different vigor 
single peanut seeds was collected by hyperspectral imaging 
technology, combined with multiple pretreatment methods 
to establish five classification models of xgboost, catboost, 
randomforest, SVC, and gbdt, using logic Regression feature 
selection, LightGBM, tree model for feature band extraction, 
reduce the impact of low-weight bands on the classification 
results, and screen out the best processing method. The effects 
of different pretreatment methods, models, and characteristic 
waveband extraction methods on the accuracy of identifying 
single peanut seed vigor are discussed, which provides theoretical 
support for rapid, non-destructive and effective detection of 
peanut seed vigor.

2 Materials and methods
2.1 Experimental materials

Peanuts are an important oilseed crop. The average oil 
content of peanut varieties is about 50%. High oil content is 
the main goal of peanut breeding and breeding. Peanut kernel 
yield is an important indicator to measure the quality of peanut 
production. The oil content of healthy Huayu No. 20 peanuts 
usually exceeds 55%, and the average grain yield is 3500-4000 
(kg ha-1), which is higher than the average index of peanuts 
(Wang et al., 2020). At the same time, as a high oleic peanut 
variety, it has high storage stability (Zhang  et  al., 2020), the 
growth period of summer sowing is about 114 days, and it 
can be planted on a large scale in most central regions of my 
country. Therefore, the experimental material selected Huayu 
No. 20 peanut variety. Select 270 seeds with complete structure, 
uniform size and no mildew.

2.2 Aging treatment

The experiment used artificial accelerated aging 
peanut seeds with high temperature and high humidity 
to simulate the naturally aged peanut seeds stored in the 
natural environment. Randomly selected 180 peanut seeds 
with uniform size and no damage, placed them in the HWS 
constant temperature and humidity incubator, adjusted the 
temperature to 50 °C and the humidity to 90%, randomly take 
out 90 of them after 24 hours, and take out the remaining 90 
seeds after 72 hours. Performed hyperspectral scanning and 
roll paper germination test on all peanut seeds taken out. 
The peanut seed images of the three treatment categories 
are shown in Figure 1.

Figure 1. Peanut seed images of 3 treatment categories.
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Picture (a), picture (b), picture (c) correspond to original 
healthy peanut seeds, peanut seeds after 24h aging treatment, 
and peanut seeds 72h aging treatment. It could be seen from 
the figure that the surface of the original healthy peanuts was 
smooth without aging cracks, but due to the aging treatment, 
the surface of the peanut seeds begins to wrinkle, and at the 
same time, as the aging time increased, the wrinkles became 
deeper and deeper.

2.3 Hyperspectral imager and analysis software

Peanut hyperspectral image acquisition experiment uses Zhuoli 
Hanguang’s Image-λ “spectral image” series hyperspectrometer and 
SPACEVIEW software. The hyperspectral imaging system used in 
the experiment mainly includes: computer, spectrometer, optical 
fiber, area scanning camera, halogen lamp, sample, transmission 
platform, etc. The structure diagram of the hyperspectral imager 
is shown in Figure 2.

2.4 Sprouting test on roll paper

After Hyperspectral collected the image information of 
270 peanut seeds, it immediately carried out the roll paper 
germination test. After each peanut seed is washed with sterile 
water, it is numbered and placed in an ambient temperature of 
25 °C for roll paper germination, and the germination of the 
peanut seed is checked one week later. When the germination 
length of the peanut seed exceeds 1mm, it is considered to be 
germinated and marked as “1”, otherwise it is regarded as not 
germinated and marked as “0”, and the germination results are 
recorded in the measured spectrum data table one by one.

2.5 Model evaluation

Randomly select 70% of the reflection spectrum curve data 
of Huayu No. 20 peanut seed samples as the training set, and 

use the reflection spectrum curve data of the remaining 30% 
peanut seed samples as the prediction set, and use the learning 
algorithm to construct a discriminant model to predict six 
healthy, unsprouted, Spectral image characteristics of peanut 
seeds with healthy sprouting, 24h without sprouting, 24h without 
sprouting after aging, 72h without sprouting after aging, and 
72h aging for germinating peanut seeds, using Accuracy, Log 
Loss, and Jackard’s similarity coefficient (Jaccard_similarity), Fit 
Time (Fit Time) and Hamming Loss (Hamming Loss) are used 
to measure the effect of evaluating model training predictions.

3 Hyperspectral data processing and analysis
Before extracting the spectral information, the image needs 

to be corrected in black and white, and then the single peanut 
seed needs to be separated from the background, that is, the 
feature region of interest (ROI) is selected, and the seed region 
and the background region are randomly selected, and each 
band is calculated The average spectral reflectance of which 
is selected in the range of 387~1035 nm. The sample peanut 
spectrum image processing is shown in Figure 3.

4 Germination test and prediction accuracy judgment
The germination results of the test showed that the germination 

rate of healthy peanut seeds was 82.2%, of which 74 were 
germinated peanut seeds, 16 were ungerminated peanut seeds, 
and the germination rate of peanut seeds was 58.8%, of which 53 
were germinated peanuts. There were 37 ungerminated peanut 
seeds, and the germination rate of the peanut seed samples after 
72 hours of aging treatment was 21.1%, including 19 germinated 
peanuts and 71 ungerminated peanuts. The performance of 
the model is judged by the accuracy of the prediction, and the 
discrimination involving different seeds is calculated by the 
following Formulas 1 to 3 .

Figure 2. Hyperspectral imager structure diagram.
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Prediction accuracy rate of healthy peanut seeds HTS HTX
HTS HTX HFX HFS

+
=

+ + +
 (1)

Prediction accuracy rate of peanut seeds aged 24 h MTS MTX
MTS MTX MFX MFS

+
=

+ + +
 (2)

Prediction accuracy rate of peanut seeds aged 72 h LTS LTX
LTS LTX LFX LFS

+
=

+ + +
 (3)

where H stands for healthy peanut seeds, M stands for 24h aging 
peanut seeds, L stands for 72h aging peanut seeds, T stands for 
predicted correct peanut seeds, F stands for predicted wrong 
peanut seeds, S stands for germinated peanut seeds, and X stands 
for ungerminated peanut seeds.

5 Modeling method
5.1 Xgboost

The Xgboost algorithm adopts the integrated idea, and 
the target is divided into containers of different benchmarks, 
and the weights are calculated and comprehensively evaluated 
(He et al., 2021a).

First define the complexity of the tree. Use the following 
Formula 4 to define the complexity of the tree:

( ) T D
t i q(x)f x , R , q : R {1,2, ,T}ω ω= ∈ → …   (4)

Split the tree into a structure part and a weight part. Split 
into the following Formula 5:

( ) 2

1

1
2

T

t j
j

f Tγ λ ω
=

Ω = + ∑   (5)

Define the residual, the formula is as follows (Equations 6 
and 7):

( ) ( )i ki
i k

L( ) l y , y fϕ = + Ω∑ ∑   (6)

21( )
2

f T ωΩ = γ + λ   (7)

Define the loss function, the formula is as follows (Equation 8):

 ( ) ( )
n

(t 1)( )
i t i ti
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Obj l y y f x f constantt −
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 = + +Ω + 
 ∑   (8)

Expand the original objective function with Taylor’s formula 
(Equation 9 to 12):

 ( ) ( ) ( )
n
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1Obj l y y g f x  h f x f constant
2
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1Obj g h T
2
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= ∈ ∈

   
   

= + + +   
   
   

∑ ∑ ∑   (12)

5.2 Catboost

CatBoost is a GBDT framework based on symmetric 
decision trees (oblivious trees) that implements fewer parameters, 
supports categorical variables and high accuracy. The main pain 
point it solves is to process categorical features efficiently and 
reasonably. As you can see from its name, CatBoost is composed 
of Categorical and Boosting. In addition, CatBoost also solves 
the problems of gradient bias (Gradient Bias) and prediction 
shift (Prediction shift), thereby reducing the occurrence of 
over-fitting, thereby improving the accuracy and generalization 
ability of the algorithm (Samat et al., 2022).

5.3 Random forest (RF)

Random Forest is actually an improved bagging method, 
which uses CART tree as a model in bagging. The ordinary 

Figure 3. Peanut seed sample processing diagram.
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decision tree selects an optimal feature from all the sample 
features on the node as the division of the left and right subtrees 
(Salas & Subburayalu, 2019).

Random Forest (RF) selects a part of the features on the 
node randomly, and then selects an optimal feature from 
the sample features of these random calculations as the 
division of the left and right subtrees, thereby enhancing 
the generalization ability. It is equivalent to sampling both 
samples and features.

5.4 Support vector machine (SVM)

Support vector machine is a learning system that uses 
linear function hypothesis space in high-dimensional feature 
space, and has good performance in classification. SVM is 
widely used in phrase recognition, word sense disambiguation, 
automatic text classification and information filtering 
(Chen et al., 2014).

SVM solving the classification hyperplane problem is 
equivalent to solving the following equation (C, iε  are the 
corresponding parameters, and θ  is the nonlinear mapping 
function, [ ]1,1iy ∈ − ) (Equations 13 and 14).

2
, ,

1min
2ib i

i

Cω ε ω ε
 
 + 
  

∑＼ ＼   (13)

( ). . b 1, i 1, 2 , ni is t y xω + ≥ = …   (14)

Obtained by solving the saddle point of the Largerange 
function (Equations 15 and 16):

( )
,

1max ,
2i i i j i j i j

i i j

y y K x xa a a a
 
 − 
  
∑ ∑   (15)

. . 0, 0 C,i 1,2 ,ni i i
i

s t ya a= ≤ ≤ = …∑   (16)

Among them, K (·) is the kernel function that satisfies the 
Mercer condition, and the corresponding SVM discriminant 
function is (Equation 17):

( ) ( )
1

f x sgn ,
n

i i i
i

y K x x ba
=

 
 = +  
 
∑   (17)

5.5 Gbdt

GBDT is a widely used algorithm that can be used for 
classification and regression. The difference between Gradient 
Boost and traditional Boost is that each calculation is to reduce 
the last residual (residual), and in order to eliminate the residual, 
we can build a new model in the direction of the gradient of 
the residual reduction (Gradient) (Alcolea & Resano, 2021). 
Therefore, in Gradient Boost, the resume of each new model is 
to reduce the residual of the previous model in the direction of 

the gradient, which is very different from traditional Boost for 
weighting correct and incorrect samples.

6 Results and discussion
6.1 Characteristic spectrum analysis of peanut seeds

Six categories (healthy ungerminated peanut seeds, healthy 
germinated peanut seeds, aging treatment 24h ungerminated 
peanut seeds, aging treatment 24h germinated peanut seeds, 
aging treatment 72h ungerminated peanut seeds, aging treatment 
72h germinated peanut seeds) Huayu No. 20 peanut seeds The 
wavelength-reflectance spectrum curve of the sample is shown in 
Figure 4. From the overall situation of the spectra of the 6 types 
of peanut seed samples, it can be seen that aging will make the 
spectral reflectance of different bands more dense, and with the 
increase of aging time, the germination rate of peanut seeds will 
also be greatly reduced. The healthy sample has obvious peaks 
at 450 nm and 550 nm compared to the peanut seed sample 
after the aging treatment, and the reflectivity is almost greater 
than 1 after 800 nm, while the peaks at 450 nm and 550 nm 
of the peanut seed after the aging treatment almost disappear 
and reflect after 800 nm. The rates are almost all less than 1. 
The image after aging for 24h shows that there is a small peak 
at 550 nm, and the image after aging for 24h shows that there 
is no peak at 550 nm. There is little difference in the spectral 
image of the seeds of the peanuts that are germinated and 
non-germinated after using the same treatment, but the local 
characteristics of the spectral reflectance curves of the healthy 
samples, the 24h aging treatment and the 72h aging treatment 
sample are different, and the different types of sprouting The 
spectral reflectance trends of peanut seeds and ungerminated 
peanut seeds are basically the same. Therefore, these spectral 
curves provide an effective criterion for identifying the vigor 
of peanut seeds and whether they are aging, and the image can 
be used to determine the germination trend of peanut seeds, 
predict whether peanut seeds will germinate in advance, and 
reduce subsequent cultivation costs.

6.2 Modeling analysis based on pre-processing full band

L2 Norm Normalization (L2NN), logarithmic transformation 
normalization (LTN), Gaussian window smoothing (GWS), and 
multiplicative scatter correction (MSC) are used respectively., 
Median filtering (MF) processes the original spectrum, and 
established a random gradient boosting (Xgboost) model, a 
gradient boosting category (Catboost) model, a random forest 
(Randomforest) model, and a support vector machine (SVC). 
Model, gradient boosting decision tree (gbdt) model, the results 
are shown in the Table  1. The results obtained by different 
models and based on different preprocessing strategies are 
different. Among them, the prediction accuracy obtained by 
Xgboost+MF is the highest, reaching 87.65%, and its log loss 
metric (Log_Loss) is the lowest 701.33, and its Hamming loss 
metric (Hamming_Loss)) Also reached the lowest value of 0.12, 
and the highest Jaccard_similarity coefficient (Jaccard_similarity) 
was 87.65%. Among them, the fitting time of SVC was the 
shortest. Under different preprocessing conditions, the fitting 
time was almost 0.05s.
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6.3 Feature band extraction

The original spectral wavelength of the peanut seed sample 
contains 256 characteristic variables. Due to the problems of 
multiple bands, large amount of information, strong information 
correlation, and multiple information redundancy, logistic 
regression (LR), LightGBM, and XGBoost algorithms are used to 
extract the characteristic bands, and finally the top 15 contribution 
rates are selected Characteristic band . The 15 characteristic 
bands extracted by the LR algorithm are 1021.53 nm, 766.39 nm, 
442.35  nm, 692.33 nm, 374.31 nm, 1032.29 nm, 389.54 nm, 
552.2  nm, 797.34 nm, 401.49 nm, 1000.05 nm, 589.36 nm, 

387.15 nm. The 15 characteristic bands extracted by LightGBM 
algorithm are 374.31 nm, 339.54 nm, 396.7 nm, 401.49 nm, 
391.92 nm, 339.09 nm, 403.88 nm, 411.07 nm, 406.28 nm, 
413.47 nm, 387.15 nm, 1016.15 nm, 500.63 nm, 408.67 nm, and 
766.39 nm. The 15 characteristic bands extracted by the Xgboost 
algorithm are 841.47 nm, 857.13 nm, 1024.22 nm, 1016.15 nm, 
904.38 nm, 922.86 nm, 838.87 nm, 507.96 nm, 1005.42 nm, 
537.41 nm, 571.98 nm, 549.73 nm, 554.67 nm, 689.79 nm, and 
576.94 nm. The LR algorithm uses 1021.53 nm as the main 
characteristic band, which is located near the spectral reflectance 
of lactose. LightGBM uses 374.31 nm, 339.54 nm, etc. as the main 

Figure 4. Spectral images of 6 types of peanut seeds.
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characteristic bands, which are located near the starch spectral 
reflectance. The Xgboost algorithm uses 841.47 nm, 857.13 nm, 
1024.22 nm, etc. The main characteristic band is located near 
the spectral reflectance of arginine and tryptophan. Studies 
have shown that lactose, arginine, and tryptophan promote the 
germination of peanut seeds. Starch is converted into glucose 
and sucrose under the action of various hydrolytic enzymes. 
It is the raw material during seed germination. Arginine can 
promote root development during seed germination and growth, 
and is the precursor of plant endogenous hormone polyamine 

synthesis., Tryptophan is related to the survival ability of seeds 
after rehydration (Zhou et al., 2020). Lactose has strong light 
reflectivity at 1021 nm, 1037 nm, etc., starch has strong light 
reflectivity at 455 nm, 465 nm, 495 nm, 505 nm, etc., arginine 
has strong light reflectivity at 983 nm, 989 nm, 994 nm, etc., and 
tryptophan at 1005 nm there is strong light reflectivity in other 
places. After extracting the spectral features, re-select the feature 
variables, and then use the classifier to optimize the space to 
obtain the classification results .The dimensionality reduction 
process of the characteristic band is shown in Figure 5. It can be 

Table 1. Model full-band processing results.

Model methods Pre-processing 
methods Accuracy Log_Loss Hamming_Loss Jaccard_Similarity Log_Loss

Xgboost L2NN 59.26% 1495.73 0.41 59.26% 0.37
LTN 62.96% 1392.11 0.37 62.96% 0.37
GWS 66.67% 1288.49 0.33 66.67% 0.38
MSC 59.26% 1495.73 0.41 59.26% 0.38
MF 87.65% 701.33 0.12 87.65% 0.33

Catboost L2NN 62.96% 1392.11 0.37 62.96% 2.44
LTN 65.43% 1323.03 0.35 65.43% 2.48
GWS 66.67% 1288.49 0.33 66.67% 2.56
MSC 64.20% 1357.57 0.36 64.20% 2.62
MF 71.60% 1150.34 0.28 71.60% 1.84

RF L2NN 58.02% 1530.26 0.42 58.02% 1.82
LTN 64.20% 1357.57 0.36 64.20% 1.77
GWS 62.96% 1392.11 0.37 62.96% 1.77
MSC 61.73% 1426.65 0.38 61.73% 1.83
MF 86.42% 735.87 0.14 86.42% 1.63

SVC L2NN 62.96% 1392.11 0.37 62.96% 0.09
LTN 62.96% 1392.11 0.37 62.96% 0.05
GWS 61.73% 1426.65 0.38 61.73% 0.05
MSC 61.73% 1426.65 0.38 61.73% 0.06
MF 69.14% 1219.42 0.31 69.14% 0.05

gbdt L2NN 53.09% 1668.42 0.47 53.09% 1.70
LTN 56.79% 1564.80 0.43 56.79% 1.69
GWS 58.02% 1530.26 0.42 58.02% 1.66
MSC 58.02% 1530.26 0.42 58.02% 1.78
MF 74.07% 1081.26 0.26 74.07% 1.36

Figure 5. Feature band dimensionality reduction process.
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bands of the weights selected by each algorithm will be used 
as the new input to re-classify and predict peanut seed activity. 
After extracting the characteristic wavelength, the classification 
prediction results are shown in Table  2. Among them, the 
confusion matrix of the Xgboost-LightGBM model and its 
normalized confusion matrix are shown in Figure 7.

seen that the three characteristic waveband screening strategies, 
and the final characteristic wavebands selected are all related to 
four substances: lactose, starch, arginine, and tryptophan. The 
extracted feature band weight diagram is shown in Figure 6. The 
test results show that the weights of feature variables extracted 
by different algorithms are different, and the first 15 feature 

Figure 6. Feature importance top.

Table 2. Data processing result after feature band extraction.

Model Methods Layers Accuracy Log Loss Hamming Loss Jaccard Similarity Fit Time
Xgboost LR 74.07% 422.64 0.11 0.89 0.40

LightGBM 90.12% 422.64 0.11 0.90 0.40
XGBoost 82.71% 839.49 0.17 0.83 0.34

Catboost LR 87.04% 457.18 0.13 0.87 0.18
LightGBM 74.07% 698.95 0.26 0.74 2.27
XGBoost 62.96% 906.18 0.37 0.63 0.45

RF LR 74.07% 698.95 0.26 0.74 2.27
LightGBM 92.59% 563.18 0.07 0.92 1.77
XGBoost 87.04% 457.18 0.13 0.87 2.05

SVC LR 61.11% 940.72 0.39 0.61 0.10
LightGBM 61.11% 940.72 0.39 0.61 0.10
XGBoost 61.11% 940.72 0.39 0.61 0.10

gbdt LR 81.48% 560.79 0.19 0.81 1.64
LightGBM 81.48% 560.79 0.19 0.81 1.64
XGBoost 81.48% 560.79 0.19 0.81 1.64
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