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1 Introduction
Wheat is one of the three major food species in the world, 

providing 20% of global calories and protein, and it is also one of 
the most important food crops in China (He et al., 2001). Wheat 
suffers from many diseases during the production process, among 
which fusarium head blight (FHB), also known as scab, is one of 
the severe fungal diseases that plague the sustainable development 
of wheat production in China (Choo, 2009). Infected by this 
disease, grains are light in weight, discolored and degraded in 
proteins that cause important economic losses through decreased 
grain yield and reduced grain quality (McMullen et al., 2012; 
Palacios et al., 2021). Besides, the disease has serious impacts on 
human and animal health via the contamination of grains with 
mycotoxins such as trichothecenes, especially deoxynivalenol 
(DON), nivalenol (NIV), and zearalenone (ZEN) (Bennett 
& Klich, 2003; Bin-Umer et  al., 2011; Lemmens et  al., 2005; 
Tibola et al., 2015).

FHB of wheat is caused by the infection of a complex of 
different toxigenic Fusarium species at wheat heading at flowering 
(O’Donnell et al., 2013). Among them, Fusarium graminearum 
species complex (FGSC) is considered the most important globally 
due to its widespread incidence and aggressiveness (Beccari et al., 
2019; Goswami & Kistler, 2004; Kazan et al., 2012). However, 

other pathogens such as F. culmorum, F. avenaceum, F. poae and 
F. cerealia that considered as ‘weak’ pathogens, can also cause the 
disease (Aoki et al., 2012; Bottalico & Perrone, 2002; Valverde-
Bogantes et al., 2020). After harvest, strong wind blowing by a 
blower, sieving treatment and other physical methods can be 
used to remove the small and light proportion of scab grains, 
while the Fusarium and other microorganisms on the grain 
surface will still be a potential hazard (Machado et al., 2017). 
The life activities of these harmful microorganisms are the main 
causes of grain quality loss and spoilage, which interact among 
themselves, with the grain, and with the environment of the 
storage facilities, and the mycotoxins continue to be produced 
during processing, packaging, distribution, and storage of food 
products at suitable temperature and humidity (Bhatnagar et al., 
2006; Ortega et al., 2019; Pereira et al., 2014). The presence of 
mycotoxins in crops and animal products is a serious problem 
globally and have a great influence on the people’s daily life that 
calls for global concern (Murshed et al., 2022; Lima et al., 2022). 
And with the advancement of detection technology and the wide 
application of rapid detection technology, the occurrence of 
mycotoxins is well monitored (Anfossi et al., 2016; Pimpitak et al., 
2020; Zhou et al., 2020; Shkembi et al., 2022).
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The mycotoxins produced by Fusarium species are diversely 
in structures and actions, and can cause abnormalities in 
reproductive and embryo development mutations and chromosomal 
(Alshannaq & Yu, 2017; Awuchi et al., 2021). Furthermore, most 
mycotoxins are chemically and thermally stable and cannot be 
destroyed during most food processing operations, including 
coking, baking, boiling, frying, roasting, and pasteurization. 
The contaminated foodstuffs and feedstuffs with mycotoxins 
can have serious consequences to human and animal health 
(Murshed et al., 2022). Different approaches have been used 
to remove or degrade the mycotoxins in foods, and the most 
prominent of these can be categorized into physical, chemical, 
and biological methods, where biological methods are considered 
to be more efficient and safer (Assaf et al., 2019; Ismail et al., 
2018). Mycotoxin contamination has become an important issue 
related to the food safety requirement for international marketing 
of agri-food commodities for human and animal consumption 
(Costa et al., 2019; Silva et al., 2022). Therefore, the research 
on the minimize of microbial contamination is the key to the 
prevention and control of mycotoxin contamination in grain.

The use of post-harvest technologies, such as irradiation 
that kills microorganisms directly, and modified atmosphere 
storage that reduce the O2 content around the grain, can contain 
microbial development, consequently reducing conservation 
problems. While, limited by the feasibility of use, and different 
fungal responses, these two methods are not effective in grain 
storage (Santis et al., 2021; Mannaa & Kim, 2017). In recent years, 
numerous studies have shown that chlorine dioxide (ClO2) and 
ozone (O3), two strong oxidizing gases, can be used in gaseous 
or aqueous form to sanitize food and for food storage (Cao et al., 
2018; Cao et al., 2022; Horvitz & Cantalejo, 2014; Lee et al., 2019; 
Park et al., 2021; Sun et al., 2017; Venta et al., 2010; Zhang et al., 
2019). ClO2 is a rapid and effective fungicide, which is active 
against bacteria, yeasts, and molds, and it is legally permitted in 
China to be used for fruit and vegetables sanitization in water 
(Li, 2010; Yang et al., 2015). And O3 is recognized by the US 
Food and Drug Administration as an antimicrobial agent for 
the treatment, storage and processing of foods, and has been 
widely applied in food processes to eliminate or reduce bacteria 
and fungi (Ali et al., 2014; Santis et al., 2021; Kim et al., 1999; 
Ong & Ali, 2015; Werlang et al., 2022).

Taking all this into account, the objectives of this study were: 
(i) to isolate and identify Fusarium strains from FHB of wheat, 
(ii) to determine the toxigenic potential of the strains and verify 
their capability to produce mycotoxins in vitro, (iii) to study 
and compare the effects of gaseous ClO2 and O3 fumigation on 
Fusarium growth in lab condition.

2 Material and methods
2.1 Sample collection and isolation of Fusarium

In this experiment, about 10 kg wheat samples to be 
warehoused were collected from Anhui province, China. 
The collected samples were kept in sterile plastic bags during 
transport to the laboratory. Then, on the same day, according 
to the national standard of the People’s Republic of China GB 
1351-2008 ‘Wheat’, we selected the FHB symptomatic wheat 
grains in the collected samples and classified it into pink and 
white. The classified samples were cleaned with sterile water, 
the washing liquid was coated on potato dextrose agar (PDA) 
supplemented with streptomycin (25 mg/L) to discourage 
bacterial contamination. Part of the washed FHB wheat was 
directed planted on PDA, and the other part was crushed and 
coated with sterile water. The plates were incubated in the dark 
at 28 °C for 3-5 days. Fungal isolated were transferred singly to 
PDA plates and subcultured at least twice to obtain pure cultures.

2.2 Identification of pathogenic fungi

Morphological identification of the isolates was carried 
out on the basis of criteria according to the descriptions in 
Burgess et al. (1994) and Nirenberg (Leslie & Summerell, 2006). 
For molecular identification of isolates obtained from diseased 
wheat, the genomic DNA was extracted from fungal mycelia 
grown in complete medium at 25 °C for 7 days using Plant 
DNA Isolation Mini Kit (Vazyme Biotech Co., Ltd) according 
to the manufacturer’s instructions. The internal transcribed 
spacer gene (ITS) and translation elongation factor 1-alpha 
(EF-1α) gene were amplified using the primer pairs listed in 
Table 1 (O’Donnell et al., 1998; White et al., 1990). Polymerase 
chain reaction (PCR) was carried out in a 50.0 μL reaction system 
contain 25.0 μL 2 × Rapid Taq Master Mix (Vazyme Biotech 
Co., Ltd), 10.0 μM of each primer (Synthesized by Chengdu 
Youkang), 100 ng of DNA template, and make up ddH2O to 
50 μL. Reactions were programmed for 94 °C for 10 min, followed 
by 35 cycles of 94 °C 40 s, 55 °C 45 s, and 72 °C 1 min, and a 
final extension at 72 °C for 10 min (Kim et al., 2009; Sang et al., 
2013). The sequences of nucleotide alignments obtained were 
analysis with BLAST, the GenBank database (National Library 
of Medicine, 2022) and with a specific database of the genus 
Fusarium, CBS-KNAW Fungal Biodiversity Centre’s Fusarium 
MLST database (Fusarium MLST, 2020), and the strains were 
confirmed to species level. Phylogenetic trees were constructed 
by neighbor-joining method and the evolutionary analysis were 
conducted using MEGA5 software package (Kumar et al., 2018; 
Saitou & Nei, 1987).

Table 1. Primers used in the molecular identification of isolated strains.

Locus
Primers

Target Fragment (bp) Reference
Designation Sequences (5’-3’)

ITS ITS1 TCCGTAGGTGAACCTGCGG 560 White et al., 1990
ITS4 TCCTCCGCTTATTGATATGC

EF1-α EF1 ATGGGTAAGGAAGACAAGAC 680 O’Donnell et al., 1998
EF2 GGAAGTACCAGTGATCATGTT
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2.3 Spore preparation

Activated Fusarium strains were inoculated into CMC liquid 
sporulation medium and culture at 25 °C, 180 rpm for 5 days. 
The culture medium was filtered by single-layer Miracloth filter. 
The spore suspensions were then centrifuged at 5000 rpm for 
15 min, and the supernatants discarded. This wash procedure 
was carried out three times with sterile saline added with 0.1% 
sterile Tween 80 (Merck, Australia). The initial concentration 
of spore suspension was determined by the measurement of 
hemocytometer. The final spore concentrations were adjusted 
to yield a final count of 106 spores/mL with sterile saline.

2.4 Detection of toxigenic genes

Based on the molecular identification of fusarium isolates, the 
mycotoxin-producing genes that responsible for the biosynthesis of 
DON (Tri5), ZEN (PSK), and FB (FUM1) were detected by using 
the corresponding specific primers listed in Table 2 (Baird et al., 
2008; Lysøe et al., 2006; Niessen et al., 2004). The PCR system 
was the same as above, while the reactions were programmed 
for 94 °C for 10 min, 5 cycles of 94 °C 40 s, 52 °C 45 s, and 
72 °C 1 min, followed by another 35 cycles of 94 °C 40 s, 55 °C 
45 s, and 72 °C 1 min, and a final extension at 72 °C for 10 min. 
All the PCR products generated were resolved on 1.2% agarose 
gels. The gels were stained with Ultra GelRed (Vazyme Biotech 
Co., Ltd) and visualized under UV light.

2.5 Mycotoxin production by Fusarium strains isolated in 
vitro

In this experiment, 1 kg of corn, wheat, and brown rice 
samples with full and intact grains and free from mold and rot 
were selected, added with sterile water to adjust the water activity 
to 30%, and sealed in the refrigerator at 4 °C overnight. The next 
day, the samples were crushed with knife mill (KN 295 Knifetec, 
Foss Analytical). After mixing, 20 g of the crushed samples 
were taken and dispensed into 250 mL conical flasks, and 
three replicates of each sample were prepared. Sterilized with 
the autoclave (HIRAYAMA, Japan) at 121 °C for 20 min. 5 mL 
diluted spore suspension was added to each conical flask, and 
5 mL sterile water was added to the control group. The cells were 
incubated in the dark at 25 °C, 60% RH for 7 days. The cultures 
were handshake daily to disperse the fungus throughout grain, 
and to avoid clump (Palacios et al., 2021). The grain cultures 
were dried at 50 °C, and stored at 4 °C until mycotoxin analysis.

2.6 Mycotoxins analysis

The content of fumonisin was determined by rapid quantitative 
method of colloidal gold technology (Ling et al., 2015). The stirps 
were purchased from SiTechno, China, and determined according 
to the manufacturer’s instructions.

Deoxynivalenol was extracted according to the second method 
of the national standard of the People’s Republic of China GB 
5009.111-2016 (People’s Republic of China, 2016b), with some 
modifications. A volume of 50 mL ddH20 was added to the conical 
flask containing 20 g samples, soaked overnight in refrigerator 
at 4 °C, and shacked at 25 °C, 200 rpm for 30 min the next day, 
filtered for later use. The filtrate was diluted with water 4 : 6 to 
10 mL, and loaded to the immunoaffinity column at the speed of 
1-2 drops per second. After passing, the immunoaffinity column 
was washed with 20 mL of water at the same speed, and all the 
effluent was discarded and the column was dried. Eluted with 
1.5 mL methanol, add 0.5 mL ddH2O to the eluate, mixed and 
filtered into the sample bottle with a 0.22 μm filter membrane. 
The quantitatively analyzed was performed using an Agilent 
1290 Infinity II LC (Agilent Technologies, Santa Clara, CA, 
USA). Reserve-phase column chromatography was performed 
using C18 (YMC, Kyoto, Japan). The mobile phase consisted 
with 20% methanol in distilled water, the column temperature 
was maintained at 35 °C, the injection volume was 50 μL, and 
the detection wavelength was set to 218 nm.

Zearalenone was extracted according to the first method 
of the national standard of the People’s Republic of China GB 
5009.209-2016 (People’s Republic of China, 2016a), followed 
by some modifications. The total volume of 50 mL extraction 
solvent [Methanol:H20, 80:20 (v/v)] was added to the conical 
flask with 20 g sample, soaked overnight in refrigerator at 4 °C, 
and shacked at 25 °C, 200 rpm for 30 min the next day, filtered 
for later use. The filtrate was diluted with supersaturated saline 
4 : 16 to 20 mL and loaded to the immunoaffinity column at the 
speed of 1-2 drops per second. After passing, the immunoaffinity 
column was washed with 20 mL water at the same speed, and all 
the effluent was discarded and the column was dried. The eluent 
was collected by elution with 2 mL methanol, and filtered into the 
sample bottle with 0.22 μm filter membrane. ZEN was analyzed 
by the above-mentioned instrument and column with a mobile 
phase consisted acetonitrile:water:methanol (46 : 46 : 8, v/v/v) at 
0.5 mL/min. The column temperature was maintained at 25 °C, 
the injection volume was 50 μL, and detected with a fluorescence 
detector (274 nm excitation, 440 nm emission).

Table 2. Primers used in detection of toxigenic genes.

Primer Sequence (5’-3’) Size (bp) Tm (°C) Types of 
Toxicity Reference

Tri5-F ACTTTCCCACCGAGTATTTT 525 53 DON Niessen et al., 2004
Tri5-R CAAAAACTGTTGTTCCACTGCC
PSK-F AGATGGCCATGGTGCTTCGTGAT 480 55 ZEN Lysøe et al., 2006
PSK-R GTGGGCTTCGCTAGACCGTGAGTT
Fum-F GTCGAGTTGTTGACCACTGCG 846 58 FB Baird et al., 2008
Fum-R CGTATCGTCAGCATGATGTAGC
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2.7 Fumigated with two strong oxidizing gases

To examine the effect of the two strong oxidizing gases on 
the growth control of the Fusarium strains on the medium, 
spotted 20 μL of spore suspension on the center of the PDA plate 
supplemented with streptomycin. Next, these spore-inoculated 
plates were treated with gaseous fumigant directly to study the 
effect on spore germination. For the study on the inhibition of 
mycelial growth, the plates should first be cultured at 28 °C for 
24 h. The gas-treated plates were further incubated at 28 °C. 
The mycelial length was measured once a day, and the numbers 
of colony-forming units (CFUs) representing spore germination 
were counted after 2 days incubation.

The gaseous ClO2 was generated by a ClO2 commercial 
generator (WAERTE, China), and gaseous O3 was generated by 
a O3 commercial generator (DAHUAN, China), and principles 
were shown in Figure 1. The test was carried out in a modified 
laboratory drying tank (Figure  2), divided into a control 
group (no fumigation) and a treatment group [fumigated with 
ClO2 (300 ppm) or O3 (400 ppm or 1400 ppm)]. The treated 
groups were exposed for 30 min, 60 min, 90 min and 120 min. 
The gaseous fumigant enters the bottom of the from the air 
inlet, and the redundant air was let out from the top of the glass 
reactor (Savi et al., 2014; Sun et al., 2017). For safety issues, the 
exhaust gas was neutralized with saturated aqueous sodium 
thiosulfate (Jones et al., 2006; Ma et al., 2017).

2.8 Scanning electron microscopy analysis of the isolated 
Fusarium

A small piece of Fusarium mycelium fumigated by ozone 
and chlorine dioxide was scraped and placed in 1.5 mL EP 
tube. The sample was fixed with 500 μL 4% paraformaldehyde. 
The precipitate was collected by centrifugation, washed twice with 
PBS, 5 min each time, and washed once with 4% (w/v) sucrose 
solution for 5 min, dehydrated with a series of gradient alcohol, 
30%, 50%, 70%, 80%, 90%, 95%, 100%, 10 min each gradient. After 
adding 100% alcohol to resuspend, a small number of suspended 
droplets were absorbed and added to the glass. The glass was 
gently adhered to the conductive adhesive, dried at the critical 
point, and vacuum sprayed. Finally, observed its morphologic 
changes by scanning electron microscope (FEI, USA).

3 Results
3.1 Isolation and identification of Fusarium spp.

From the observed experimental results, there were more 
Fusarium in pink FHB wheat and more Aspergillus in white 
FHB wheat, and the overall bacterial phase difference was not 
obvious. The washing and coating method was used to isolate 
the fungi on the surface of wheat, and the grinding method was 
used to isolate the fungi inside wheat (Figure 3). As a result, the 
latter method was more suitable for isolating Fusarium spp.

Three typical strains of Fusarium were isolated in this 
experiment, named N1, N2, and N3. For the phylogenetic 
analysis of the isolates, sequence of the ITS region and EF1-α 
gene, respectively, were analyzed. The amplified fragments had 
the expected size (Table 1, Figure 4). The amplified results were 
sent for sequencing, and the sequences were aligned against the 
GeneBank (NCBI, nucleotide blast) and MLST database showed 
95% to 100% homology to previously described Fusarium spp.

A phylogenetic tree was constructed based on the ITS and 
EF1-α gene from the isolated strains (Figure 5). This analysis 
revealed that N1 was identical to Fusarium graminearum, N2 to 
Fusarium asiaticum, and N3 to Fusarium culmorum.

Figure 1. The principles of the gaseous fumigant generated. (A) Gaseous 
ClO2 was generated by the mixing of Solution A and Solution B, that 
mentioned in the manufacturer’s instructions. (B) Ozone gas was 
produced by ionizing oxygen in the air.

Figure 2. Schematic diagram of simple gaseous fumigant treatment system.
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3.2 Detection of toxigenic genes and toxigenic capacity in 
vitro

The PCR-based detection of the genes associated with 
mycotoxin biosynthesis were carried out. It can be seen from 
the genetic results that strain N2 did not contain any of these 
three toxin-producing genes, and both N1 and N3 contained 

the PSK gene and Tri5 gene, thus indicating that these isolates 
can potentially produce ZEN and DON under the suitable 
conditions (Figure 6).

The background contents of the mycotoxins (Table 3) and the 
mycotoxins produced by three strains cultured on three natural 
grain mediums (Table 4) were analyzed based on immunoaffinity 

Figure 3. Isolation of Fusarium. spp. Pink FHB seeds contain more Fusarium, while white ones contain more Aspergillus. The grinding method 
was more suitable for isolation of Fusarium.

Figure 4. Molecular identification of the Fusarium spp. isolates. (A) Analysis of total DNA extracted from the isolates. Molecular identification 
of Fusarium species by PCR amplification of Internal Transcribed Spacer (ITS) (B), and the translation elongation factor-1 alpha (EF1-α) (C). 
Primer sets and the reference to the sequences used are given in Table 1.
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chromatography purification-HPLC. Among them, N1 and 
N3 were able to produce ZEN and DON in vitro but not FBs, 
and N2 strain did not produce any of the three toxins, that were 
agreed with the molecular identification of the key mycotoxin-
producing genes. In addition, the two strains produced different 
amounts of mycotoxins on three different natural mediums.

3.3 Effect of gaseous fumigants against Fusarium strains 
isolated

The effect of the gaseous fumigants against Fusarium strains 
isolated was tested on PDA. The gaseous ClO2 and O3 were 
generated by commercial ClO2 generator and O3 generator, 
respectively.

Inhibition the spore germination of Fusarium

Plates inoculated with spores were placed into the reactor 
under sterile conditions and fumigated with ClO2 at a concentration 
of 300 ppm or O3 at a concentration of 400 ppm under different 
exposure times. The germination of fungal spores was completely 
suppressed for 30 min treatment of the fumigation gas. It can also 

Figure 5. Phylogenetic tree of isolated Fusarium spp. strains and related members of the genus Fusarium. The tree was constructed using the 
neighbor-joining method based on ITS and EF1-α gene sequences. The bar represents a genetic distance of 0.1.

Table 3. Background content of mycotoxins in the grain mediums.

Culture 
medium type

Mycotoxins (μg/kg ± SD)a

DON FBs ZEN
Wheat 136.37 ± 8.7 951.71 ± 38.3 ND
Corn 234.21 ± 10.2 1642.71 ± 50.4 ND
Paddy ND 787.67 ± 28.5 ND

aAverage value of three replicates. ND: not detected (blow detection limit).
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be clearly seen from the microscopic results that the fumigated 
conidia cells changed from transparent to turbid, the structure 
of the outer coats were destroyed and the spore lost its activity 
(Figure 7).

Inhibition the mycelial growth of Fusarium

Plates incubated at 28 °C for 36 h were placed into the reactor 
under sterile conditions and fumigated. The mycelium length 
was measured at the same time every day once the experiment 

started. The experimental results showed that O3 had a small 
inhibitory effect on mycelium (Figure 8), even when fumigated 
at 1400 ppm for 2 h (data not shown) there was no particularly 
significant inhibition. The same conclusion can be seen from the 
results of scanning electron microscopy that the surface of the 
mycelia after fumigation was smooth as that of the control group.

While, the effect of ClO2 on mycelial growth was different 
from that of O3, the mycelium did not continue to grow the 
next four days after fumigation for 0.5 h. The results of scanning 

Table 4. Mycotoxigenic capacity of isolated Fusarium in the grain mediums.

Isolate Culture medium type
Mycotoxins (μg/kg ± SD)a

DON FBs ZEN
Control Wheat 112.29 ± 7.2 925.37 ± 29.6 ND

Corn 198.34 ± 8.9 1429.52 ± 46.3 ND
Paddy ND 736.21 ± 22.9 ND

N1 Wheat 5520.6 ± 258.4 930.25 ± 27.3 41148. 0 ± 499.2
Corn 33309.6 ± 492.5 1572.41 ± 43.7 34103.2 ± 372.1
Paddy 16808.4 ± 312.6 802.37 ± 25.2 38572.1 ± 403.7

N2 Wheat 143.1 ± 8.5 961.37 ± 28.2 ND
Corn 212.42 ± 9.1 1433.61 ± 44.6 ND
Paddy ND 745.70 ± 32.1 ND

N3 Wheat 47125.0 ± 529.1 922.11 ± 25.4 12458.2 ± 294.6
Corn 7796.7 ± 297.3 1407.24 ± 43.1 9663.1 ± 287.3
Paddy 11379.0 ± 302.2 792.41 ± 24.7 4872.7 ± 215.9

aAverage value of three replicates. ND: not detected (blow detection limit).

Figure 6. Molecular detection of toxigenic genes. (A) None of the three strains were detected to have the FUM gene for biosynthesis FBs. (B) 
PSK gene was detected in N1and N3. (C) The detection of Tri5 gene in N1 and N3 was also positive.

Figure 7. Inhibition of spore germination. (A) Observation of spore morphology of N1 strain under microscope, sickle-shaped with smooth 
surface, and transparent cells with obvious transverse septa. The spore morphology was observed after 30 min of treatment with O3 (B) and ClO2 
(C). The surface was uneven, the cells were turbid, and the intracellular septum disappeared.



Food Sci. Technol, Campinas, 42, e53822, 20228

Fumigation treatment of Fusarium spp. strains

electron microscopy also showed that the surface of mycelium 
became rough and shrunk, and mycelium aging or death occurred 

(Figure  9). Therefore, we believe that chlorine dioxide has a 
significant inhibitory effect on the mycelial growth of Fusarium.

Figure 8. The effect of O3 on mycelial growth. (A) Mycelial growth results of plate cultured for 4 days after O3 fumigation. (B) Measurement 
results of mycelial length during cultivation. (C) Scanning electron microscopy of the hyphae of N1 post-treated with O3 for different times.

Figure 9. The effect of ClO2 on mycelial growth. (A) Mycelial growth results of plate cultured for 4 days after ClO2 fumigation. (B) Measurement 
results of mycelial length during cultivation. (C) Scanning electron microscopy of the hyphae of N1 post-treated with ClO2 for different times.
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4 Conclusion and discussion
In this study, we isolated three typical Fusarium spp. named 

N1, N2, and N3 from the FHB infected wheat and identified 
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Fusarium culmorum, respectively, using phylogenetic analysis 
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agreed with the molecular identification of key mycotoxin-
producing genes. Finally, we tested the ClO2 and O3 for their 
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by commercial gas generator could kill fungal spores in a short 
time, and the fumigation-treated spores were not colonized 
even after 7 days of continuous incubation, the results of the 
plate culture were consistent with the results of microscopic. 
However, their inhibitory effects on mycelial growth of Fusarium 
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(300 ppm) treatment for 0.5 h can significantly inhibit the 
growth of mycelium, and no longer grow after culture. However, 
high concentration ozone (1400 ppm) treatment for 2 h has no 
obvious inhibitory effect on mycelial growth. The growth data 
of mycelium were consistent with SEM results.

In addition, gaseous ClO2 has been widely used to control 
food-borne or post-harvest microbial contamination on fruits 
and vegetables (Bhagat et al., 2011; Du et al., 2002; Yuk et al., 
2006). It was also documented that ClO2 fumigation is effective 
in killing phosphine-susceptible and resistant strains of stored 
product insect species and without serious chemical residues 
on stored rice (E et al., 2018). Yu et al. (2020) pointed out that 
AFB1 can be decomposed by gaseous ClO2 successfully into 
products that are non-toxic to human (Yu et al., 2020). This has 
important guiding significance for the application of ClO2 in 
mycotoxin degradation.

Taking together, the results in this study showed that the 
PCR-based identification of genes associated with mycotoxin 
biosynthesis can be used for rapid prediction of fungal toxicity, 
and ClO2 gas is effective in the growth control of Fusarium spp. 
as a main contaminant in wheat at a low concentration. Therefore, 
gaseous ClO2 can be used as a potential green fumigation agent 
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