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1 Introduction
As a kind of functional health drink, tea is loved by people 

all over the world (Graham, 1992). China is a traditional tea 
production country, which has a large number of tea varieties 
and production ranks first in the world (He  et  al., 2021a). 
Black tea is an important part of China’s tea industry, its yield 
accounts for 9.2%. Properly drinking black tea is beneficial 
to the human body, which can enhance human immunity, 
anti-aging, anti-oxidation, and even prevent cancer (Sun et al., 
2007; Higdon & Frei, 2003). The tea economy is an important 
economic pillar in Ya’an. As of 2021, the area of tea gardens in 
Ya’an reached 6600 ha, accounting for 1/5 of the total tea planting 
area in Sichuan Province. The comprehensive output value of 
tea exceeded 19 billion RMB, and the number of tea farmers 
reached 400,000. Because of the long-term occurrence of tea 
plant diseases and insect pests, some organic pesticides such 
as bifenthrin (BFT), diafenthiuron (DFT), tolfenpyrad (TFP), 
and imidacloprid (IDC) are widely used to ensure the high yield 
of tea (Xu et al., 2021; Xin-Zhong et al., 2011; Bai et al., 2021; 
Chen et al., 2020). At the same time, in the process of spraying 
pesticides, tea farmers often mix BFT and DFT or TFP and 
IDC to enhance the effect. However, due to the nonstandard 
operation, misuse, and abuse of pesticides occurring in the process 
of pesticide use, tea is often detected with pesticide residues or 
even exceeds the limit standard (Zhu et al., 2021). The large use 
of the above pesticides will inevitably adhere pesticide residues 

to the surface of tea leaves and it is difficult to remove them by 
conventional cleaning (Chen et al., 2013). Long-term drinking 
of tea containing pesticide residues will cause certain damage 
to the body (Sun et al., 2021).

As food safety has attracted more and more attention from 
consumers, countries or regions such as Morocco and the 
European Union have formulated strict standards for pesticide 
residues in tea (Le et al., 2021). At present, the identification 
methods of pesticide residues in crops are mainly liquid 
chromatography-mass spectrometry (Fan et al., 2021; Xing et al., 
2022), gas chromatography-mass spectrometry (Oyekunle et al., 
2021), and immunoassay (Garcia-Febrero et al., 2014). These 
identification methods have the advantages of high sensitivity 
and wide identification range, but some methods are too 
expensive, some are too complex and time-consuming, and some 
can cause irreversible damage to the test samples. Therefore, 
it is of great practical value to establish a rapid, accurate, and 
non-destructive method for the identification of pesticide 
residues on tea. At present, spectral analysis has become a 
hot spot in the identification of pesticide residues due to its 
excellent performance. The most widely used methods are near-
infrared spectroscopy (He et al., 2021b; Li et al., 2021), Raman 
spectroscopy (Zhu et al., 2021; Zhang et al., 2021a), terahertz 
time-domain spectroscopy (Chen et al., 2015), laser-induced 
breakdown spectroscopy (Martino et al., 2021; Wu et al., 2019), 
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and hyperspectral imaging (Jia et al., 2018; Sun et al., 2018). 
Hyperspectral imaging technology combined with fluorescence 
emission technology has played an important role in the field 
of real-time online quality and safe non-destructive testing of 
agricultural products (Mahmudiono et al., 2022). The fluorescence 
hyperspectral imaging system was used to identify the pesticide 
residues on the surface of black tea in this study.

In recent years, machine learning is often been used in 
the field of food safety detection, such as the classification 
of different quality crops (Li  et  al., 2020; Chen & Yu, 2022; 
Hou et al., 2022), and the identification and classification of 
pesticide residues on the surface of crops (Zhu et  al., 2021). 
A one-dimensional convolutional neural network (1D CNN) 
is a widely used machine learning algorithm, and its biggest 
advantage is that it can automatically extract features from the 
input without manual selection (Chatzidakis & Botton, 2019; 
Zhang et al., 2019). By adjusting and optimizing the parameters 
of the convolution layer, 1D CNN can better identify and classify 
the input data. In 2021, He et al. proposed a 1D CNN machine 
learning model to recognize pesticide residues on garlic chive 
leaves, which used the hyperspectral imaging system to collect 
the short-wave infrared hyperspectral images of garlic chive 
leaves sprayed with distilled water or pesticides, and the 1D CNN 
model was compared with other models. Finally, the accuracy 
rate of the 1D CNN model reached 98.5% (He et al., 2021b). 
However, due to the lack of input data, the 1D CNN model may 
have over-fitting, which is not explained.

This study proposes a new method for the identification 
of pesticide residues on the surface of Ya’an black tea based on 
fluorescence hyperspectral technology and machine learning. 
The newly proposed machine learning method consists of a 1D 
CNN backbone and an RF classifier, namely the 1D CNN-RF 
model. The backbone of the 1D CNN extracts features from 
the input data and then classifies it through the RF classifier. 
Comparing the 1D CNN-RF pesticide residue identification model 
with other models, the proposed 1D CNN-RF model has high 
accuracy and strong robustness. A fluorescence hyperspectral 
imaging system was used to explore the influence of pesticide 
residues on spectral data. The results show that the method 
proposed in this study is feasible for the identification of pesticide 
residues on black tea, which provides the application basis of 
fluorescence hyperspectral technology in the identification of 
pesticide residues on black tea, and provides a new idea for the 

non-destructive identification of pesticide residues on Ya’an 
black tea.

2 Materials and methods
2.1 Experimental materials

Enough wild black tea was collected outdoors to ensure 
that the samples were free of pesticide residues. The finished 
black tea was prepared through the tea production process for 
test use. The pesticides used in the study were bifenthrin (BFT, 
active ingredient content is 2.5%), diafenthiuron (DFT, active 
ingredient content is 25%), tolfenpyrad (TFP, active ingredient 
content is 10%), imidacloprid (IDC, active ingredient content 
is 1.5%), all purchased from regular sales channels.

First, configure the pesticide solution, the appropriate 
amount of distilled water was prepared by using an electrothermal 
distilled water device (YA·ZD·5, Shanghai Baolan Experimental 
Instrument Co., Ltd., China), and then BFT, DFT, the mixture of 
BFT and DFT, TFP, IDC, and the mixture of TFP and IDC were 
diluted with distilled water at a ratio of 1:500 (the recommended 
concentration for agriculture) by using a pipette (Hunan Lichen 
Instrument Technology Co., Ltd., China). The prepared different 
pesticide solutions were sprayed equally on the surface of black 
tea (one group of samples was sprayed with distilled water as 
the blank group). After spraying, the samples were naturally 
dried under laboratory conditions for 24 hours, and then data 
collection was carried out. The sample collection process is 
shown in Figure 1, and the experimental sample situation is 
shown in Table 1.

Figure 1. Collection of black tea samples image by fluorescence hyperspectral imaging system. (a) six black tea samples on each whiteboard; (b) 
fluorescence hyperspectral image of samples; (c) fluorescence hyperspectral data of samples.

Table 1. Overview of experimental samples.

Category Quantity Solution
Blank 60 0
BFT 60 1:500
DFT 60 1:500

The mixture of BFT and DFT 60 1:500
TFP 60 1:500
IDC 60 1:500

The mixture of TFP and IDC 60 1:500
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2.2 Fluorescence hyperspectral data extraction

The fluorescence hyperspectral data of black tea samples were 
acquired using a GaiaFluo(/Pro)-VN-HR series of fluorescence 
hyperspectral test system manufactured by Sichuan Dualix 
Spectral Image Technology Co. Ltd. The schematic diagram 
of the fluorescence hyperspectral imaging system is shown 
in Figure  2. Different from most traditional optical imaging 
methods that can only capture gray or color images of samples, 
fluorescence hyperspectral can simultaneously obtain spatial 
characteristic imaging and spectral information of the tested 
samples. The spectral resolution of the hyperspectral camera 
is 2.8 nm, the sampling rate is 0.6 nm, the pixel size of the 
SCMOS detector is 6.5 um, and the size is 2048 × 2048. In this 
study, a xenon lamp was used as the excitation light source, and 
the detection range was 250 nm to 1100 nm (Hu et al., 2021), 
the 390 nm excitation filter and the 495 nm fluorescence filter 
were selected to act on the fluorescence hyperspectral imaging 
system, the exposure time was set to 800 ms, and the scanning 
speed was set at 0.06485 cm/s. Put the samples prepared in 
Section 2.1 into the sample table in batches. The fluorescence 
hyperspectral instrument was used to obtain a fluorescence 
image, the image contains 377 nm to 1011 nm spectral data. 
After obtaining the sample fluorescence hyperspectral image, 
ENVI 5.3 (Wang et al., 2020) software was used to obtain the 
sample-specific fluorescence hyperspectral data.

2.3 Spectral data preprocessing

Spectral data collected by the fluorescence hyperspectral 
system is easy to be affected by the surrounding environment 
and itself. To reduce the noise doped in the extracted spectral 
data and improve the sensitivity of spectral resolution, it is 
necessary to carry out reasonable spectral data preprocessing. 

In this study, two preprocessing algorithms, Multiplicative 
Scatter Correction (MSC) and Standard Normal Variate (SNV) 
were used to preprocess the spectrum (Zhang et al., 2021b). 
The basic principle of MSC is to correct the baseline shift and 
offset phenomenon of spectral data through an ideal spectrum, 
thereby effectively eliminating spectral differences caused by 
different scattering levels and enhancing the correlation between 
spectrum and data, and the basic principle of SNV is to standardize 
the original spectral data to correct the spectral error caused 
by light scattering. The modeling results of pesticide residues 
identification models of the two preprocessing algorithms were 
compared in Section 4.1, and the best one was selected as the 
preprocessing algorithm for the spectral data.

2.4 Feature extraction

Due to the large amount of full-spectrum data collected 
by the fluorescence hyperspectral imaging system, there is a 
certain amount of noise effect between each spectral segment 
and the linear correlation between the data, which will affect 
the performance of the pesticide residues identification model. 
Therefore, it is necessary to reduce the dimension of the raw 
spectral data. This study used the method of extracting the 
characteristic spectral segment to reduce the dimension.

Non-destructive identification of common crops based on 
the hyperspectral imaging system mostly uses single algorithms 
such as Uninformative Variable Elimination (UVE), Successive 
Projections Algorithm (SPA), or Competitive Adaptive Re-Weighted 
Sampling (CARS) to extract features and establish identification 
models (Yuan  et  al., 2021). However, the single algorithm 
lacks certain stability when extracting features. Therefore, this 
study used the SPA algorithm to perform quadratic dimension 
reduction on the feature segment variables extracted by UVE and 
CARS algorithms to eliminate the collinearity between variables 
and improve the stability of the algorithm. The preprocessed 
fluorescence hyperspectral data of non-pesticides samples 
and six samples with different types of pesticides were used as 
input data sets for extracting characteristic spectral segments. 
Five algorithms including UVE, SPA, CARS, UVE-SPA, and 
CARS-SPA were used for feature extraction, and the extracted 
characteristic spectrum was used for the pesticide residues 
identification experiments.

2.5 Model selection

In this study, three classic machine learning classification 
models, namely SVM, RF, and 1D CNN, were selected for 
comparative analysis with the proposed 1D CNN-RF model. 
The performances of machine learning models were evaluated 
using accuracy, recall, precision, and F1 score. All algorithms 
in this study ran on CPU(Intel(R) Core (TM) i5-10400F CPU@ 
1.60 GHz), and have been implemented on Python 3.8.

One-dimensional convolutional neural network (1D CNN)

Among the machine learning algorithms, CNN is the most 
common and widely used one and has achieved excellent results 
in image identification and processing (Liang  et  al., 2021), 
speech identification (Kwon, 2019), and other fields. CNN is a Figure 2. Fluorescence hyperspectral system.
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feedforward neural network, which processes data in multiple 
matrices by extracting local and global features (LeCun et al., 
2015). The core of 1D CNN is to use convolution operation, and 
the structure of its model can be changed, that is, the depth of 
the model will change.

Random forest (RF)

RF is a classifier that uses multiple trees to train and predict 
samples, this classifier was first proposed by Leo Breiman 
(Farah et al., 2021). The basic unit of RF is the decision tree, 
the decision tree is composed of nodes and directed edges, 
and the nodes are divided into internal nodes and leaf nodes. 
The internal nodes represent a feature or attribute, and the leaf 
nodes represent a class. Each decision tree is a classifier. Many 
decision trees are randomly combined into a forest, and the 
parameters of each tree are different. Then, the predicted results 
of each tree are averaged, so that the working effectiveness of 
decision trees can be retained, and the risk of overfitting can 
be reduced.

Support vector machine (SVM)

SVM is a machine learning method based on the Vapnik-
Chervonenkis dimension theory of statistical learning theory and 
the principle of structural risk minimization (Zagajewski et al., 
2021). At the same time, SVM is a commonly used data mining 
method, which is suitable for regression problems and pattern 
identification and is also a training learning method suitable for 
a small number of samples. When the sample input set of the 
SVM model is large, SVM classification is slow and inefficient, 
and because SVM does not use the classical probability theory, 
the whole training process is relatively simple, which may lead 
to the training efficiency is not ideal.

The proposed method

Based on the excellent performance of the 1D CNN model 
in extracting the features of one-dimensional data such as 
fluorescence spectral data, the 1D CNN model was selected to 
mine the deep features of the input data information in this study. 
However, when the amount of the input set data is too small, 
the 1D CNN model is prone to overfitting. The RF algorithm 
reduces the variance of the model through the collection of 
different decision trees, so it has good generalization ability and 
anti-overfitting ability. After the advantages and disadvantages 
of 1D CNN and RF were weighed, the 1D CNN-RF framework 
was proposed, the specific 1D CNN-RF framework is shown 
in Figure 3. The 1D CNN model deeply mines the information 
features of pesticide residues on black tea from the fluorescence 
spectral data, and the RF model classifies the new spectral 
representative feature data generated by the 1D CNN model to 
achieve better results.

In the feature extraction part of the 1D CNN model, after 
repeated training and modification, the final 1D CNN structure was 
obtained. The model structure of 1D CNN is shown in Figure 4. 
The structure and parameters of the optimized 1D CNN model 
are shown in Table 2. The candidate values of the frame structure 
and parameters of the 1D CNN model proposed in this study 
are based on the research results of previous scholars (Wu et al., 
2018; Qiu et al., 2018). The characteristic mapping value of the 
convolution layer output is nonlinearly transformed. In this 
study, the modified linear unit (Relu) function was selected as 
the activation function to activate the outputs of these layers 
and the extract features.

Figure 3. 1D CNN-RF structure diagram.

Table 2. The specifications of the optimized 1D CNN model show the obtained best parameter values.

Layer Kernel Feature Maps Stride Activation Layer Output Shape
Input - - - - 1 × N

Con1D 1-1 1 × 3 8 1 ReLu (N-2) × 8
MaxPooling1D 1-1 1 × 2 8 2 - (N-2)/2 × 8

Con1D 2-1 1 × 3 16 1 ReLu (N-2)/2-2 × 16
MaxPooling1D 2-1 1 × 2 16 2 - ((N-2)/2-2)/2 × 16

Con1D 3-1 1 × 3 32 1 ReLu ((N-2)/2-2)/2-2 × 32
MaxPooling1D 3-1 1 × 2 32 2 - (((N-2)/2-2)/2-2)/2 × 32

Flatten - - - - 1 × ((((N-2)/2-2)/2-2)/2×32)
Dense - 128 - ReLu 1 × 128
Output - - - Softmax 1 × 2

N: the number of bands input by the model.

Figure 4. One-dimensional Convolutional Neural Network Architecture.
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To get the best performance of the model, it is necessary 
to adjust the number of iterations of the 1D CNN model. 
The relationship between the accuracy and loss rate of the 1D 
CNN model and the number of iterations is shown in Figure 5. 
After 200 epochs, the accuracy and loss rate of the training set 
and validation set tended to be stable with small fluctuations, 
the loss rate tended to 0, and accuracy tended to 1, which means 
that the model training is completed. Therefore, this study set 
the epoch parameter of the 1D CNN model as 200. To achieve 
both efficiency and effect, the Adam optimizer in the Keras deep 
learning library was selected in this experiment to dynamically 
reduce the learning rate, and the learning rate parameter was 0.001. 
The Adam algorithm uses the first-order moment estimation and 
second-order moment estimation of the gradient to dynamically 
adjust the learning rate of each parameter.

The raw spectral data obtained by the fluorescence hyperspectral 
imaging system was preprocessed and the spectral data after 
extracting the feature spectral segment variables were used as 
the input of the 1D CNN framework in the 1D CNN-RF model. 
The 1D CNN model was used to mine the deep characteristic 
spectral data. After the feature extraction was completed, the 
classifier in the 1D CNN model was replaced by the RF classifier, 
and the classification was carried out by the RF classifier, namely, 
which is the 1D CNN-RF model proposed in this study.

3 Results and discussion
3.1 Fluorescence spectral data preprocessing

To eliminate the interference of unfavorable factors in the 
spectrum, it is necessary to preprocess the raw spectrum data. 
Two methods, MSC and SNV were selected to preprocess the 
spectral data of black tea. In the sample data of distilled water and 
six different pesticides with solutions of 1: 500, 3/4 were randomly 
selected as the training set, and the remaining 1/4 were selected as 
the test set. The corresponding SVM and 1D CNN identification 
models were established, and the optimal preprocessing method 
is selected through the model training results. The results of the 
SVM and 1D CNN identification model are shown in Table 3.

It can be seen from Table 3 that the accuracy of the test set 
obtained by SVM and 1D CNN for the raw data is less than 
90%, respectively. The spectral data preprocessed by MSC or 
SNV are used as input sets of SVM and 1D CNN models, the 
accuracy of the test set is higher than or equal to that of the raw 
spectral data, which is because both can effectively eliminate the 
influence of scattering effect. Comparing MSC and SNV, when 
the data preprocessed by MSC were used as input, the accuracy 
of the SVM model increased from 80.95% to 84.76%, and the 
accuracy of the 1D CNN model increased from 89.52% to 92.38%, 
when the data preprocessed by SNV were used as input, the 
accuracy of SVM identification model increased from 80.95% 
to 82.86%, and the accuracy of 1D CNN identification model 
increased from 89.52% to 91.43%. The spectral data after MSC 
preprocessing are better than those after SNV preprocessing, so 
MSC is selected as the data preprocessing method for pesticide 
species identification in this study.

3.2 Characteristic spectral extraction

If the 125 preprocessed spectral data are used as input sets, 
the information redundancy may be generated, which makes it 
difficult for the identification model to find the spectral feature 
information in input data, thus leading to the low accuracy of 
identification models. Therefore, it is necessary to extract the 
characteristic spectral segments and reduce the amount of input 
data to improve the efficiency of the identification model.

In this study, five methods including UVE, SPA, CARS, UVE-
SPA, and CARS-SPA were used to extract the characteristic spectral 

Figure 5. Training process of 1D CNN contains (a) the loss change and (b) the accuracy change on the train set and validation (Val) set.

Table 3. Identification results based on different models of various 
preprocessing methods.

Methods Models of Identification
SVM 1D CNN

Raw 0.8095 0.8952
MSC 0.8476 0.9238
SNV 0.8286 0.9143
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segments. The fluorescence hyperspectral data preprocessed by 
MSC of distilled water samples and other six kinds of pesticide 
samples were used as the data set to extract the characteristic 
spectral segments. The distribution results of the characteristic 
spectral segments are shown in Figure 6.

Among them, 51 characteristic spectral bands were extracted 
by UVE, 37 by SPA, 57 by CARS, 27 by UVE-SPA, and 28 by 
CARS-SPA. The characteristic spectral segments extracted by 
the above five methods were used as the input of the pesticide 
identification models, optimal pesticide identification model 
was obtained based on model training results.

3.3 Comparison of the identification results of four models

In this study, four algorithms (SVM, RF, 1D CNN, and the 
proposed 1D CNN-RF) were selected to establish the identification 
model of pesticide residues on the surface of black tea, and the different 
characteristic spectrum segments extracted by the five methods 
selected in the previous section were used to model and identify. 
The classification performance of the four models was evaluated 
according to four evaluation indexes (accuracy, recall, precision, and 
F1 score), the obtained model training results are shown in Table 4.

It can be seen from Table 3 and Table 4 that the indexes of 
identification models were improved after MSC preprocessing 

Table 4. Identification results of test set samples by four models.

Model Extraction Method Accuracy Recall Precision F1 score
SVM UVE 0.8571 0.8571 0.8979 0.8111

SPA 0.8571 0.8571 0.8890 0.8520
CARS 0.8667 0.8667 0.9310 0.8754

UVE-SPA 0.8857 0.8857 0.9087 0.8779
CARS-SPA 0.9048 0.9048 0.9195 0.8955

RF UVE 0.8476 0.8476 0.8832 0.8410
SPA 0.8571 0.8571 0.8665 0.8528

CARS 0.8762 0.8762 0.8961 0.8680
UVE-SPA 0.8667 0.8667 0.9095 0.8563
CARS-SPA 0.9048 0.9048 0.9071 0.9050

1D CNN UVE 0.9238 0.9238 0.9373 0.9237
SPA 0.9429 0.9429 0.9554 0.9444

CARS 0.9714 0.9714 0.9743 0.9706
UVE-SPA 0.9429 0.9429 0.9496 0.9435
CARS-SPA 0.9714 0.9714 0.9726 0.9714

The proposed 1D 
CNN-RF

UVE 0.9429 0.9429 0.9459 0.9430
SPA 0.9524 0.9524 0.9563 0.9521

CARS 0.9810 0.9810 0.9815 0.9809
UVE-SPA 0.9714 0.9714 0.9730 0.9714
CARS-SPA 0.9905 0.9905 0.9911 0.9905

Figure 6. Characteristic spectrum distribution maps of five methods. (a) UVE; (b) SPA; (c) CARS; (d) UVE-SPA; (e) CARS-SPA.
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and five algorithms (UVE, SPA, CARS, UVE-SPA, CARS-SPA) 
extracting characteristic spectrum. The results show that the 
identification accuracy and precision of pesticide residues on 
black tea could be improved to some extent by extracting the 
effective information of the whole spectral data and reducing 
the influence of other irrelevant noise.

In terms of pesticide species identification, the accuracy of 
SVM and RF was lower than 91%, the identification results were 
not satisfactory. The overall performances of the identification 
models of 1D CNN and 1D CNN-RF were significantly better 
than that of SVM and RF models. As shown in Table 4, the model 
constructed by 1D CNN-RF showed the best performance on 
the test set, and the identification accuracy and precision of the 
1D CNN-RF model were higher than those of other algorithms 
through longitudinal comparison. The identification rates of the 
1D CNN-RF model based on five feature extraction algorithms 
were above 94%, compared with other methods, the CARS-
SPA-1D CNN-RF model achieved the best performance on 
the test set, with an accuracy of 90.05%, a recall of 99.05%, a 
precision of 99.11%, and an F1 score of 99.05%. Based on the 

above results and analysis, the optimal model for identifying 
pesticide residues on black tea is the 1D CNN-RF model based 
on CARS-SPA. The identification distribution of pesticide 
residues on black tea by the 1D CNN-RF model is shown in 
Figure 7. It can be seen from Figure 7 that after the characteristic 
spectrum extracted by CARS-SPA was used as the input of the 
1D CNN-RF model, the identification rates were significantly 
improved, and only one sample with the mixture of BFT and 
DFT was identified as one TFP sample. The results showed that 
the 1D CNN-RF model based on CARS-SPA can well identify 
whether black tea is sprayed with pesticides and which kind 
of pesticides is sprayed.

The above results showed that the combination of fluorescence 
hyperspectral technology with the 1D CNN-RF model could 
accurately distinguish whether the pesticide residues were on the 
surface of black tea, and could effectively identify the pesticide 
residues of BFT, DFT, mixtures of BFT and DFT, TFP, IDC, and 
mixtures of TFP and IDC on the surface of black tea, which 
provided a new method for the non-destructive identification 
of pesticide residues on Ya’an black tea.

Figure 7. 1D CNN-RF pesticide residues identification model training results based on: (a) raw spectral data without extracting characteristic 
spectrum; (b) MSC; (c) UVE; (d) SPA; (e) CARS; (f) UVE-SPA; (g) CARS-SPA. (h) labels.
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4 Conclusions
In this study, a new 1D CNN-RF framework was proposed 

for the non-destructive identification of pesticide residues on 
the surface of black tea based on fluorescence hyperspectral 
technology.

This study collected the fluorescence hyperspectral images of 
Ya’an black tea sprayed with distilled water, BFT, DFT, mixtures of 
BFT and DFT, TFP, IDC, and mixtures of TFP and IDC. The raw 
spectral data were preprocessed by MSC and SNV, and then the 
characteristic spectral segments were extracted by three one-
dimensionality reduction methods (UVE, SPA, CARS), and two 
secondary combinations of dimensionality reduction methods 
(UVE-SPA, CARS-SPA). Based on the extracted characteristic 
spectral segment variables, four identification models of SVM, 
RF, 1D CNN, and 1D CNN-RF were established. The comparison 
results showed that the 1D CNN-RF identification model based 
on CARS-SPA had the best performance: accuracy of 99.05%, 
recall of 99.05%, precision of 99.11%, and F1 score of 99.05%. 
This was because the RF model made up for the overfitting of the 
1D CNN model when the sample size was small. In conclusion, 
the proposed 1D CNN-RF model based on CARS-SPA has great 
potential in pesticide species identification, which provides a 
non-destructive, accurate, and fast pesticide residue identification 
method for food quality and safety.

The results show that fluorescence hyperspectral technology 
combined with machine learning is a feasible method for 
identifying pesticide residues. At the same time, combined with 
the analysis of experimental data, the proposed 1D CNN-RF 
model showed excellent performance in black tea pesticide 
residue identification, it can be obtained that this method can 
get better results than traditional methods. In the future, we will 
increase the amount of sample data and the number of pesticide 
species based on this experiment, and strive to develop a highly 
targeted and real-time online rapid non-destructive identification 
system for pesticide residues.
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