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1 Introduction
In recent years, an increasing number of scientists have 

concentrated on investigating free radicals and redox pathways 
towards assisting in the prevention of cardiovascular disease, 
tumours, and other diseases and ageing (Hu et al., 2021; Liang et al., 
2021; Panov & Dikalov, 2020). The free radicals in the cells of the 
human body are in a dynamic balance under normal conditions, 
and are continuously produced in the human body, resulting 
from pollution, radiation, sunlight exposure, and other factors. 
Because the body’s antioxidant defence system cannot destroy 
them, excessive generation of free radicals damages cellular 
proteins, lipids, and DNA, causing cell necrosis and apoptosis 
(Ullah et al., 2017). Antioxidants are thus a critical component 
of the body’s defence against oxidative damage (Gatasheh et al., 
2021; Chen et al., 2021; Halliwell et al., 2021). They trap and 
neutralize free radicals, hence preventing free radical harm 
to the human body (Halliwell, 2020). Finding high-efficiency, 
low-toxicity, and reasonably priced antioxidants from natural 
medicines and foods has thus become an important direction 
of research in this field.

Coronary heart disease (CHD) is a highly prevalent 
cardiovascular disease with increasing morbidity and mortality 
as the population ages. There is much evidence suggesting that 

oxidation plays a key role in the progression of atherosclerosis 
at all stages (Zhong et al., 2019). Fatty acids, present in fatty oils, 
have special lipophilic and electron-stabilizing properties that 
make them a promising class of natural medical antioxidants 
(Sherratt & Mason, 2018). By quickly forming less harmful free 
radical compounds, protein free radical damage can be rapidly 
repaired, avoiding the emergence of cascades of new reactive 
species and therefore avoiding atherosclerosis and coronary 
heart disease (Gebicki & Nauser, 2021).

Migao is the dry ripe fruit of Cinnamomum migao H.W.Li 
which belongs to the Cinnamomum Trew family of Lauraceae. 
Migao can be soaked in water and eaten like kimchi, and it can 
also be used for seasoning in cooking. Both methods have a 
similar function of strengthening the spleen-stomach. The fruit 
can also be broken or powdered and ingested for heart pain in 
China, which can instantly ease the pain. Migao, according to 
Hmong medicine, is able to warm middle-jiao to dispel colds, 
regulate qi, and relieve pain. Migao may protect against acute 
myocardial ischemia injury by boosting antioxidant efficacy, 
according to modern pharmacological investigations. However, 
its antioxidant activity mechanism has yet to be acknowledged 
(Li & Yang, 2021). Researchers discovered that MFO has the 
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ability to treat CHD, but the chemical composition of MFO 
was unknown and there was no standardised antioxidant test 
technique.

Despite significant developments in CHD, such as 
interventional and surgical therapy, the issue of providing effective 
and safe care to patients with circulatory failure caused by CHD 
is still a topic of conversation. Creating bioactive foods with 
several compositions is another means, in addition to creating 
medications to treat CHD, that may be used at various phases 
of the disease’s development. This approach not only serves as a 
preventive precaution for those who have no clinical symptoms 
of the condition but also encourages the development of food 
treatment, which may be combined with medication or surgery.

To learn more about MFO’s chemical composition and 
mechanism of action in the treatment of OD-CHD, we used 
a gas chromatograph-mass spectrometer (GC-MS) to analyse 
the compositions of 10 batches of MFO; we then used network 
pharmacology and molecular docking technology to predict 
the pharmacodynamic material basis and mechanism of MFO 
in the treatment of OD-CHD from a molecular perspective; 
simultaneously, the DPPH method and the ABTS·+ assay methods 
were employed to assess the in vitro antioxidant capabilities of 
MFO in order to develop a more acceptable test method for 
fatty oil antioxidants (Figure 1). The goal of this research is to 
establish a theoretical foundation for fully using Migao medicinal 
material resources, as well as to create the groundwork to produce 
Guizhou-area-specific medicinal material.

2 Materials and methods
2.1 Materials and reagents

Ten batches of migao were identified as the dry ripe fruit 
of Cinnamomum migao H.W.Li by Professor Sun Qingwen of 

Guizhou University of Traditional Chinese Medicine (Table 1). 
The reagents used were 1,1-diphenyl-2-trinitrophenylhydrazine 
(DPPH, purity ≥ 97.0%), Tihibu (Shanghai) Chemical 
Industry Development Co., Ltd.; Diammonium 2,2’-azino-bis 
(3-ethylbenzothiazoline-6-sulfonate) (ABTS, purity ≥ 98.0%), 
Hefei Bomei Biotechnology Co., Ltd.; potassium persulfate, 
potassium hydroxide, hexanes, sodium hydroxide, hydrochloric 
acid, methanol, ethanol absolute, petroleum ether (30-60 °C) 
and were all of analytical grade, plus homemade distilled water.

2.2 Analysis of Chemical Composition of MFO

Preparation of MFO

Extraction of MFO

MFO was extracted by the Soxhlet extractor method. 
The extraction solvent was petroleum ether, the ratio of material 
to liquid (g/mL) was 1: 15, and the temperature was 85 °C for 
the extraction. The extract was transferred to a weighing bottle 

Figure 1. Integrated workflow for discovery of the potential mechanisms of MFO against OD-CHD.

Table 1. Source information of Cinnamomum migao.

S/N Latin name Market address
S1 Litsea lancilimba Luodian, Guizhou
S2 Litsea lancilimba Luodian, Guizhou
S3 Litsea lancilimba Luodian, Guizhou
S4 Litsea lancilimba Cheheng, Guizhou
S5 Litsea lancilimba Cheheng, Guizhou
S6 Litsea lancilimba Anlong, Guizhou
S7 Litsea lancilimba Gongli, Guizhou
S8 Litsea lancilimba Tiane, Guangxi
S9 Litsea lancilimba Tiane, Guangxi

S10 Litsea lancilimba Wangmo, Guizhou
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after passing through a rotary evaporator, and dried in an oven 
at 105 °C for 1 h to obtain the MFO.

Preparation of methyl esterified MFO

To accurately weighed MFO (0.50 g) was and added 20 mL 
of 0.5 mol/mL potassium hydroxide-methanol solution, then 
placed it in a 60 °C water bath for 15 min, and removed to 
cool. Thereafter, 40 mL of 25% hydrochloric acid was added, 
placed in a 60 °C water bath for 15 min, and then removed to 
cool. Another 20 mL of n-hexane was added and mixed well. 
Finally, 20 mL of saturated sodium hydroxide was added and 
left to stand for 15 min. The supernatant was evaporated to 
dryness under reduced pressure to obtain methyl esterified 
MFO (Huang et al., 2020).

GC-MS analysis conditions

GC-MS was performed on an Agilent HP6890/5975C GC-
MS (USA) to profile the chemical composition of each MFO. 
GC was equipped with an Rtx-5 MS(30 m×0.25 mm×0.25 μm) 
capillary column. Temperature programming: the column 
temperature was 100 °C, rose to 130 °C at the rate of 3 °C/min 
and then at 2 °C/min to 230 °C for 2 min. Running time 60 min. 
Vaporization chamber temperature 230 °C. The carrier gas was 
high purity helium (99.999%). The precolumn pressure was 
18.49 psi, the carrier gas flow was 1.0 mL/min, the split ratio was 
10:1, and the solvent delay time was 5.5 min. The ion source was 
an EI source, and its temperature was 230 °C; electron energy 
70 eV. Emission current 34.6 μA; multiplier voltage 1953 V; the 
interface temperature was 280 °C; and the mass ranged from 
50 to 500 amu.

Analysis of the composition of MFO

After obtaining mass spectral information from GC-MS, 
it was matched against the NIST 17 database. The peak area 
normalization method was used to express its relative percentage.

2.3 Determination of antioxidant activity

Preparation of MFO solutions

The MFO sample under 2.2.1 above, was prepared ensuring 
sample solutions with a mass concentration of 0.5, 1, 1.5, 2.0, 
2.5 mg·mL-1 using absolute ethanol.

DPPH ((2,2-Diphenyl-1-picrylhydrazyl)) free radical 
scavenging assay

The antioxidant activity of MFO was measured in terms 
of radical scavenging ability, using a DPPH plant assay. 
All measurements were performed as follows: an amount of 
1.0 mL of the five different concentrations of liquid extract was 
added to 2.0 mL of the DPPH· ethanol solution with a mass 
concentration of 0.1 mmol L-1, and the absorbance readings were 
taken after 30 min against the blank at 517 nm (Zhang et al., 
2022b; Nie et al., 2022). The antioxidant capacity was calculated 
using the following Equation 1 where, (Ac: the absorbance of 
DPPH· solution and solvent, Ai: the absorbance of the sample 

solution and DPPH· solution, Aj: the absorbance of solvent 
solution and the sample):

( )Radical Scavenging Capacity (%) 100%Ac Ai Aj
Ac

− −
= × 	 (1)

ABTS·+ (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) 
free radical scavenging assay

ABTS·+ solution (7 mmol/L) and potassium persulfate solution 
(2.45 mmol/L) should be mixed in equal amounts. The reaction 
system was placed at room temperature and sheltered from light 
for 24 hours, diluted with anhydrous ethanol, the absorbance 
set at 734 nm (Jovanović et al., 2021; Aljobair, 2022), and the 
wavelength was 0.70 (± 0.002). In this way, the ABTS·+ working 
solution was obtained. All measurements were performed as 
follows: the amount of 2.0 mL of liquid extract was added to 
2.0 mL of the ABTS·+ working solution, and the absorbance 
readings were taken after 6 min at 734 nm. The antioxidant 
capacity was calculated using the following Equation 2 (ASample-
the absorbance of the sample and ABTS·+ working solution, 
ABlank-the absorbance of ABTS·+ working solution and solvent, 
Acontrol-the absorbance of solvent solution and the sample)

%
-( - )

Radical Scave t 10nging Capac 0i y Blank Sample Control

Blank

A A A
A

×= 	 (2)

2.4 Network pharmacology analysis predicts mechanism of 
oxidation resistance

Screening of active ingredients of MFO

To obtain the active chemical ingredients, we used the 
Traditional Chinese Medicine Systems Pharmacology Database 
and Analysis Platform (TCMSP) to screen the chemical 
components under section 2.2 above. Its screening conditions 
were oral bioavailability (OB) ≥ 30% and drug-likeness index 
(DL) ≥ 0.18 (Liu et al., 2022); or we used PubChem to obtain 
the 2D structure or Canonical Smiles information of the 
chemical components, and imported the information into the 
SwissADME database (http: https://www.swissadme.ch/) for 
screening (Oh et al., 2021). The filter conditions were that the 
(gastro-intestinal) GI absorption value was “high”, and the five 
amounts under Drug-likeness were “Yes”

Prediction of the active ingredient target of MFO

The Canonical Smiles of active ingredient were entered into the 
SwissTargetPrediction database (http://www.swisstargetprediction.
ch/), and the species was defined as “homo sapiens”, followed 
by a probability > 0 screening (Zhu et al., 2022). It was merged 
with the predicted targets of the TCMSP database corrected 
by the UniProt database (https://www.uniprot.org), and the 
target genes of the MFO’s active components were obtained 
after deduplication.

OD-CHD related targets gene screening

Using “Oxidation damage” and “Coronary Heart Disease” 
as the search keywords, we searched the GeneCards database 
(https://www.gene-cards.org) (Yu  et  al., 2022), and OMIM 
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database (http://www.omim.org) (Wang et al., 2022b), to obtain 
potential targets associated with OD-CHD. The two disease 
database targets were combined and the repeat value was deleted 
to get the OD-CHD related targets.

Interaction network of component-target

We used the Venny 2.1.0 online mapping tool to draw a Venn 
diagram of the potential targets of the active ingredients of MFO 
and OD-CHD related targets, and to obtain the intersection 
targets of MFO and OD-CHD. The intersection targets were 
imported into Cytoscape 3.8.2 software to construct an interaction 
network of component targets.

Protein-Protein Interaction (PPI) network and core target genes

The common targets of MFO and OD-CHD were imported 
into the STRING database (http://string-db.org/) (Li  et  al., 
2022), and the targets with interaction confidence greater than 
0.4 were selected. Import it into Cytoscape 3.8.2 software to get 
PPI visualization network diagram. Finally, with the help of the 
“CytoHubba” plug-in of the software, the top 5 target genes were 
obtained, which were the core target genes.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis

Using the Metascape database (http://metascape.org/), GO 
functional annotation and KEGG pathway enrichment analysis 
were performed on the intersection target genes of MFO and 
OD-CHD, and p < 0.01 was used as the screening condition 
(Wei et al., 2022). The enrichment results were displayed using 
the SRplot (http://www. bioinformatics. com.cn/ srplot).

Molecular docking verification

Six active ingredients were selected for molecular docking 
with the five key target genes. Pre-processing the protein receptor 
molecule was performed by using the Py MOL software after 
having downloaded the 3D structures of major possible target 
proteins from the RCSB PDB library (https://www.pdbus.org/) 
(Wu  et  al., 2022). We downloaded the 3D structures of key 
potential target proteins from the RCSB PDB database (https://
www.pdbus.org/), and used the Py MOL software to pre-process 
the protein receptor molecule (Sun et al., 2022). The pre-treatment 
of active compound ligands was performed using OpenBabelGUI 
software. We imported the pre-processed potential targets and 
active compound components into the docking software Auto 
Dock for molecular docking. With the help of Py MOL software, 
the compounds with a higher docking score and more stable 
conformation were combined with the target protein to perform 
molecular docking visualisation analysis (Zhang et al., 2022a).

3 Results
3.1 Composition analysis of MFO

In the ten batches of MFO, a total of 35 fatty acid components 
were identified. Among them, eight fatty acid components, with 
a relative percentage of 54.73%, were among the 38 components 

that were isolated from S1. From S2 – S10 there were, respectively: 
S2 (relative percentage 85.75%), comprising 20 fatty acids from 
53 components; S3 (91.73%), 11 fatty acids from 23 components; 
S4 (96.14%), eight fatty acids from 13 components; S5 (93.56%), 
five fatty acids from 10 components; S6 (96.01%), 9 fatty acids from 
18 components; S7 (71.99%), eight fatty acids from 21 components; 
S8 (76.27%), 20 fatty acids from 67 components; S9 (88.98%), 
4 fatty acids, from 7 components; and S10 (96.47%), 9 fatty acids 
from 14 components. There were 17 medium-chain fatty acids 
(MCFAs) and 18 long-chain fatty acids among the 35. The peak 
area normalization method was used to calculate the relative 
percentage content of each component (Table 2 and Figure 2.)

3.2 Antioxidant activity in vitro

Because antioxidant activity varied in vitro, each of the ten 
batches had its own response characteristics and processes. There 
was no benchmark that effectively represented all chemicals’ 
antioxidant capacity in complicated systems. Consequently, the 
antioxidant activity of the ten batches of MFO was determined 
using the DPPH· and ABTS·+ techniques, as indicated in Figure 3. 
The antioxidant activity of these were positively linked with 
the mass concentration. S2 displayed high antioxidant activity, 
according to ABTS·+ technology, with a clearance rate of 64.56% 
- 94.29%. The results of the DPPH· technique demonstrated 
that S1 had high antioxidant activity, with a clearance rate of 
75.88% - 98.87%. Furthermore, we discovered that the clearance 
rate obtained by the DPPH· approach was often higher than that 
obtained by the ABTS·+ method, which could be owing to the 
DPPH· reagent’s lipophilicity. This meant that when determining 

Figure 2. GC-MS profile of 10 batches of MFO compositions.

http://string-db.org/
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antioxidant activity in vitro, we could use a detection method 
that has features similar to the analyte.

We used the Manhattan Distance technique to perform 
cluster analysis and Pearson’s correlation analysis on the MFO 
from various origins in order to investigate the relationship 
between common components and the antioxidant activity. 
The antioxidant activity measured by the DPPH· method was 
positively correlated with the contents of methyl decanoate and 
methyl dodecanoate, whereas the antioxidant activity measured 
by the ABTS·+ method was negatively correlated with the 
contents of methyl decanoate and methyl dodecanoate, as shown 
in Figure 4. The features of migao were similar that of DPPH· 
since the common components are all fatty acids before methyl 
esterification, indicating that the DPPH· approach was better for 
determining the antioxidant activity of fatty oils. Figure 5 showed 
that S1 (September 2018), S2 (September 2019), S4 (September 

2019) were the same class; S3 (October 2019) was a solitary class; 
S7 (October 2020) and S9 (October 2020) were the same class; 
S5 (October 2019) and S6 (October 2020) were the same class; 
S8 (October 2020) and S10 (October 2020) were the same class; 
and the collection time of this classification was closely related.

3.3 Network pharmacology research

Active ingredients of MFO

TCMSP and SwissADME were used to screen the chemical 
compositions of 35 MFO under section “3.1” yielding a total of 
six MFO active ingredients (see Table 3).

Targets of active ingredients and OD-CHD

After sorting the prospective targets predicted by TCMSP 
and the SwissTargetPrediction website, a total of 320 potential 

Table 2. Ten batches of MFO compositions (S1-S10) and relative percentage of constituents.

Compound Name Formula S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Thymol acetate C12H16O2 0.52 0.23 0.39 0.53 0.61 0.33 1.31 0.19
Methyl decanoate C11H22O2 18.72 46.06 61.34 51.76 54.26 53.71 16.76 15.32 35.87 36.76
Methyl dodecanoate C13H26O2 15.46 30.89 23.88 40.16 36.04 38.76 40.55 27.3 44 35.44
(R)-lavandulyl (R)-2-methylbutanoate C15H26O2 0.61 1.48
Guaiol acetate C17H28O2 0.62 2 0.78 6.48
Isovaleric anhydride C10H18O3 4.68
2-Methylbutanoic anhydride C18H22O2 0.62
5-tert-Butyl-2,2’-dimethoxy-biphenyl C18H22O2 5.94 4.59
4-Terpinenyl acetate C12H20O2 0.06
Methyl octanoate C9H18O2 0.08
Spirobicyclo[2.2.1]heptane-2,2’-(1’,3’-dioxa-2’-
oxocyclohex-5’-ene)], 1,6’,7,7-tetramethyl-

C14H20O3 0.75 1.54 0.07

Neoisothujyl acetate C12H20O2 0.29 0.33
β-Terpinyl acetate C12H20O2 0.24 0.17 0.23
Geranyl propionate C13H22O2 0.14
α-Terpinyl acetate C12H20O2 0.1 2.2 0.07
Shisool formate C11H18O2 0.2
Bornyl formate C11H18O2 1.56
Tau-Cadinol acetate C17H28O2 1.47 1.18 12.84 1.19
2,6,10-Trimethyl-12-acetoxy-2,6,10-dodecatriene-1-ol C17H28O3 0.19
Methyl tetradecanoate C15H30O2 0.45 0.44 0.69 0.65 0.73
Methyl palmitoleate C17H32O2 0.26 1.37 2.01
Methyl palmitate C17H34O2 0.83 0.29 3.86 4.76
Methyl elaidate C19H36O2 0.86 0.79 0.54 1.21 0.71 3.78 2.63 6.84
Methyl vaccenate C19H36O2 0.6 0.57 0.99 2.71 6.44
Isobornyl formate C11H18O2 0.31
Borneol, trifluoroacetate (ester) C12H17F3O2 1.23 1.49 1.44 0.9
Ethyl 1-Methylimidazole-2-carboxylate C7H10N2O2 0.26 0.17
Decanoic acid C10H20O2 0.36 2.78
6-Octen-1-one, 3,7-dimethyl-3-ethenyl-1-(4-
methoxyphenyl)-

C19H26O2 7.56 3.1

Isothujyl acetate C12H20O2 1.21
Proximadiol C15H28O2 0.99
Lauric acid C12H24O2 0.22
γ-Eudesmol acetate C17H28O2 0.27
Methyl linoleate C19H34O2 0.49 1.69 2.3
Methyl stearate C19H38O2 0.2
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targets were found. Thereafter after sorting out the GeneCards 
and OMIM databases, 1239 OD-related targets and 1434 CHD-
related targets were found. In total 67 target genes at the 
intersection of MFO and OD-CHD were discovered using the 
Venny 2.1.0 online drawing tool(Figure 6).

Construction of “active ingredients-targets-OD-CHD” network

MFO’s six active ingredients and the Venny online tool’s 
67 intersecting targets were combined in Cytoscape 3.8.2 software 
to create an “active ingredient-target-OD-CHD” network, as 
illustrated in Figure 7. There were 94 nodes and 198 edges in 
the network. 2,6,10-trimethyl-12-acetoxy-2,6,10-dodecatriene-
1-ol, tau-cadinol acetate, (R)-lavandulyl (R)-2-methylbutanoate, 
dodecanoic acid, guaiol acetate, and trifluoroacetyl-epiisoborneol 
could interact with 24, 22, 21, 19, 18 and 2 target proteins, 
respectively, based on the degree value.

Figure 3. In vitro antioxidant results of 10 batches of MFO using different methods.

Figure 4. Results of Pearson correlation analysis. Figure 5. Results of cluster analysis with Manhattan Distance technique.

Figure 6. MFO and OD-CHD intersection target genes.
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PPI network analysis

The STRING database (http://string-db.org/) was used to 
import the common targets of MFO and OD-CHD, and the 
results were shown using Cytoscape 3.8.2 software, as shown 
in Figure 8. The network included 67 nodes, which constituted 
538 interaction relationships (in the network, the size and 
colour of nodes were positively correlated with the importance 
of nodes). Using the “CytoHubba” plugin, the top five target 
genes were AKT Serine/Threonine Kinase 1 (AKT1), Tumor 
Necrosis Factor (TNF), Epidermal Growth Factor Receptor 
(EGFR), Prostaglandin-Endoperoxide Synthase 2 (PTGS2), and 
Matrix Metallopeptidase 9 (MMP9), which were predicted to 
be closely related to OD-CHD.

Table 3. Active ingredient information of MFO.

PubChemCID Chemical composition Molecular structure
Screening conditions

OB DL GI absorption Druglikeness(Yes)
87232330 (R)-lavandulyl (R)-2-

methylbutanoate
- - High 5

5363409 2,6,10-Trimethyl-12-acetoxy-
2,6,10-dodecatriene-1-ol

- - High 5

564724 Trifluoroacetyl-epiisoborneol - - High 5

14683249 Tau-Cadinol acetate - - High 5

3893 Dodecanoic acid 23.59 0.04 High 5

240122 Guaiol acetate - - High 5

Figure 7. MFO “active ingredient-OD-CHD” network.
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GO and KEGG analysis

The intersection targets were added into the Metascape 
database, producing 5883 GO enrichment analysis results 
(p<0.01), comprising 531 molecular functions, 4027 biological 

processes, and 325 cellular components. The biological process 
included positive regulation of protein phosphorylation, cellular 
response to nitrogen compounds, positive regulation of cell 
migration, etc.; the cell composition included membrane raft, 
receptor complex, side of membrane, etc.; and the molecular 
functions included protein serine/threonine/tyrosine kinase 
activity, nuclear receptor activity, and heme binding, among 
other things. An SRplot was used to depict the top 10 enrichment 
results (Figure 9).

KEGG pathway enrichment analysis yielded a total of 
239 entries (p < 0.01). Lipid and atherosclerosis, PI3K-Akt 
signalling pathway, Rap1 signalling pathway, MAPK signalling 
pathway, Fluid shear stress and atherosclerosis, and other pathways 
were involved in OD-CHD. The results of these five enrichments 
were visualized utilizing the SRplot platform (Figure 10).

Molecular docking verification

The top five core target genes of MFO and OD-CHD were 
selected for molecular docking with the top six active components 
of MFO, as shown in Table 4. The smaller the docking binding 
force value, the more stable the ligand-receptor binding was, 
and the greater the chance of interaction. Tau-Cadinol acetate 
had the lowest binding force to matrix metalloproteinase 
9 (MMP9), with a value of -7.06 kcal mol-1 (1 kcal ≈ 4.186 kJ). 
As demonstrated in Figure 11, components with low binding 
energies with proteins were chosen for the docking visualization.

Figure 8. PPI network of target genes at the intersection of MFO and 
OD-CHD.

Figure 9. GO functional enrichment analysis bubble plot.
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recent years. MCFAs have been shown in studies to not only 
reduce myocardial oxidative damage, but also to be converted 
by the liver into ketone bodies as an alternative energy source 
to compensate for cardiac injury (Saifudeen & Renuka, 2021). 
The MCFAs, capric acid and dodecanoic acid have proved 

4 Discussion

The antioxidant activity of 10 batches of MFO were examined 
in vitro in this study, and all showed good antioxidant activity. 
Increasing numbers of academics have focused on MCFAs in 

Figure 10. MFO “target-pathway” interaction network.

Table 4. Molecular docking results.

Active ingredient
Binding energy/kcal·mol-1

AKT1 TNF EGFR PTGS2 MMP9
2,6,10-trimethyl-12-acetoxy-2,6,10-dodecatriene-1-ol -4.87 -4.00 -3.97 -3.12 -5.48

(R)-lavandulyl (R)-2-methylbutanoate -3.74 -3.24 -3.09 -3.17 -4.97
tau-cadinol acetate -5.35 -5.04 -4.55 -4.73 -7.06

dodecanoic acid -3.25 -2.96 -3.27 -2.60 -3.73
guaiol acetatel -5.81 -5.51 -4.99 -4.89 -6.74

trifluoroacetyl-epiisoborneo -4.92 -4.61 -4.49 -3.37 -5.36
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Figure 11. Molecular docking mode. (a)2,6,10-trimethyl-12-acetoxy-2,6,10-dodecatriene-1-ol- MMP9; (b) dodecanoic acid-MMP9; (c) guaiol 
acetatel-MMP9; (d) (R)-lavandulyl (R)-2- methylbutanoate-MMP9; (e) tau-cadinol acetate-MMP9; (f) trifluoroacetyl-epiisoborneo -MMP9.
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result, intervening in the Rap1 signalling pathway can help 
prevent atherosclerosis (Wong et al., 2018).

MFO may play a role in the therapy of OD-CHD by interfering 
with the pathways and targets mentioned above, as predicted 
by network pharmacology. This suggests that MFO can help 
OD-CHD by interacting with a variety of targets and pathways.

5 Conclusions
In this study, the anti-oxidative efficacy of MFO was confirmed 

using in vitro antioxidant tests, the chemical components of 
MFO were identified using GC-MS, and its mechanism of action 
in the treatment of OD-CHD was investigated using network 
pharmacology. The findings suggested that MFO treatment of 
OD-CHD had multi-component, multi-target, and multi-pathway 
characteristics, implying that oxidative stress, inflammatory 
response, endothelial dysfunction, and other processes might 
be involved. Further research into the mechanism of action of 
MFO in the treatment of OD-CHD is needed, and our findings 
will help.
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