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1 Introduction
Previous studies found that maternal nutrition status during 

pregnancy influenced the development of fetal muscle, and 
postnatal health of offspring through regulating the environment 
in the uterus (Godfrey & Barker, 2000; Musser  et  al., 2004; 
Zhu et al., 2006). The development of skeletal muscle in the 
early to mid-gestation period has an important influence on 
the number and composition of offspring muscle fibers in cattle 
(Zhu et al., 2006). And other researcher observed that maternal 
nutritional (energy) restriction during late pregnancy decreased the 
expression of genes in muscle of offspring calves, which indicated 
that alterations in the intra-uterine environment could change 
prenatal development and muscle development (Sanglard et al., 
2018; Costa et al., 2021). In the lipid metabolism, vitamin D has 
potential nutritional regulation in animals (Wang et al., 2016). 
Maternal vitamin D3 levels affected intramuscular adipocyte 
commitment and differentiation in piglets by regulating adipogenesis 
related genes expression (Guo et al., 2020a). Maternal vitamin 
D deficiency during pregnancy promoted the proliferation and 
differentiation of pre-adipocytes, and resulted in offspring obesity 
(Wen et al., 2018). In addition, maternal vitamin D levels during 
late pregnancy also affects the development of offspring muscle 
(Harvey et al., 2014). For example, this study found that prenatal 
and postnatal skeletal muscle development in offspring pigs was 

thought to rise maternal vitamin D levels, possibly due to the 
involvement of vitamin D3 in the myogenic signaling pathway 
in the expression of muscle transcription factors (Zhou et al., 
2016). Intramuscular fat (IMF) deposition affects meat quality 
of animals, and appropriate amount of IMF can promote the 
taste, juiciness and tenderness of meat, which enhancing the 
meat quality (Li  et  al., 2020b). Therefore, IMF is important 
for meat palatability, and adipocytes in embryonic stage can 
provide deposition site for increasing IMF content in later 
fattening stage (Tong et al., 2008; Du et al., 2010). Our previous 
work demonstrated that maternal vitamin D3 supplementation 
significantly boosted IMF accumulation and meat quality in 
offspring pigs (Guo et al., 2020a; 2020b). Therefore, adjustment 
of maternal nutritional status is considered to be an effective 
method to increase adipogenesis in fetal muscle, and enhance 
marbling of offspring (Du  et  al., 2013). Enhancing evidence 
showed that the condition of postmortem storage has also become 
an important factor affecting meat quality, and pork batters can 
reduce the rate of fat and protein oxidation when stored at low 
temperature (Pomponio & Ruiz-Carrascal, 2017). In addition, 
pork can effectively improve the ability of myofibrillar protein 
hydrolysis and increase flavor and water retention in the process 
of postmortem ripening (Li  et  al., 2009). There is no doubt 

Effects of maternal vitamin D3 status on quality characteristics of pork batters in 
offspring pigs during cold storage

Suli WANG1 , Liping GUO2,3, Zhiguo MIAO1*, Hanjun MA3, Sergiy MELNYCHUK2*

a

Received 28 Sept., 2021 
Accepted 02 Nov., 2021
1	College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
2	Sumy National Agrarian University, Faculty of Food Technology, Sumy, Ukraine
3	School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
*Corresponding author: miaozhiguo1998@126.com; serge.melnychuk@gmail.com
Suli Wang and Liping Guo: these two authors contributed equally to this work.

Abstract
Seventy-two offspring pigs (150 d) from 27 sow (9 sows per group) fed different vitamin D3 levels were used to evaluate the 
effects of maternal vitamin D3 status and postmortem cold storage on cooking loss, color, texture profile analysis (TPA), low-
field nuclear magnetic resonance (LF-NMR) T2 relaxation times and dynamic rheological of gel properties of chilled pork 
batters in offspring pigs. Sows were allotted to low, normal, and high dietary vitamin D3 groups which contained 200 (LD), 
800 (ND), and 3200 (HD) IU of vitamin D3/kg basal diet, respectively. Results showed that HD group had higher a* value, 
hardness, cohesiveness, springiness, chewiness, and storage modulus (G’) values, while had lower cooking loss, L* value, T21 
and T22 relaxation time compared with LD group during postmortem cold storage period (P < 0.05). In addition, cold storage 
time increased cooking loss and b* values of LD and ND groups, TPA parameters, T22 relaxation time and G’ values of all 
experimental groups, while decreased a* and L* values of LD and ND groups (P < 0.05). The results revealed that maternal 
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about the influence of maternal vitamin D3 supplementation 
on pork quality of offspring. Nonetheless, little is known about 
how maternal vitamin D3 supplementation affects the quality of 
offspring minced pork during storage. Therefore, the purpose of 
this study was to explore the effects of maternal vitamin D3 levels 
on cooking loss, meat color, texture properties, low-field NMR 
T2 relaxation time and dynamic rheological properties of chilled 
pork batters of offspring during postmortem storage.

2 Materials and methods

2.1 Animals and diets

All handling protocols related to animals were approved 
by the Henan Institute of Science and Technology Institutional 
Animal Care and Use Committee (No. 2020HIST013, Xinxiang, 
P.R. China). All offspring pigs used in this study originated from 
sows fed various vitamin D3 levels (during pregnancy), all diets 
and experimental design for sows and their offspring pigs as 
described in our previous companion reports (Guo et al., 2020b; 
Guo et al., 2021) Sows during pregnancy were previously added 
200 (LD), 800 (ND), and 3200 (HD) IU of vitamin D3 per kg 
diet, respectively. While their offspring pigs were fed the same 
vitamin D3 diet, and the feeding experiment lasted for 150 days.

2.2 Tissue collection

Six offspring pigs per each group (2 offspring pigs per 
replicate, randomly selected) were slaughtered based on body 
weight and gender (Miao et al., 2009). After slaughtering, the 
carcass was split longitudinally. The longissimus dorsi muscle was 
divided into three parts and refrigerated at 4 °C for 0, 24 and 
48 h, respectively. Muscle sample was grinded using a meat 
grinder (6 mm), and weighed 200 g, added 20% ice water and 
2% NaCl to each sample.

2.3 Cooking loss measurement

Samples of pork batters were separately packed with a plastic 
bag and kept in 85 °C water for 20 min. Samples of cooked pork 
batters were chilled to room temperature for 30 min. Wipe off 
the surface exudates with absorbent paper. The cooking loss 
was calculated according to the percentage weigh ratio of pork 
batters before and after cooking (Choi et al., 2016) (Equation 1).

( ) ( )  %   /b a bCooking loss M M M= − 	 (1)

In this equation, Mb and Ma represent the weight of pork batters 
before and after cooking (Zhang et al., 2019).

2.4 Color measurement

The exudates from the surface of cooked pork batters are 
wiped off using absorbent paper. After storage in refrigerator 
at 4 °C for 0, 24 and 48 h, the color of pork batters in offspring 
pigs was determined with a colorimeter (Konica Minolta CR 
410, Sensing Inc, Osaka, Japan). The meat color contained 

lightness (L*), redness (a*) and yellowness (b*) value, respectively 
(Jia et al., 2012).

2.5 TPA (Texture profile analysis)

The cooked pork batters were stored in refrigerator at 4 °C for 
0, 24 and 48 h, and then sorted into cylinders with a diameter of 
2 cm and a height of 3 cm. And then, the texture of the samples 
was determined using P/36R probe. Each sample was measured 
three times in parallel, and then the average values of springiness, 
hardness, chewiness, and cohesiveness were analyzed.

2.6 LF-NMR (Low-field nuclear magnetic resonance)

LF-NMR imaging analyzer (NMI20-040V-I, Suzhou Newmai 
Analytical instrument Co., Ltd.) was used to determine the 
transverse relaxation times of cooked pork batters of offspring 
pigs according to the previously reported methods (Zhang et al., 
2019; Straadt et al., 2007). Briefly, cooked pork batters in offspring 
pigs were sorted into cylinders with a diameter of 1.5 cm and 
a height of 3 cm, and each cylinder was put into a cylindrical 
tube with a diameter of 1.5 cm and a height of 5 cm. The Carr-
Purcell-Meiboom-Gill pulse sequence was used to determine 
the transverse relaxation time (T2) of LF-NMR at 32 °C, 200 μs 
(between 90°and 180° pulse), and 22.4 MHz resonance frequency. 
In total 2000 echoes (contain 8 scans) were obtained from each 
sample, and the scan interval time was 3 s. Meanwhile, each 
meat sample was measured three times in parallel, the average 
value of relaxation time was calculated.

2.7 Dynamic rheological measurement

The MCR301 Dynamic Rheometer (HAAKE MARS Rotary, 
Thermo Scientific co., Germany) with a 50 mm parallel steel 
plate geometry (0.5 mm gap) was used to determine dynamic 
rheological difference. Briefly, the raw pork batters were placed 
between the flat parallel plates which coated with a layer of silicone 
oil, and were performed at a rate 2 °C/min from 20 °C to 80 °C. 
An oscillatory mode of 10% was carried out to shear the samples 
at a fixed frequency of 0.1 Hz. Each sample was measured three 
times in parallel, and the change of storage modulus (G’) with 
temperature was determined during the heating (Kang et al., 
2017; Zhu et al., 2019).

2.8 Statistical analysis

In the present study, statistical analysis was performed 
with the one-way Analysis of Variance (ANOVA) procedures of 
SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). All treatment means 
were considered significant differences at P < 0.05 by Duncan’s 
multiple range tests. Data were presented as mean ± standard 
error of the means (SEM).

3 Results

3.1 Changes of cooking loss of pork batters in offspring pigs

As shown in Table 1, cooking loss of pork batters in offspring 
pigs derived from HD group was lower than that derived from LD 
and ND groups at 0, 24 and 48 h postmortem storage (P < 0.05), 
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while there were no differences in cooking loss between LD and 
ND groups (P > 0.05). Meanwhile, offspring pigs born to ND and 
LD groups had lower cooking loss of pork batters at 0 h compared 
with that at 48 h postmortem storage (P < 0.05). No significant 
differences in cooking loss of pork batters of HD group were 
found among all storage times (P > 0.05). Our research found 
that the cooking loss of ND and LD groups was lower at 0 h 
than at 48 h postmortem cold storage.

3.2 Changes of color of pork batters in offspring pigs

As shown in Table 2, pork batters of HD group had higher 
a* values, while lower L* values compared with LD group at 0, 
24 and 48 h postmortem storage (P < 0.05). Compared with 48 h 
postmortem storage, the a* and L* values of pork batters of ND 
and LD groups were higher at 0 h postmortem storage (P < 0.05). 
However, no significant differences in a* and L* values of pork 
batters were determined in HD group at all postmortem storage 
times (P > 0.05). b* values of pork batters in HD and ND groups 
were lower than that in LD group at all postmortem storage 
times (P < 0.05). Compared with 0 h postmortem storage, the b* 
values of pork batters in ND and LD groups were higher at 48 h 

postmortem storage (P < 0.05), while no significant differences 
in b* value of pork batters in HD group were measured at all 
storage times (P > 0.05).

3.3 Changes of TPA of pork batters in offspring pigs

As shown in Table 3, hardness, and chewiness of pork batters 
in ND group were lower than those in HD group, and were 
higher than those in LD group at all postmortem storage times 
(P < 0.05). Meanwhile, springiness and cohesiveness of pork 
batters in HD group were higher than that in LD group at all 
postmortem cold storage times (P<0.05). Compared with 0 h, all 
experimental groups (LD, ND and HD) had higher springiness, 
hardness, chewiness, and cohesiveness of pork batters at 24 and 
48 h postmortem cold storage (P < 0.05).

3.4 Changes of LF-NMR of pork batters in offspring pigs

As shown in Table 4 and Figure 1, there were three characteristic 
peaks in the T2 relaxation time map of pork batters in offspring 
pigs. There were no significant differences in T2a relaxation time 
of pork batters among all groups during postmortem storage 

Table 1. Effects of maternal vitamin D3 status on cooking loss of pork batters in offspring pigs during postmortem storage.

Item
Groups

SEM P-value
LD ND HD

0 h 13.38Ba 12.61Ba 10.29b 0.693 0.043
24 h 14.66ABa 13.84ABa 11.37b 0.838 0.031
48 h 15.76Aa 14.96Aa 11.63b 0.561 0.026
SEM 0.876 0.932 0.541 - -
P-value 0.034 0.047 0.066 - -
In the same column, values with different capital superscripts mean significant difference (P < 0.05). In the same line, values with different small letter superscripts mean significant 
difference (P < 0.05). LD, low vitamin D3 group. ND, normal vitamin D3 group. HD, high vitamin D3 group.

Table 2. Effects of maternal vitamin D3 status on color of pork batters in offspring pigs during postmortem storage.

Item
Groups

SEM P-value
LD ND HD

Lightness (L*)
0 h 79.44Aa 78.72Aab 75.14b 1.811 0.045
24 h 78.34ABa 77.63ABab 75.60b 2.193 0.039
48 h 77.06Ba 75.54Bab 74.83b 1.547 0.041
SEM 1.633 1.766 2.441 - -
P-value 0.027 0.036 0.077 - -
Redness (a*)
0 h 4.96Ab 5.08Aab 5.37a 0.152 0.013
24 h 3.61ABb 3.96ABab 4.66a 0.339 0.048
48 h 3.42Bb 3.67Bab 4.32a 0.207 0.024
SEM 0.293 0.344 0.413 - -
P-value 0.022 0.018 0.053 - -
Yellowness (b*)
0 h 9.51Ba 8.33Bb 8.18b 0.352 0.043
24 h 9.98ABa 8.91ABb 8.63b 0.579 0.032
48 h 10.87Aa 9.73Ab 8.84b 0.424 0.015
SEM 0.873 0.698 0.732 - -
P-value 0.036 0.013 0.061 - -
In the same column, values with different capital superscripts mean significant difference (P < 0.05). In the same line, values with different small letter superscripts mean significant 
difference (P < 0.05). LD, low vitamin D3 group. ND, normal vitamin D3 group. HD, high vitamin D3 group.
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Table 3. Effects of maternal vitamin D3 status on TPA of pork batters in offspring pigs during postmortem storage.

Item
Groups

SEM P-value
LD ND HD

Hardness, N
0 h 38.19Ac 43.39Ab 50.15Aa 1.873 0.041
24 h 33.20Bc 37.33Bb 42.74Ba 1.795 0.045
48 h 33.14Bc 35.84Bb 37.03Ca 1.532 0.038
SEM 1.006 1.704 1.014 - -
P-value 0.025 0.029 0.012 - -
Springiness
0h 0.941Ab 1.189Aab 1.360Aa 0.004 0.003
24h 0.866Bb 0.930Bab 1.051Ba 0.006 0.018
48 h 0.813Bb 0.828Bab 0.841Ca 0.012 0.027
SEM 0.011 0.063 0.019 - -
P-value 0.023 0.034 0.012 - -
Cohesiveness
0 h 0.491Ab 0.539Aab 0.599Aa 0.009 0.004
24 h 0.416Bb 0.436Bab 0.480Ba 0.004 0.003
48 h 0.414Bb 0.425Bab 0.449Ca 0.006 0.013
SEM 0.034 0.029 0.014 - -
P-value 0.031 0.022 0.004 - -
Chewiness, N·mm
0 h 15.45Ac 19.63Ab 23.68Aa 0.554 0.022
24 h 10.15Bc 13.57Bb 18.58Ba 0.538 0.043
48 h 9.75Bc 12.09Bb 14.53Ca 0.117 0.048
SEM 0.884 0.691 1.135 - -
P-value 0.033 0.025 0.011 - -
In the same column, values with different capital superscripts mean significant difference (P < 0.05). In the same line, values with different small letter superscripts mean significant 
difference (P < 0.05). LD, low vitamin D3 group. ND, normal vitamin D3 group. HD, high vitamin D3 group.

Table 4. Effects of maternal vitamin D3 status on LF-NMR of pork batters in offspring pigs during postmortem storage.

Item
Groups

SEM P-value
LD ND HD

T2a, ms
0 h 0.054a 0.054a 0.052a 0.001 0.207
24 h 0.052a 0.054a 0.052a 0.001 0.173
48 h 0.054a 0.054a 0.052a 0.001 0.196
SEM 0.001 0.001 0.001 - -
P-value 0.211 0.198 0.242 - -
T21, ms
0h 15.19a 14.88ab 13.25b 0.801 0.039
24h 15.47a 14.88ab 14.68b 0.663 0.022
48 h 14.88a 14.48ab 13.68b 0.512 0.047
SEM 0.713 0.601 0.858 - -
P-value 0.061 0.274 0.127 - -
T22, ms
0 h 231.01a 191.95Bb 191.46Bb 5.416 0.025
24 h 232.52a 193.51Bb 192.20Bb 3.426 0.031
48 h 233.76a 205.95Ab 200.92Ab 6.191 0.029
SEM 9.853 6.627 5.032 - -
P-value 0.092 0.046 0.041 - -
In the same column, values with different capital superscripts mean significant difference (P < 0.05). In the same line, values with different small letter superscripts mean significant 
difference (P < 0.05). LD, low vitamin D3 group. ND, normal vitamin D3 group. HD, high vitamin D3 group.
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times (P > 0.05). Whereas, T21 relaxation time of pork batters 
of offspring pigs in HD group at 0, 24 and 48 h postmortem 
were significantly lower than those in LD groups (P < 0.05). 
In addition, T22 relaxation time of pork batters in LD group 
were higher than that in HD and ND groups at 0, 24 and 48 h 
(P < 0.05). Meanwhile, The T22 relaxation time of pork batters of 
offspring pigs in all groups at 48 h was significantly higher than 
that at 0 and 24 h postmortem cold storage (P < 0.05). There were 
no differences in T21 relaxation time of pork batters at 0, 24 and 
48 h postmortem cold storage in the same group (P > 0.05).

3.5 Changes of dynamic rheological of pork batters in 
offspring pigs

The dynamic rheological properties of pork batters of offspring 
pigs during postmortem cold storage are shown in Figure 2. 
All experimental groups had similar the typical dynamic rheological 
curve of pork batters, which when the temperature from 20 °C to 
41 °C, G’ decreased slightly, and then increased slightly with the 
temperature increasing from 42 °C to 50 °C. G’ values moderately 
reduced from 54 °C to 57 °C, then G’ values of pork batters rapidly 
increased up to 80 °C. Meanwhile, under the same postmortem 
storage time, G’ values of pork batters in HD group were higher 
than that in LD and ND (P < 0.05). In addition, at the same group, 
G’ values of pork batters of offspring pigs at 48 h were higher than 
those at 0 and 24 h postmortem cold storage (P < 0.05).

4 Discussion
In the present study, it was found that there was an interaction 

between maternal vitamin D3 levels and postmortem cold 

storage on cooking loss, meat color, texture properties, LF-NMR 
T2 relaxation time and dynamic rheological properties of pork 
batters in offspring pigs. These results revealed that maternal 
vitamin D3 level and postmortem storage impacted the quality of 
pork batters in offspring pigs via adjusting meat quality indices.

Our research found that the cooking loss of ND and LD 
groups was lower at 0 h than at 48 h postmortem cold storage. 
These results suggested that water holding capacity (WHC) of 
pork batters was affected by postmortem cold storage. The results 
are in accordance with previous reports (Añón & Calvelo, 1980), 
in which it was found that freezing or frozen storage decrease 

Figure 1. Three-dimensional T2 relaxation time plot of pork batters in offspring pigs from LD, ND and HD groups during postmortem storage.LD, 
low vitamin D3 group. ND, normal vitamin D3 group. HD, high vitamin D3 group. T2a, binding water relaxation. T21, immobile water relaxation 
time. T22, free water relaxation time.

Figure 2. Dynamic rheological G’ plot of pork batters in offspring pigs 
from LD, ND and HD groups during postmortem storage.LD, low vitamin 
D3 group. ND, normal vitamin D3 group. HD, high vitamin D3 group.
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the WHC of meat, and the cooking loss of meat was increased 
during cold storage (Xu et al., 2012; Hong et al., 2015). These 
results may be due to the destruction of muscle tissue structure 
during postmortem cold storage, resulting in the reduction of 
water protein interaction, which reduces the WHC of meat 
(Cheng  et  al., 2020). Previous study has demonstrated that 
the decrease in WHC of meat may be related to the decrease 
of pH value, the denaturation of proteins and the destruction 
of muscle fiber structure during cold storage (Leygonie et al., 
2012). Meanwhile, no differences in cooking loss of pork batters 
were observed in HD group during whole postmortem cold 
storage times, which suggested that maternal high-dose vitamin 
D3 addition decreased the cooking loss, and increased juiciness 
of pork batters in offspring pigs at all postmortem cold storage 
times. The reason may be that maternal high-dose vitamin 
D3 addition inhibited the decline of cooking loss by reducing 
the decline of pH value in meat samples, and improving the 
juiciness of pork batters in offspring pigs (Guo et  al., 2021). 
In addition, the cooking loss in LD and ND groups was higher 
than that in HD group at 0 h, 24 h and 48 h postmortem cold 
storage, which indicated that maternal high-dose vitamin 
D3 addition could improve the water retention of pork batters 
of offspring pigs. The reason may be that maternal high-dose 
vitamin D3 supplementation decrease cooking loss of offspring 
pigs by regulating pH values, muscle fiber structure and the 
denaturation of proteins during postmortem cold storage 
(Leygonie et al., 2012; Guo et al., 2021).

Growing evidence have demonstrated that one of the most 
important sensory attributes of fresh pork is color, which affects 
consumers’ purchase of red meat (Cheng et al., 2020; Risvik, 
1994). In our study, offspring pigs in HD group had higher a* 
values of pork batters than the offspring pigs in LD group at 0, 
24 and 48 h postmortem cold storage. The results revealed that 
maternal high-dose vitamin D3 supplementation can maintained 
the stability of redness of longissimus dorsi muscles of offspring 
pigs. These results are consistent with the meat color change trend 
of offspring pigs during postmortem cold storage times (Guo et al., 
2021). The possible reason is that maternal high-dose vitamin 
D3 supplementation can protect the phospholipid content against 
lipid peroxidation of pork batters in offspring pigs, and improved 
the color stability (Kumar  et  al., 2015). Similar results were 
found by pervious researcher (Duffy et al., 2018), who observed 
that on storage for 7 days, dietary 25-OH-D3 supplementation 
may maintain the color stability of muscle samples with an 
increased redness by delaying the lipid peroxidation of muscle 
samples. Meanwhile, the value of L* and b* of pork batters 
in HD group were lower than those in LD group at 0, 24 and 
48 h postmortem cold storage, which indicated that maternal 
high-dose vitamin D3 levels inhibit lightness and yellowness 
of pork batters in offspring pigs and prolong the postmortem 
cold storage time. Similar results were observed by a previous 
report (Wiegand  et  al., 2002), that found dietary vitamin 
D3 supplementation (125,000 μg) at 7 to 14 days postmortem 
decreased L* values of pigs compared with the control group. 
Another study also observed that vitamin D3 supplementation 
(2000 μg) lowered L* values of pork (Wilborn  et  al., 2004). 
However, vitamin D3 supplementation did not affect b* values 
of pork (Wiegand et al., 2002; Wilborn et al., 2004). Inconsistent 

research results might be due to the species or age, dosage of 
vitamin D3, and duration of feeding vitamin D3 supplementation. 
In addition, there were no differences in L* and a* values of 
HD group at 0, 24 and 48 h postmortem cold storage, which 
indicated that maternal high-dose vitamin D3 addition inhibited 
the decrease of L* and a* values, and prolonged retail display 
of pork batters of offspring pigs at postmortem cold storage 
times. However, pork batter shows a decrease in redness value 
with prolonged refrigeration due to lipid oxidation increasing 
the number of free radicals, resulting in an increase in the rate 
of oxidation of myoglobin (Li et al., 2020a).

The texture of meat is usually considered to be the most 
important quality attributes that affecting consumer acceptance 
(Lee et al., 2011; Wang et al., 2013). The springiness, hardness, 
chewiness, and cohesiveness of pork batters was increased by 
animal fat and sesame oil (Kang et al., 2017). In the present 
study, the springiness, hardness, chewiness, and cohesiveness of 
pork batters of HD group were higher than that of LD group at 
postmortem cold storage times, which indicated that maternal 
high-dose vitamin D3 supplementation improved texture properties 
of pork batters in offspring pigs. These results may be due to the 
increase of IMF content in offspring pigs by maternal high-dose 
vitamin D3 supplementation (Guo et al., 2020a). The underlying 
mechanism still need to be proven by further investigation. 
In addition, our study found that the hardness, chewiness, 
springiness and cohesiveness of pork batters in offspring pig 
from all groups decreased with postmortem cold storage time. 
Similar results also were observed by pervious researcher 
(Cheng et al., 2020), who found that textural properties of beef 
decreased with storage time, which was supported by the decrease 
in water holding capacity. In addition, Liu et al. believed that 
the decrease in patty textural qualities was induced by a high 
freezing temperature (−8 °C) and long freezing time (Li et al., 
2020a). These results suggested that TPA parameters of pork 
batters were influenced by cold storage time. The reason may be 
that the cooking loss of pork batters increases with storage time 
(as shown in Table 1), and finally decreased the TPA parameters. 
Previous studies also found similar trends in sheep and camel 
muscles (Martínez-Arellano et al., 2013; Maqsood et al., 2015). 
The decrease of textural properties may be also caused by the 
degradation of porcine muscle by microorganisms and the 
endogenous enzyme (Cheng et al., 2020). However, other study 
observed that the TPA parameters of beef meat increased during 
storage period from 1 to 10 d (Trabelsi et al., 2019). Lund et al. 
(2007) also found that the hardness of porcine longissimus dorsi 
was increased during chill storage. The reason may be caused by 
the development of protein oxidation products in muscle samples 
during cold storage (Srinivasan et al., 1996). Inconsistent results 
in TPA parameters might be due to species, the temperature, 
and times of cold storage.

LF-NMR T2 relaxation time usually could be used to 
characterize water fluidity and distribution of meat, which 
was helpful to comprehend the effects of autopsy and chilling 
on WHC in meat (Straadt  et  al., 2007). Pervious study has 
demonstrated that T2a, T21 and T22 indicates the binding water 
combined with protein, water in the muscle fiber network, and 
free water, respectively (McDonnell et al., 2013). In this study, 
there was no differences in T2a of pork batters in offspring pigs 
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were measured during cold storage in all-experimental groups, 
which indicated that binding water of pork batters of offspring 
pigs was not influenced by maternal vitamin D3 levels during 
cold storage period from 0 to 48 h postmortem. In addition, HD 
group had lower T21 and T22 of pork batters than LD group at 
0, 24 and 48 h postmortem cold storage. Moreover, compared 
with bound water and non-flowing water, free water has the 
highest content. This is consistent with the findings of Luo et al. 
(2021), which are attributed to cell membrane rupture. These 
results suggested that maternal high-dose vitamin D3 addition 
could inhabit water mobility, increase juiciness, and improve 
the quality of pork batters in offspring pigs during cold storage 
period. Our research also observed that offspring pigs in LD, 
ND and HD groups had higher T22 of pork batters at 48 h than 
those at 0 and 24 h postmortem cold storage, which indicated 
that water mobility was affected by postmortem cold storage.

The dynamic rheological properties are usually used to 
evaluate heat induced myofibrillar proteins gelation, which reflect 
the quality of protein. In the present study, offspring pigs from all 
groups had similar heating curve, and G’ values increased slowly 
from 42 °C to 50 °C, which indicated that the denaturation and 
gelation of pork batters were occurred (Kang et al., 2017; Xiong 
& Brekke, 1990; Ali et al., 2015). From 54 °C to 57 °C, G’ values 
of pork batters had a moderate decrease, similar results were 
observed by previous research (Kang et al., 2017; Álvarez et al., 
2012). And then, the G’ values of pork batters rapidly increased 
up to 80 °C, which may be that the viscous sol becomes an 
elastic gel network. In addition, HD group had higher G’ value 
compared with ND and LD groups at the same postmortem cold 
storage time, which suggested that maternal high-dose vitamin 
D3 addition could improve protein network and texture of pork 
batters in offspring pigs. Whereas, the underlying mechanism 
still need to be proven by further investigation. Meanwhile, 
our study also found that at the same group, G’ values of pork 
batters of offspring pigs were lower at 0 h than that at 24 and 
48 h postmortem cold storage, which suggested that postmortem 
cold storage times also affected the protein network and texture 
of pork batter. Similar results were also observed in pork batters 
(Wang et al., 2018), which indicated that the gel characteristics 
or pork batters were decreased with cold storage time.

5 Conclusion
Maternal vitamin D3 status and cold storage time influenced 

cooking loss, meat color, texture properties, low-field NMR 
T2 relaxation time and dynamic rheological properties of pork 
batters, and changed the quality attributes of pork batters in 
offspring pigs.
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