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1 Introduction
Maillard reaction (MR) is a covalent grafting reaction 

between amino groups and carbonyl groups, also known as 
“non-enzymatic Browning reaction” (Shakoor  et  al., 2022). 
On the one hand, the MR is known to contribute flavor and color 
during food processing, leading to better taste and improved 
nutritional value (Bai et al., 2022; Kul et al., 2021). On the other 
hand, external sugars and amino acids are introduced into food 
through MR (Cao et al., 2022; Xiao et al., 2021).

MPRs also have antioxidant properties and can be used as 
oxidants in the food industry (Wei et al., 2022; Chen et al., 2022). 
The antioxidants of MPRs are derived from the interactions 
between sugars, essential amino acids, and peptides in foods 
(Han et al., 2021; Fu et al., 2020). Recently, it has been reported 
that a variety of bacteria can be inhibited by MRPs derivatives, 
which have significant antimicrobial activity (Chen et al., 2021; 
Hafsa et al., 2021). Despite their positive effects and potential 
application in food industry, studies have also highlighted their 
negative effects on food quality and safety when the reaction 
is not properly controlled. Under abnormal MR conditions, 
certain hzaradous and toxic substances such as acrylamide and 
heterocyclic amines are produced (Wei et al., 2019a; Quan et al., 
2021). In addition, MR also produces advanced glycosylation 
end products, which can produce toxic substances. At present, 

the study of MRP in food toxicology only focuses on the amino 
acid - reducing sugar model (Shang et al., 2020; Lu et al., 2022).

Peony is widely planted in China, and peony seeds contain 
high omega-3 fatty acids (Qu et al., 2017; Wang et al., 2022). 
The polysaccharides extracted from peony seed dreg displayed 
high anti-oxidant (Shi et al., 2016a; Shi et al., 2016b; Zhang et al., 
2022), and anti-cancerous properties (Zhang et al., 2017). After 
chemical modifications, the antioxidant activities (Li et al., 2018b; 
Li et al., 2021) and antibacterial activities (Li et al., 2018a; Liu et al., 
2022) were increased significantly. A novel peptide SMRKPPG 
was identified from peony seed dregs, and exhibited remarkable 
antioxidant activities, especially, radical scavenging capacities and 
reducing power (Zhang et al., 2019). The phospholipids prepared 
from peony seed dregs are enriched in polyunsaturated fatty 
acids, and can be used as emulsifiers with improved antioxidant 
properties (Xia et al., 2022). In our previous research, sugar, 
PSH and L-cysteine were used to evaluate the effect of sugar 
types on MRPs from peony seed dregs, and the free amino 
acids, and volatile compounds of the products were determined 
(Shang et al., 2020). Furthermore, we investigated the effects of 
oxidized chicken fats produced in different ways on peony seed 
meal-derived MRPs, and results demonstrated that the meat 
flavor and Maillard reaction could be promoted by chicken fat 
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(Xia et al., 2021). However, the very little is known about the 
toxicology of peony seed meal-derived MRPs.

Therefore, the main purpose of this study was to analyze and 
evaluate the safety of MRP obtained from enzymatic hydrolysates 
of peony seed meal, xylose, and L-cysteine. Therefore, this study 
provides a sub-chronic safety assessment of MPRs for evaluating 
its subsequent product development.

2 Materials and methods
2.1 Preparation of MRPs

Peony seed meal was purchased from Beijing Tongrentang 
Anhui Traditional Chinese Medicine Co., LTD. According to the 
previous studies (Zheng et al., 2022; Wei et al., 2019b; Shang et al., 
2020), peony seed enzymatic hydrolysates were prepared and 
mixed with xylose and L-cysteine in a substrate solution with 
a concentration of 10% according to the mass ratio of w/w/w = 
10:3:1.5 and pH 7.5 followed by heating at 120 °C for 2 h. After 
the reaction, the supernatant was centrifuged and freeze-dried to 
obtain MRPs samples, which were crushed and sieved through 
80 mesh and stored at -20 °C until next use (Ni et al., 2022).

2.2 Experimental animals and treatments

Five-week-old SPF rats (Anhui Medical University) were used 
in the experiment, according to the regulations of Animal Care 
institutions and committees of Hefei University of Technology, 
China. The experimental environment was maintained at controlled 
humidity (60 ± 10%), light (12 h day/night), and temperature 
(22 ± 2 °C) in animal room provided by Hefei University of 
Technology. The general signs and mortality of each SD rat 

were recorded daily, and the body weight and food intake were 
recorded weekly. Sub-chronic toxicity tests were carried out 
according to the method of (Wei et al., 2019a). The daily intake 
of MRPs in the control (CG), the low dose (LDG), the medium 
dose (MDG), and the high dose (HDG) groups was 0.00, 0.15, 
0.45, and 1.35 g/kg BW, respectively (Figure 1). The general signs 
and mortality of each SD rat were recorded daily. The body weight 
and food intake of SD rats were recorded weekly (Gao et al., 
2022). Blood samples were obtained according to the method 
of (Wei et al., 2019a), and histopathology was performed at the 
end of the experiment (Wu et al., 2020).

2.3 Hematology and serum biochemistry

The animal blood counter (BC-2800VET, Mindray, China) 
was used for hematological assessment based on hematological 
parameter: White blood cell (WBC), lymphocyte (LYM), 
monocyte (Mon), neutrophil (Gran), red blood cell (RBC), 
hemoglobin (HGB), hematocrit (HCT), mean corpuscular 
volume (MCV), mean corpuscular hemoglobin content (MCH), 
mean corpuscular hemoglobin concentration (MCHC), RBC 
volume distribution width (RDW), platelet count (PLT), mean 
platelet volume (MPV), platelet distribution width (PDW) and 
platelet hematocrit (PCT).

Serum biochemical parameters were analyzed by automatic 
biochemical analyzer (Chemray 240, Rayto, China). The serum 
biochemical parameters such as alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), urea nitrogen (BUN), 
creatinine (Cr), glucose (Glu), total protein (TP), albumin (Alb), 
total cholesterol (TC), triglyceride (TG), chlorine (Cl), potassium 
(K), and sodium (Na).

Figure 1. Experimental design. The SD rat in the control (CG), the low dose (LDG), the medium dose (MDG), and the high dose (HDG) groups 
were administrated with peony seed meal-derived MRPs at 0.00, 0.15, 0.45, and 1.35 g/kg BW, respectively. After 13 weeks, the SD rats were 
euthanized and used for further experiments.
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2.4 Viscera coefficient

The test animals were dissected and weighed for the following 
organs: liver, kidney, spleen, testis, and ovaries. The paired 
organs (testes, kidneys, and ovaries) were weighed against each 
other. Absolute organ weight was the weight of the organ itself, 
and relative organ weight was the percentage of organ weight 
to body weight.

2.5 Histopathology

By paraffin embedding machine (EG1150C, Germany); Tissue 
microtome (NVSLM1, WPI); Histopathology was performed 
with light microscopy (CX41, OLYMPUS, Japan). SD rats in CG 
and HDG groups were taken for liver and kidney examination, 
and organs corresponding to LDG and MDG were retained. 
If HDG pathology was abnormal, LDG and MDG pathology 
studies were performed. The sectioned tissue was soaked 
and fixed in 10% formaldehyde buffer, cut into thin sections, 
dehydrated, and embedded in paraffin, stained with standard 
hematoxylin and eosin, and examined under light microscope 
(Manzoor et al., 2022).

2.6 Statistical analysis

All the experiments were repeated three times and data were 
analyzed by ANOVA with SPSS Statistics 20.0 and expressed as 
mean ± standard deviation (n = 3), (p < 0.05).

3 Results and discussion
3.1 Body weight and food consumption

In sub-chronic toxicity studies, no weight loss associated 
with MRPs intake was observed in SD rats fed a single dose of 
0.00, 0.15, 0.45, and 1.35 g MRPs/kg BW for 90 days (p > 0.05) 
(Figure 2). During the first five weeks of the experiment, there 
was little difference in body weight between the different groups 
of male rats, and after the fifth week, there was an increasing 
difference in body weight between SD rats compared to the 

first five weeks. The body weight of female rats in LDG group 
became larger than that in other groups from the 9th week, and 
the body weight difference gradually decreased after the 11th 
week. On the other hand, except HDG (p < 0.05), no difference 
in food consumption was detected in CG, LDG, and MDG (p > 
0.05) (Figure 3). During sub-chronic toxicity tests, no associated 
clinicopathological symptoms or death were observed in SD 
rats ingested with MRPs. There was significant difference in 
feed consumption between male HDG group and CG group 
(p < 0.05) (Figure 3).

3.2 Hematological and serum biochemical analysis

Table 1 shows a summary of the hematological data of 
MRPs feeding. There were significant differences in erythrocytes 
in HDG group (p < 0.05). The chronic toxicity of feeding 
experiments, rats of WBC, LYM, Mon, Gran, RBC, HGB, HCT, 
MCH, MCHC, RDW, MCH, MCHC, RDW, PDW had no obvious 
change (p > 0.05). The blood biochemical parameters in the 
sub-chronic feeding toxicity study are summarized in Table 1. 
In the trial there was no significant effect on hematological 
indexes (p > 0.05).

3.3 Hematological and serum biochemical analysis

As shown in Table 2, the relative weight difference of liver 
organs between the MDG group and the HDG group (p < 0.05). 
The other organs, absolute organs and relative organs of SD rats 
ingested with MRPs had no effect (p > 0.05).

3.4 Macroscopic and histopathological examination

As shown in Figures  4-5, no macroscopic pathological 
manifestations related to MPRs were found during autopsy of 
SD rats. Over the course of the 13-week sub-chronic toxicity 
test, feeding MRPs had no significant toxic effect on either male 
or female rats. Compared with the CG group, no macroscopic 
lesions related to MRPs ingestion were found in the organs of 
the HDG group during the anatomical process.

Figure 2. Changes in body weight of Sprague-Dawley rats during sub-chronic toxicity tests. (a) male; (b) female.
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On the other hand, reactions containing proteins or amino 
acids form acrylamide when subjected to high temperatures 
during frying and baking, acrylamide is formed (Alam et al., 
2018; Knight et al., 2021).

Hematological and serum biochemical parameters can 
intuitively reveal whether MRP is toxic to induce hemolysis 
(Guefack et al., 2022). Our results showed that LDG and MDG 
of MRP were not significantly different in terms of hematological 
and serum biochemical parameters (p > 0.05); compared with the 
control group, the difference of red blood cells in HDG group was 
significant (p < 0.05). Excessive glucose in rats causes abnormal 
erythrocyte protein (Gilliéron et al., 2020). In toxicological tests, 
serum biochemical parameters and organ histopathology are 
the widely used (Abebe et al., 2021). Our data show that MDG 
and HDG groups of MRPs are not toxic tao organs, but HDG 
can some effects on liver function. On the other hand, as shown 
in Figure 3 and Figure 4, tissue sections were taken from SD 
rats in CG and HDG groups, as well as organ mass changes in 
SD rats (Table 2). Our research data showed that MRPs did not 
produce toxicity to most of the vital organs of SD rats.

At present, reports on MPR tend to focus on its functional 
research and exploration of flavor substances (Habinshuti et al., 
2019). It has been reported that the MR, in the initial stage, uses 
sugars to rearrange ketosugars in the primary reaction of amino 
acids to produce active dicarbonyl compounds, which can be used 
as acrylamide, heterocyclic amines and advanced glycosylation end 
products, and can also provide food color and flavor (Liu et al., 
2020). A previous study reported that 9.0% of flaxseed MPR in 
SD rats did not show toxicity in a 90-day chronic toxicity test 
(Wei et al., 2019a). SD rats fed with 9.0% flaxseed MPR for 90 days 
had no effect on intestinal health (Zheng et al., 2022).

In another study, the coexistence of acrylamide and 
acrylamide and arginine and glucose-derived MRPs effectively 
reduced the toxicity of acrylamide to mice (Wu et al., 2021). 

Figure 3. Feed consumption in Sprague-Dawley rats during sub-
chronic toxicity tests. Compared with the control group of the same 
sex (CG), *p < 0.05.

Table 1. Blood routine parameters and serum biochemical parameters of Sprague-Dawley rats fed MRPs. Comparison between different dose 
groups and the same sex control group, the different superscript letters represent significant differences at p < 0.05.

Hematological parameters
Male Female

CG LDG MDG HDG CG LDG MDG HDG
White blood cells (109/L) 6.24 ± 1.19a 5.72 ± 1.35a 6.14 ± 1.11a 6.46 ± 1.44a 6.68 ± 1.15a 5.94 ± 1.44a 6.36 ± 1.31a 5.68 ± 1.29a

Lymphocytes (109/L) 4.02 ± 1.52a 3.92 ± 1.47a 4.28 ± 1.41a 4.42 ± 1.49a 4.62 ± 1.06a 4.14 ± 1.29a 4.32 ± 1.43a 3.94 ± 1.19a

Monocytes (109/L) 0.48 ± 0.08a 0.42 ± 0.15a 0.44 ± 0.21a 0.36 ± 0.15a 0.44 ± 0.13a 0.38 ± 0.19a 0.48 ± 0.19a 0.42 ± 0.18a

Neutrophils (109/L) 1.74 ± 0.53a 1.38 ± 0.59a 1.42 ± 0.39a 1.68 ± 0.51a 1.62 ± 0.39a 1.41 ± 0.58a 1.56 ± 0.38a 1.34 ± 0.44a

Red blood cells (1012/L) 8.36 ± 0.20a 8.40 ± 0.51a 7.70 ± 0.58ab 7.41 ± 0.82b 7.48 ± 0.68a 7.21 ± 0.72ab 7.08 ± 0.53ab 6.56 ± 0.37b

Hemoglobin (g/L) 138.5 ± 10.7a 139.6 ± 11.1a 131.6 ± 14.2a 127.5 ± 16.1a 131.8 ± 12.1a 125.4 ± 14.9a 122.6 ± 11.1a 117.6 ± 5.0a

Hematocrit (%) 44.6 ± 3.2a 44.7 ± 3.5a 42.5 ± 4.1a 41.5 ± 5.1a 42.6 ± 3.6a 40.6 ± 3.4a 40.4 ± 3.4a 38.4 ± 2.1a

Mean corpuscular volume 
(fl)

53.4 ± 2.8a 53.3 ± 1.9a 55.2 ± 1.6a 55.9 ± 1.3a 57.1 ± 1.8a 56.4 ± 1.6a 57.1 ± 0.6a 58.6 ± 1.8a

Mean corpuscular 
hemoglobin (pg)

16.5 ± 1.0a 16.6 ± 0.7a 17.0 ± 0.7a 17.2 ± 0.8a 17.6 ± 0.4a 17.3 ± 0.9a 17.2 ± 0.3a 17.9 ± 0.6a

Mean corpuscular 
hemoglobin
concentration (g/L)

309.8 ± 6.4a 311.6 ± 3.8a 308.8 ± 7.0a 307.0 ± 8.0a 308.8 ± 4.5a 308.0 ± 15.0a 303.2 ± 3.6a 306.2 ± 5.9a

Red cell distribution width 
(%)

14.6 ± 0.9a 14.1 ± 0.6a 14.0 ± 0.8a 13.7 ± 1.6a 13.0 ± 0.8a 13.2 ± 0.8a 12.1 ± 0.9a 12.0 ± 1.4a

Platelets (109/L) 742 ± 169a 727 ± 168a 773 ± 147a 806 ± 193a 714 ± 153a 761 ± 142a 816 ± 146a 791 ± 157a

4 Discussion
The MRP of the enzymatic hydrolysate of peony seed meal 

has excellent meat flavor characteristics. According to in vivo 
toxicology reports, there are limited data on this meat-taste additive. 
Therefore, sub-chronic toxicity tests of MRP were performed to 
assess the safety of MRP as a meat additive or food ingredient.

During sub-chronic toxicity tests, no associated clinicopathological 
symptoms or death were observed in SD rats ingested with MRPs. 
There was significant difference in feed consumption between 
male HDG group and CG group (p < 0.05) (Figure 2). No adverse 
reactions were observed in rats ingested with MRPs. On the one 
hand, the MRP produced by the condensation of the carbonyl 
group oand the amino group in the MR produces indigestion 
components (Martinez-Saez et al., 2019; Arihara et al., 2021). 
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In this study, SD rats in the three different dose groups did not 
show adverse symptoms such as inflammation. The kidneys 

of male SD rats in MDG and HDG groups were significantly 
different (p < 0.05). To summarize, when the daily intake 

Hematological parameters
Male Female

CG LDG MDG HDG CG LDG MDG HDG
Mean platelet volume (fl) 5.08 ± 0.60a 5.24 ± 0.76a 5.42 ± 0.53a 5.28 ± 0.67a 5.38 ± 0.69a 5.52 ± 0.46a 5.24 ± 0.59a 5.44 ± 0.77a

Platelet distribution width 
(%)

16.9 ± 0.2a 16.8 ± 0.2a 16.8 ± 0.3a 17.0 ± 0.2a 17.1 ± 0.5a 17.4 ± 0.6a 17.2 ± 0.4a 17.2 ± 0.6a

0.373 ± 0.070a 0.387 ± 0.125a 0.423 ± 0.110a 0.431 ± 0.141a 0.389 ± 0.112a 0.417 ± 0.064a 0.431 ± 0.122a 0.423 ± 0.068a

Serum biochemistry 
parameters
Alanine aminotransferase 
(U/L)

55.78 ± 7.53a 52.14 ± 8.19a 59.46 ± 10.41a 64.34 ± 10.56a 51.81 ± 8.86a 50.51 ± 10.24a 49.18 ± 8.02a 54.55 ± 12.16a

Aspartate aminotransferase 
(U/L)

129.32 ± 12.31a 124.15 ± 12.42a 127.45 ± 9.43a 132.06 ± 12.01a 135.92 ± 13.88a 133.27 ± 12.76a 130.74 ± 14.94a 128.14 ± 10.69a

Blood urea nitrogen  
(mg/dL)

19.65 ± 2.65a 19.09 ± 2.92a 20.48 ± 3.16a 21.32 ± 3.79a 21.86 ± 3.05a 20.54 ± 3.11a 22.72 ± 3.86a 21.43 ± 3.17a

Total protein (g/L) 76.67 ± 3.91a 76.28 ± 4.21a 73.62 ± 4.04a 74.12 ± 3.83a 83.96 ± 6.43a 80.74 ± 5.86a 79.29 ± 3.11a 84.58 ± 4.25a

Creatinine (μmol/L) 32.52 ± 5.63a 31.68 ± 4.18a 34.61 ± 6.52a 36.48 ± 8.35a 29.83 ± 4.01a 30.88 ± 2.78a 35.46 ± 6.36a 33.76 ± 5.63a

Glucose (mmol/L) 5.69 ± 0.46a 5.81 ± 0.54a 5.73 ± 0.61a 5.62 ± 0.41a 5.47 ± 0.53a 5.41 ± 0.49a 5.56 ± 0.42a 5.35 ± 0.47a

Albumin (g/L) 34.22 ± 3.29a 35.34 ± 3.58a 34.68 ± 3.02a 35.92 ± 3.71a 37.03 ± 3.69a 36.17 ± 2.75a 37.46 ± 2.96a 35.62 ± 3.18a

Total cholesterol (mmol/L) 2.17 ± 0.34a 2.04 ± 0.29a 1.96 ± 0.20a 2.29 ± 0.37a 1.98 ± 0.24a 2.13 ± 0.34a 2.35 ± 0.41a 2.18 ± 0.26a

Triglyceride (mmol/L) 0.74 ± 0.16a 0.69 ± 0.11a 0.61 ± 0.13a 0.72 ± 0.14a 0.68 ± 0.12a 0.63 ± 0.11a 0.71 ± 0.15a 0.59 ± 0.09a

Cl (mmol/L) 106.24 ± 4.95a 108.48 ± 5.81a 110.51 ± 7.42a 107.72 ± 6.39a 103.83 ± 4.56a 107.19 ± 6.07a 105.67 ± 5.18a 110.75 ± 8.23a

K (mmol/L) 6.45 ± 0.74a 5.92 ± 0.57a 6.91 ± 0.83a 5.67 ± 0.62a 5.83 ± 0.49a 6.24 ± 0.64a 6.05 ± 0.62a 6.12 ± 0.51a

Na (mmol/L) 143.42 ± 6.04a 147.51 ± 7.38a 141.38 ± 5.86a 145.64 ± 5.29a 140.85 ± 5.85a 145.61 ± 6.07a 142.96 ± 6.23a 148.57 ± 7.64a

Table 1. Continued... 

Table 2. Absolute and relative organ weights in Sprague-Dawley Rats administered with MRPs for 13 weeks comparison between different dose 
groups and the same sex control group, the different superscript letters represent significant differences at p < 0.05.

Parameters CG LDG MDG HDG
Male
Body weight (g) 555.76 ± 69.86a 511.96 ± 25.13a 519.24 ± 32.14a 507.74 ± 62.41a

Absolute organ weight (g)
Liver 13.80 ± 1.41a 12.83 ± 0.78a 13.99 ± 1.30a 13.06 ± 1.39a

Kidney 3.44 ± 0.49a 3.12 ± 0.18a 3.06 ± 0.17a 3.29 ± 0.34a

Spleen 1.27 ± 0.10a 1.33 ± 0.18a 1.26 ± 0.27a 1.03 ± 0.23a

Testis 3.51 ± 0.13a 3.42 ± 0.13a 3.41 ± 0.20a 3.29 ± 0.33a

Relative organ weight (%)
Liver 2.43 ± 0.10c 2.51 ± 0.04cb 2.69 ± 0.10a 2.61 ± 0.08ab

Kidney 0.60 ± 0.02ab 0.61 ± 0.06ab 0.59 ± 0.04b 0.66 ± 0.03a

Spleen 0.22 ± 0.01a 0.26 ± 0.02a 0.24 ± 0.04a 0.20 ± 0.02a

Testis 0.62 ± 0.05a 0.67 ± 0.01a 0.66 ± 0.00a 0.66 ± 0.03a

Female
Body weight (g) 335.34 ± 35.35a 345.54 ± 29.56a 334.8 ± 41.73a 341.04 ± 11.00a

Absolute organ weight (g)
Liver 8.60 ± 0.65a 8.87 ± 0.77a 8.59 ± 0.79a 8.66 ± 0.56a

Kidney 2.11 ± 0.29a 2.26 ± 0.24a 2.06 ± 0.19a 2.08 ± 0.15a

Spleen 0.98 ± 0.33a 0.85 ± 0.09a 0.80 ± 0.10a 0.88 ± 0.13a

Ovary 0.26 ± 0.04a 0.29 ± 0.03a 0.27 ± 0.05a 0.28 ± 0.02a

Relative organ weight (%)
Liver 2.57 ± 0.12a 2.57 ± 0.07a 2.58 ± 0.16a 2.57 ± 0.08
Kidney 0.63 ± 0.06a 0.66 ± 0.04a 0.62 ± 0.08a 0.62 ± 0.03a

Spleen 0.29 ± 0.07a 0.25 ± 0.01a 0.24 ± 0.03a 0.26 ± 0.03a

Ovary 0.078 ± 0.007a 0.082 ± 0.001a 0.080 ± 0.005a 0.083 ± 0.003a
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of MRPs was lower than 0.45 g/kg BW/day, there was no 
toxicological effect on SD rats.

5 Conclusion
In this study, the MPRs of peony seed meal were fed to 

SD rats, and the toxicological test showed that there were no 
significant differences in body weight, absolute organ weight 
and serum biochemical indexes of SD rats. Histopathological 
examination revealed no pathological symptoms associated 
with MRPs ingestion. When the daily intake of MRPs was lower 
than 0.45 g/kg BW/day, the body weight, feed consumption, 
histopathology, blood routine and serum biochemical indexes 
of SD rats were not affected.
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