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1 Introduction
Gingko is the only gymnosperms in the ginkgo family, 

and its history can be traced back to the Carboniferous period 
(Ye et al., 2022), which has been widely cultivated in the world 
for its medical, ecological, and ornamental functions (Yang et al., 
2021a, b). The leaf of ginkgo is a kind of raw food material and 
common herb, and flavonoids are the important content in 
it, which has the functions of protecting cardiovascular and 
cerebrovascular diseases, anti-aging, and so on (Liang  et  al., 
2020, 2022; Wang et al., 2022a; Zhang et al., 2022a). Even though 
there are a lot of ginkgo trees in the world, the TFC in ginkgo 
biloba leaves decreases sharply with the increase of tree age, 
which results in that normal ginkgo leaves can hardly be used 
as herb ingredients. For high-quality leaves for pharmaceutical 
purposes, the leaf of specially cultivated ginkgo biloba seedlings 
under 5 years in eastern China is harvested from nurseries, with 
high TFC quantifying its commercial values, which promotes the 
development of ginkgo biloba leaf-related industries (Zou et al., 
2019; Guo  et  al., 2020). However, during the planting and 
purchasing process, an obstacle exists since there is no effective 
means of testing leaf quality. To tackle this issue, a rapid, efficient, 
and non-invasive testing method is urgently needed to improve 
the quality and yield of ginkgo leaves.

Due to the important value of ginkgo leaves, a large number 
of studies on the content of flavonoids in ginkgo leaves have 
been carried out (Zhao et al., 2018). Nowadays, many effective 
detection methods have been developed. Spectrophotometer, 
high-performance liquid chromatography, and near-infrared 
spectrometer are conventional testing methods for predicting TFC 
in Ginkgo biloba L., which have been verified and implemented 
in the laboratory (Wu et al., 2021; Wang et al., 2022b; Zhang et al., 
2022b). Even if those methods have high accuracy to meet 
the detection requirements, in addition to the near-infrared 
spectrometer, other methods need to be preprocessed before 
they can be detected. This process is not only time-consuming 
and not cost-effective but can cause damage to objects as well. 
The near-infrared spectrometer fails to meet the needs of online 
rapid detection for pipelines since it is spectrally sampled in local 
areas with a high cost and insufficient information. Therefore, 
the traditional detection methods are difficult to meet the needs 
of rapid non-destructive testing of ginkgo leaves.

Research on the TFC in Ginkgo biloba leaves by hyperspectral 
imaging technology is very limited. Thus, the Ginkgo biloba 
industry lack basic guidance. Compared with the spectrometer, 
hyperspectral imaging technology is capable of obtaining the 
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spectral and spatial information of the sample at the same time 
(Osco et al., 2020; Frey et al., 2020; Tang et al., 2020; Malmir et al., 
2020). It is a detection method for analyzing composition inside 
and outside the sample by measuring the spectral signal. With 
the continuous development of chemometrics and machine 
learning technology, several new methods were applied to build 
prediction models for the composition of samples, and the ability 
of hyperspectral imaging technology has improved for better 
performance (Xin et al., 2020; Koirala et al., 2020; Ma et al., 2019). 
Nowadays, hyperspectral imaging camera has been extended to 
many fields, numerous research has been carried out and proved 
their feasibility (Ma et al., 2019; Deng et al., 2020; Qu et al., 
2020; Kang et al., 2020). It has been reported that a variety of 
components in foods and plants were detected by hyperspectral 
imaging technology. A method using modified Adaboost RT 
based on an AOTF hyperspectral imaging system was employed 
to test the Brix and pH values and a method using PLSR based 
on a short-wave near-infrared hyperspectral imaging system was 
used to test the TVB-N value of pork (Wang et al., 2020). Thus, 
it seems to be feasible that hyperspectral imaging technology 
could be used to test the quality of leaves of leaf-use ginkgo.

This study aimed to apply hyperspectral imaging technology 
to test the quality of leaves of leaf-use ginkgo. Before image 
capturing, a new hyperspectral imaging system, including 
VIS-NIR and SW-NIR bands, was built and tested. Prediction 
models were established on the data of images captured by the 
hyperspectral imaging system, and TFC values were obtained 
by high-performance liquid chromatography (HPLC) to explore 
the method of testing TFC in Ginkgo biloba leaves.

2 Materials and methods
2.1 Hyperspectral imaging system

A non-destructive hyperspectral imaging system for 
predicting TFC of Ginkgo biloba leaves was set up (Figure 1), 
comprising of a push-broom VIS-NIR hyperspectral camera 
(GaiaField-V10E-AZ4, Jiangsu Dualix Spectral Image Technology 
Co. Ltd, China), a push-broom SW-NIR hyperspectral camera 
(GaiaField-N17E-HR, Jiangsu Dualix Spectral Image Technology 

Co. Ltd, China), two self-made dome light source systems, 
an uninterrupted power supply (UPS) (C3K, Shante, China), 
a transmission desk, a dark chamber and a computer (T570, 
Lenovo, China). Each camera was equipped with the same 
dome light source system, which includes 12 halogen lamps 
(Halogen 12V, Philips, China), with UPS providing a stable 
power supply. The whole system was surrounded by the dark 
chamber to prevent external light interference.

2.2 Ginkgo biloba leaves samples

To obtain the leaves in the same state as the harvest time, the 
ginkgo biloba leaves used in this study were harvested in a Ginkgo 
biloba nursery in Pizhou City, Jiangsu Province in September, 
2020. The leaves were transported to the nondestructive testing 
laboratory in a 4 °C incubator for image acquisition and total 
flavonoid content detection.

2.3 Determination of total flavonoid in leaves

After weighing the leaves, they were put in the oven until 
reaching constant leaf weight. The dried leaves were placed into 
a round bottom flask after crushing into powder, and 5 mL of 
25% hydrochloric acid and 30 mL methanol were added to the 
same flask. After 1.5 hours of water bath refluxing, filtrating 
the residue, the filtrate was taken in the volumetric flask, and 
the methanol was added to 50 mL after achieving a constant 
temperature.

The standards used in this study were quercetin, kaempferol, 
and isorhamnetin. 5.7 mg of quercetin, 5.7 mg of kaempferol, and 
2.1 mg of isorhamnetin were weighed and dissolved in 100 mL of 
methanol solution using a ten-thousand-point balance. 50 mL, 
20 mL, 10 mL, 5 mL, 2 mL, and 1 mL were diluted to 50 mL, 
respectively, and then filtered through a membrane. Standard 
preparation of three parts was made to perform three repeated 
experiments to ensure the reliability of experimental data.

High-performance liquid chromatography (alliance e2695, 
Waters, USA) was used to determine the content of total flavonoids 
in standard and experimental samples. The following conditions 
were also employed: the column temperature, 30 °C; the detection 
wavelength, 254 nm; the mobile phase, methanol-0.1% formic 
acid solution (1:1); the flow rate, 1 mL/min; and the injection 
volume, 10 μL.

2.4 Dada acquisition and processing

Hyperspectral images acquisition

An illuminance meter was placed in the center of the camera 
field of view after opening the light source system to monitor 
the light source status, and the image acquisition was conducted 
after the numerical stability of the illuminance meter. Each 
sample was placed on the black rubber material platform, and 
the image was captured when the sample passed the camera 
line scanning area. Due to the diffuse reflection illumination 
of the dome light source system, leaves did no lose much water 
during the image acquisition process.Figure 1. Hyperspectral imaging system.
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The VIS-NIR hyperspectral camera collected images at a full 
resolution of 669 × 800 pixels in the range of 336.20-1092.50 nm 
with an increment of 5.5 nm, producing a spectral cube with a 
total of 150 bands for each scan, and the SW-NIR hyperspectral 
camera collected images at full resolution of 550 × 640 pixels in 
the range of 874.00-1731.00 nm with an increment of 1.7 nm, 
producing a spectral cube with a total of 512 bands for each scan.

Spectral calibration

In addition to sample images, 7 kinds of standard reflectivity 
panels (Labspere, USA) and a dark image were captured, before 
and after samples image acquisition, including the panel with 
reflectivity of 2%, 5%, 10%, 20%, 50%, 75%, and 99%. Due to 
the unstable of the light source and external interference, it was 
necessary to conduct a calibration on the images, which converted 
hyperspectral gray value images to hyperspectral reflectivity 
images. A relative reflectivity image cube was calculated as 
follows (Equation 1):

 raw dark
c

calib dark

I I
I C

I I
−

= ×
−

  (1)

Where cI  is the result of the relative reflectivity image, rawI  is 
the raw gray value image, darkI  is the dark hyperspectral image, 
calibI  is the white hyperspectral image and C is the correction 

coefficient. In this study, dark and white images were not strictly 
identified respectively as images captured without removing 
the lens cover and images of 99% reflectivity standard panel, 
but with low reflectivity value standard panel images and high 
reflectivity value standard panel images, respectively. And C was 
different when making reflectivity calibration with different 
reflectivity standard panels.

Spectra extraction

Hyperspectral image, with a huge amount of data, is hard to 
be used to build a spectral prediction model directly. To reduce 
the amount of calculation, the common method is to extract the 
spectral curves of samples by converting three-dimensional data 
into two-dimensional data, which greatly reduces the calculation 
difficulty. With the continuous development of computer vision 
technology, it has been possible to obtain spectral information 
representing the region of interest of the complete sample in 
various ways. A simple threshold algorithm was used to obtain 
the mask of samples from images. The background of the image 
is a black rubber material platform, its spectral characteristics 
are very different from the sample. It is easy to get a mask of 
the sample by setting the threshold in particular wavebands, 
which can be used to conduct on all datasets in both VIS-NIR 
and SW-NIR wavebands automatically. The mean spectra data 
were extracted from the region of interest of hyperspectral 
images, by computing the mean value in the region of interest 
at each channel.

2.5 Establishment of TFC prediction model

Prediction model

Partial least square regression (PLSR) is a high-efficiency 
regression model in spectral analysis that combines the functions 

of multiple linear regression (MLR) and principal component 
regression (PCR), which can extract features among variables 
and analyze correlations among variables (Zhang et al., 2021; 
Chen  et  al., 2021). Support vector regression (SVR) is an 
important branch of support vector machine, that can transform 
a nonlinear problem into a linear problem (Tan et  al., 2022; 
Lu et al., 2019). By minimizing support vector spacing, SVR can 
find the relationship between spectral information and target 
values. In this paper, these two methods were adopted to build 
regression models on both VIS-NIR and SW-NIR wavebands.

The performance of models was assessed by root mean 
square error (RMSE) of the training set ( cRMSE ) and the test set 
( pRMSE ) and coefficient of determination ( 2R ) of the training 
set ( 2

cR ) and test set ( 2
pR ). In general, the closer the 2R  to 1 and 

the closer the  RMSE to 0, indicating the stability and accuracy 
of the model (Wang et al., 2022c).

Optimal wavelength selection

There were 150 and 512 wavebands in VIS-NIR and SW-NIR 
hyperspectral cameras, respectively. Even though the number 
of images to curves was minimized to reduce the amount of 
data, there was still a lot of information that needed to be used 
in prediction models. Meanwhile, hyperspectral images are 
highly correlated between adjacent wavebands, which leads to 
collinearity and redundancy problems. Optimal wavelength 
selection algorithm needed to be used to solve the former 
problem, in order to shorten the time of building prediction 
models, reduce the dimension of spectral data and promote the 
performance of prediction models (Zou et al., 2022a, 2022b).

Successive projections algorithm (SPA) is a forward feature 
variable selection method, that can find the most representative 
characteristic wavebands by analyzing collinearity between 
bands (Ma et al., 2022). The genetic algorithm (GA) is a method 
of searching for an optimal solution by simulating the natural 
evolution process (Wan et al., 2021). This method established 
the corresponding fitness function after encoding each channel, 
and the characteristic wavebands were obtained by methods of 
selection, crossover, and mutation. SPA and GA were used in this 
study to select characteristic wavebands, which would be used to 
build light models for predicting TFC in Ginkgo biloba leaves.

3 Results and discussion
3.1 Reference TFC values

The reference TFC values of the 138 Ginkgo biloba leaf 
samples measured by HPLC were obtained and shown in Table 1. 
The TFC values range from 0.7204 mg·g-1 to 4.9748 mg·g-1, 
which showed a similar value to Wang’s data in the same city 
and demonstrated that it was valid to establish a TFC prediction 
model on this dataset (Zou et al., 2019). The rule of splitting 
datasets was to sort all TFC values from the smallest to the largest, 
taking one in four randomly into the test set and the remaining 
three putting into the training set. There were 104 samples in 
the training set and 34 samples in the test set, which satisfied 
the normal training and test split rate.
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3.2 Hyperspectral data analysis

The spectral images are shown in Figure 2 with the pixel 
spectra at the sample region and background. Owing to the low 
reflectivity of the background platform, samples showed great 
differences from the background in the 90th and 50th channel, 
on VIS-NIR and SW-NIR wavebands, respectively, and the 
thresholds were set to 0.1 and 0.2, respectively. The masks of 

the region of interest on VIS-NIR and SW-NIR are shown in 
Figure 2c and Figure 2d, respectively.

By the mask generated, the spectra data were computed, and 
the bad channels were cut on SW-NIR wavebands, remaining the 
wavebands range from 1100- 1600 nm, the spectra curves are 
shown in Figure 3. It can be seen that the variation trend of the 
overall mean spectrum of the leaves was consistent, indicating 

Table 1. Statistical results of TFC of samples.

Sample set Number of  samples Minimum/mg·g-1 Maximum/mg·g-1 Mean/mg·g-1 SD /mg·g-1

Training set 104 0.7204 4.9748 2.4242 0.8143
Test set 34 1.0084 4.1766 2.4338 0.7728

All 138 0.7204 4.9748 2.4266 0.8015
Note: SD: Standard Deviation.

Figure 2. Spectral image and region of interest (ROI) image (a) Spectral image of the 90th band of VIS/NIR (b) Spectral image of the 50th band 
of NIR (c) ROI image of VIS/NIR (d) ROI image of NIR.
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that the collected spectral images had a good consistency. And the 
spectral mean of each sample showed some differences, indicating 
that there were differences between the collected samples, and 
the data exhibitedstrong generalization.

3.3 Establishment of the prediction model

Models on full spectrum

PLSR was implemented to find the relationship between 
spectral data and TFC values in Ginkgo biloba leaves, by 
inputting the whole spectral matrix and TFC values. To reduce 
the possibility of model over-fitting, the k-fold cross-validation 
method was used on the training set during the process of 
model building, and k value was set to 5. The PLSR prediction 
model with principal components from 1 to 50 was established, 
and the best model for different wavebands was selected by 
comparing the performance of different principal component 
models. Several models are shown in Table 2, whose principal 
components are around the principal components of the best 
model. On both VIS-NIR and SW-NIR bands, the performance 
of models on the training set increased with the increase of 
principal components, and the performance of models on the test 
set increased to the peak and then decreased. Model on VIS-NIR 
wavebands achieved the best performance with the principal 

components number of 4, it can be seen that the 2
cR  value and 

cRMSE  value of the best PLSR model on VIS-NIR wavebands 
were 0.4329 and 0.6771 mg·g-1, respectively, and the 2

pR  value 
and pRMSE  value were 0.3013 and 0.8758 mg·g-1, respectively. 
Model on SW-NIR wavebands exhibited the best performance 
with the principal components of 13, it can be seen that the 

2
cR  value and cRMSE  value of the best PLSR model on SW-NIR 

wavebands were 0.6180 and 0.6371 mg·g-1, respectively, and 
the 2

pR  value and pRMSE  value were 0.5496 and 0.6384 mg·g-1, 
respectively. It can be seen on VIS-NIR wavebands that, when 
principal components reached 4 and had poor performance, then 
the model tended to be over-fitting. This phenomenon showed 
that the PLSR model could hardly predict the TFC of Ginkgo 
biloba leaves on VIS-NIR wavebands. Compared to models on 
VIS-NIR wavebands, models on SW-NIR wavebands showed 
better performance on both the training set and test set, which 
means that SW-NIR wavebands data were more suitable for 
building the prediction models by PLSR.

SVR used the same method to cross-validate on the training 
set as PLSR, and the best hyper-parameters were founded by 
grid search. In Table 2, the best model is presented on both 
SW-NIR and VIS-NIR wavebands, with the hyper-parameters 
founded by grid search. The 2

cR  value and cRMSE  value of the SVR 
model on VIS-NIR wavebands were 0.5322 and 0.5879 mg·g-1, 
respectively, and the 2

pR  value and pRMSE  value were 0.2312 and 
0.9354 mg·g-1, respectively. The 2

cR  and cRMSE  values of the SVR 
model on SW-NIR wavebands were 0.5567 and 0.5063 mg·g-1, 
respectively, as compared to the 2

pR  and pRMSE  values being 
0.3113 and 0.6836 mg·g-1, respectively. Comparing those two 
models, it could be found that the model built on VIS-NIR 
wavebands has lower performance. By comparing those models 
shown in the table, SVR models had very poor performance than 
PLSR ones in predicting TFC. Even though SVR was a powerful 
model, it could not be used to build models for predicting TFC.

In summary, spectral data of VIS-NIR wavebands showed 
less correlation with TFC in Ginkgo biloba leaves than SW-NIR 
wavebands, and PLSR models had better performance than SVR 
models. As a result, models built by PLSR based on spectral 
data of SW-NIR wavebands had the potential to predict TFC 
in Ginkgo biloba leaves.

Figure 3. Mean spectral curve (a) Mean spectral curve of VIS/NIR (b) 
Mean spectral curve of SW-NIR.

Table 2. Performance of all-band prediction model.

model wavebands 2
cR cRMSE /

mg·g-1
2
pR pRMSE  /

mg·g-1

PLSR_3 VIS-NIR 0.4212 0.6921 0.2914 0.9390
PLSR_4 0.4329 0.6771 0.3013 0.8758
PLSR_5 0.4719 0.6523 0.2869 0.8862
PLSR_6 0.4871 0.6277 0.2538 0.9413
PLSR_9 SW-NIR 0.4914 0.7058 0.5023 0.6637

PLSR_11 0.5511 0.6762 0.5292 0.6425
PLSR_13 0.6180 0.6371 0.5496 0.6384
PLSR_15 0.7201 0.5623 0.3857 0.6671

SVR ViS-NIR 0.5322 0.5879 0.2312 0.9354
SVR SW-NIR 0.5567 0.5063 0.3113 0.6836
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Models on characteristic wavebands

According to the results of the models built before, the 
prediction model was optimized based on the PLSR model 
built on the spectral data of SW-NIR wavebands. In this study, 
SPA and GA were used to select the characteristic wavebands, 
and the target number of characteristic wavebands was set to 
20, 30, 40, 50, and 60. The performance of the optimal models 
is shown in Table 3.

SPA is a method to eliminate redundant information between 
wavebands. By setting the target number, the characteristic 
wavebands were obtained. From the table, it can be shown that 
the 5 SPA-PLSR models with different characteristic wavebands 
number had similar performance, which showed a small increase 
in performance over the PLSR models. The 2

cR  and cRMSE  values of 
the model with the best performance in the table were 0.6533 and 
0.5857 mg•g-1, respectively, as compared to the 2

pR  and pRMSE  
values being 0.6286 and 0.6944 mg•g-1, respectively.

Compared with SPA, GA is a supervised learning algorithm, 
that selects the characteristic wavebands by minimizing loss 
function, and the iteration of optimizing was 2000. From 
the table, it can be found that, when the target number of 
characteristic wavebands was 20, the performance of GA-PLSR 
seemed to be the worst among the 5 GA-PLSR models, and 
with the increase of the target number, the performance had 
a significant improvement. It could be concluded that, a good 
model with high performance should have enough spectral data, 
20 wavebands seemed insufficient to build a stable model for 
predicting TFC in ginkgo biloba leaves. When the number of 
characteristic wavebands was 50, the performance of GA-PLSR 
reached a peak, and the 2

cR  and cRMSE  values of the model with the 
best performance in the table were 0.8532 and 0.5403 mg•g-1, 
respectively, while the 2

pR  value and pRMSE  value were 0.8482 and 
0.2967 mg•g-1, respectively. 50 characteristic wavebands selected 
by GA are shown in Figure 4.

Discussions

In this study, prediction models were built on full-wavebands 
and characteristic wavebands spectral data, the performance of 
these models is shown in Table 2 and Table 3. By comparing the 
result of performance, it could be found that it was difficult to 
build a stable and accurate model for predicting TFC in Ginkgo 

biloba leaves on the full wavebands data, the performance could 
hardly be employed in testing leaves. However, the full-wavebands 
models were not completely useless, which showed that SW-NIR 
wavebands had better performance on both PLSR and SVR 
than VIS-NIR. This phenomenon, was probably, due to the fact 
that, spectral data of VIS-NIR wavebands had poor correlation 
with flavonoids, and spectral data of SW-NIR wavebands had 
more information that is invisible and maybe had a stronger 
correlation with flavonoids.

The GA-PLSR models showed a better performance than 
SPA-PLSR and had a more significant improvement than single 
PLSR. GA is a kind of algorithm that simulates biogenetics, which 
scans the whole wavebands to find the characteristic bands to 
build a stable model. SPA is an algorithm aimed to find the most 
representative information in spectral data, without using the 
real TFC values of each sample. Naturally, the time to explore 
a stable GA-PLSR is much longer than SPA-PLSR. Fortunately, 
the time-consuming is meaningful, and the performance of 
GA-PLSR built on 50 characteristic wavebands is acceptable.

From the characteristic wavebands selected by the model, 
it could be found that the wavebands clustered in the range of 
1100-1200 nm and 1400-1500 nm. Thus, it can be concluded that 

Table 3. Performance of characteristic wavebands prediction model.

model Numbers of characteristic 
wavebands

2
cR cRMSE /mg·g-1 2

pR pRMSE  /mg·g-1

SPA-PLSR 20 0.6198 0.6470 0.5422 0.7031
30 0.7341 0.5902 0.5759 0.6328
40 0.6533 0.5857 0.6286 0.6944
50 0.6953 0.5771 0.6111 0.6520
60 0.7133 0.6013 0.5991 0.6298

GA-PLSR 20 0.8412 0.5539 0.6742 0.4397
30 0.8319 0.6115 0.7649 0.3691
40 0.8215 0.5833 0.7969 0.3431
50 0.8532 0.5403 0.8482 0.2967
60 0.8322 0.5507 0.7967 0.3378

Figure 4. 50 characteristic wavebands selected by GA-PLSR.
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images of sweet corn seeds. Agronomy (Basel), 10(9), 1268. http://
dx.doi.org/10.3390/agronomy10091268.
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Irrigation decision model for tomato seedlings based on optimal 
photosynthetic rate. International Journal of Agricultural and 
Biological Engineering, 14(5), 115-122. http://dx.doi.org/10.25165/j.
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these wavebands had a powerful correlation with the flavonoids 
in Ginkgo biloba leaves. In the future, a new multispectral 
camera system could be established by these wavebands to test 
the quality of Ginkgo biloba leaves at a faster speed, which will 
in turn improve industrial efficiency significantly.

4 Conclusion
This research demonstrated that it is feasible to estimate 

TFC values in Ginkgo biloba leaves using hyperspectral imaging 
technology. The following conclusions were made by the process 
of building prediction models: (1) SW-NIR wavebands data 
had more correlation with flavonoids in Ginkgo biloba leaves 
on both SVR and PLSR models than VIS-NIR wavebands, 
this may imply that the invisible SW-NIR wavebands had 
more information of flavonoids. (2) PLSR prediction models 
exhibited better performance than SVR on predicting TFC in 
ginkgo leaves, whose 2

pR  value and pRMSE  value were 0.5496 and 
0.6384 mg•g-1, respectively. (3) Models built on characteristic 
wavebands selected by GA and SPA were useful in improving 
the performance of the prediction model. The spectral data of 
SW-NIR wavebands seemed to be redundant, it was necessary to 
select wavebands before building prediction models. In addition, 
the GA-PLSR model with 50 characteristic wavebands had 
the best performance, with the 2

pR  and pRMSE  values being 
0.8482 and 0.2967 mg•g-1, respectively. This model showed a 
significantly higher performance than the other models. (4) The 
characteristic wavebands clustered at the range of 1100-1200nm 
and 1400-1500nm, those wavebands showed a high correlation with 
TFC in ginkgo leaves and could help promote the establishment 
of a multispectral testing system to test the quality of leaves at 
a fast speed meeting industrial needs.

As a result, a new method was established for rapid and 
non-invasive detection of leaves of leaf-use ginkgo, which 
provides technical support and a theoretical basis for precision 
production, management, and cultivation of leaf-use ginkgo.
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