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Abstract 
 
The correct location of harvesting machinery is an important problem for the timber industry, as these 
are expensive pieces of equipment. Also, access roads need to be constructed within a season of 
harvesting. In this paper, we present the modelling of this problem as a mixed integer linear model 
which, without any special technique, is very difficult to solve. Strengthening of the original linear 
programming formulation, and a Lagrangian Relaxation algorithm are developed to improve the 
solution process. We show test results in a real industry problem. 
 
Keywords:  large scale optimization; location; integer programming; natural resources. 
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1. Introduction 

The timber industry around the world has been a longstanding user of Operations Research 
tools. Many strategic, tactical and operational problems are suited to be modelled as linear 
programs. Some of these applications have been very successful in certain industrial settings. 
(See Epstein et al. (1999) for details). In some cases, however, some decisions are of a 
discrete nature, like harvesting or not harvesting a certain area. This usually requires the 
models to be of the integer programming kind, with the corresponding additional difficulty 
on finding a good solution. The problem we present in this paper belongs to this category. 
It actually involves together a facility location problems as well as a network design 
problem. Although in practice a feasible solution might be obtainable by mean of heuristic 
techniques, the knowledge of a good approximation to the optimal value is important, 
specially for the analysis and calibration of the heuristic techniques. 

Specifically, we consider a decision problem which is relevant in the short to medium term, 
and relates to harvesting operations. In order to harvest a given forest area, it is necessary to 
install machinery and to build access roads for removing the timber. The machinery consists 
of harvesting cranes and skidders, with specific operating requirements. The problem fits 
into an operational framework of decision making in the forest industry. Longer term 
decisions have already been made, regarding which areas to harvest and when to harvest 
them. The problem considered here takes these as input and carries out the operational 
harvesting decisions. This is a complex problem requiring the consideration of several 
factors, such as installation of harvesting machinery, the area that can be harvested from a 
given point, and the complexity of the road network which must be built to allow the 
removal of all the timber. The problem considers only a finite, although large, number of 
points where machinery can be installed. Roads need to access such points and connect them 
to demand points. Currently, users at forest companies can use a system called PLANEX 
(Epstein et al., 1999) to support their decisions. This system is linked to a geographical 
information system (GIS) which stores information, and in which the forest is represented as 
a lattice with uniform cells of typically 10 by 10 meters. The information used includes: 
altitude (topographical level lines), timber availability in each cell, existing roads, type of 
terrain and topographical accidents such as rivers. An interactive graphical interface allows 
the user to view the basic data of the problem on screen, as well as the solutions obtained. 
The user can also modify solutions by proposing alternatives. The solution procedure is 
based on a heuristic scheme that evaluates all feasible locations of towers and skidders, 
considering timber that can be reached from it and roads needed for access. Roads are 
designed based on a shortest path algorithm and data provided by the GIS, where each 10 by 
10 cell represents a node in a network. Roads have to satisfy steepness and turning radius 
constraints. Solutions obtained are naturally only approximate. The system has been 
implemented in five forest firms in Chile, see Epstein et al. (1999). 

In this work we approach this forest management problem from the point of view of a 
mathematical programming model. The consideration of this model is important as it could 
provide better bounds on the optimal objective function, which can be used to evaluate the 
performance of heuristic approaches to the problem, like the ones used in PLANEX. The 
formulation is a combinatorial optimization model, which is a combination of a location 
problem (harvesting machinery) combined with a fixed charge network flow problem 
(road building). As a solution technique to this hard problem, we consider the potential of 
Lagrangian Relaxation techniques as an alternative to obtain approximate solutions, together 
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with standard strengthening strategies. Coupled with a Lagrangian heuristic, this should 
provide us with feasible solutions and estimates of the potential error. Our main objective 
have been to analyze the potential of this approach for a difficult forest management problem 
and, hence, we have applied the procedure to a real representative forest problem, with 
promising results. 

 

2. The Forest Problem 

In this section we describe the harvesting machinery location problem. Two classes of 
machinery, towers and skidders are used. A tower is a sort of crane carried by a very heavy 
truck and placed on top of a hill. Cables are drawn from the crane and anchored at the bottom 
of the hill, allowing the lifting of timber from the hill side to the top, where it can then be 
loaded on trucks and transported to the processing plant. At intermediate points, the cable is 
supported by posts, typically trees are used for this, to keep the cable sufficiently high above 
the ground. This is to allow for a smooth movement of the logs. After the trees on the hill 
side and bottom are felled, the cable is laid out at a different angle by moving the bottom end 
of the cable to a different point from where the harvest can proceed. The cable has a lateral 
reach for logs of about 30 meters in each direction. This permits the safe harvesting of steep 
hills in a roughly circular pattern. Cable logging can also be handled downwards, but it is 
more difficult due to the danger posed by gravity. Skidders are nimble tractors which can 
move relatively quickly on uneven terrain as long as it is not too steep to carry felled trees to 
storage areas along roads. Skidders are less expensive to operate than towers. While skidders 
have flexible mobility, given their low speed, it is considered non economical to have them 
work long distance, so the road system is designed so that skidders need not carry logs over 
distances above approximately 300 meters. There are different types of cable logging and 
skidder machinery, mostly based on reach capacity and cost. 

 

3. The Model 

We present now a mathematical formulation of this problem. The GIS database and 
PLANEX can be used to generate the data needed for the model. The road network 
connecting all possible locations pairwise and to the exit of the forest is generated in this 
way. The system also generates data relating to timber production per cell, the cells that can 
be reached from each possible location, and the type of machinery suitable for a certain area. 
All relevant costs are also elaborated from existing information. In the end, one has a large 
set of small cells, most of which represent areas where timber is available, some other 
represent points where a base for machinery can be constructed, and other cells represent 
intersections of roads (existing or potential). Each potential machinery location has access to 
a certain number of cells which can be harvested from that location. In addition, one or 
several cells are distinguished as the exits of the forest. Figure 1 illustrates a typical 
arrangement of cells, where roads and harvesting areas are indicated. Point A corresponds to 
a potential tower location cell, and the circle indicate the covering area of an specific tower 
located at that point. Cell B, on the other hand, corresponds to the intersection of two 
potential roads. 
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Figure 1 – Harvesting area of a forest. Point A is a machinery location point.  

The shaded area corresponds to the cells reachable from that location.  
B is an intersection of roads and S is the exit of the forest. 

 
We now describe the conceptual model. We assume K different kinds of machinery can be 
used to harvest wood (although in our application, only two types are used). The cells in the 
forest are numbered from 1 to n, the C = {1,…,n} will be used to represent them. We will 
distinguish four subsets of C representing the different kind of cells: 

M: set of cells to be harvested. 
N: cells representing nodes of the road network. 
Tk: set of cells where the operation base of a machine of type, can be installed. We 

assume that. 
S: the set of exit cells. We also assume that S ⊆ N. 

We also denote T = ∪kTk. Notice that, with the previous definitions, the cell in N which are 
neither in T nor in S are intersection of roads. 

Associated with the forest there is an undirected graph G = (N,A). A ⊂ N×N describes the 
roads. These are either potential roads to be built, or already existing road. For that purpose 
we partition the set of arcs in A = Ae ∪ Ap, where Ae corresponds to the already existing roads 
(eventually Ae = φ), and Ap the potential roads. The following other elements are also used: 

Pij
k: for machinery of type k, i ∈ Tk and j ∈ M, equals 1if cell j can be harvested from 

cell i, zero if not. This parameter defines the coverage of a certain machinery location. 
Ωj: for j ∈ M, timber volume available in cell j. 
Kij: A large constant which bounds the flow of timber in road (i,j) ∈ A. 
αik

1: installation cost for an equipment of type k in cell i ∈ Tk. 
αij

2k: unit harvesting cost for harvesting with machinery of type k in cell i from cell 
i ∈ Tk. This is defined only if Pij

k = 1. 
αqr

3: construction cost for road (q,r) ∈ Ap. 
αqr

4: unit transportation cost for road (q,r) ∈ A. 
αs

5: unit transportation cost from exit s ∈ S to final destination. 
δ: unit revenue for timber harvesting. 
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3.1 Decision Variables 

The following variables will be used in the model: 

wij
k:  for j ∈ M, k = 1,…,M, i ∈ Tk, such that Pij

k = 1, timber volume at cell j harvested 
from cell i using machinery of type k. 

yi:  for i ∈ T, total timber volume harvested through cell i. 
fqr:  timber flow in arc (q,r). 
zqr = 1  if we build road (q,r), 0 if not. 
xi

k = 1  if we locate machinery of type k in cell I, 0 if not. 
gs:  timber flow through exit s∈ S. 

 

3.2 Constraints of the Model 

• The total timber harvested from one cell cannot be greater than the availability. 

1
,

k

K
k k

ij ij j
k i T

P w j M
= ∈

≤ Ω ∀ ∈∑ ∑  (1) 

• yi equals the sum of all timber amounts harvested through cell i, i ∈ T. 

1
,

K
k k

ij ij i
k j M

P w y i T
= ∈

= ∀ ∈∑ ∑  (2) 

• Timber can be harvested at cell i from cell j only if some machinery has been installed 
at i 

, , , 1k k k
ij j i ijw x i j k P≤ Ω ∀ = . (3) 

• There can be traffic on potential road (q,r) (in any direction) only if the road has been 
built, and road capacity cannot be exceeded: 

p( , ) ,qr rq qr qrf f K z q r A q r+ ≤ ∀ ∈ <  (4) 

• There must be flow conservation at harvesting cells, road intersection cell and exit cells. 

( , ) ( , )
0 ( )

.

r

qr rt
q r A r t A

r

y r T
f f r N T S

g r S∈ ∈

− ∈
− = ∈ −
 ∈

∑ ∑ ∪  (5) 

• The total timber flowing through the exits should equal the total harvested. 

s i
s S i T

g y
∈ ∈

=∑ ∑  (6) 

• Only one type of machinery can be installed in cell i ∈ T. 

1
1,

K
k
i

k
x i T

=
≤ ∀ ∈∑  (7) 

• In addition to the above, variables w, y, g and f have to be nonegative. 
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3.3 Objective Function 

The objective of the model is to harvest the forest by locating equipment, and doing that with 
maximal benefit. Thus, the objective function considers costs and revenues in the harvesting 
process. The cost is the sum of the following five terms which accumulate all costs involved 
in the problem: 

• Cost of installing machinery: 

1
1

1

K
k

ik i
k i T

C xα
= ∈

= ∑ ∑  

• Harvesting cost: 

2
2

1 : 1
α

= ∈ ∈ =

= ∑ ∑ ∑
k

ij

K
k k

ij ij
k i T j M P

C w  

• Road construction cost: 

p

3
3

( , )
qr qr

q r A
C zα

∈

= ∑  

• Transportation cost inside the forest: 
4

4
( , )

qr qr
q r A

C fα
∈

= ∑  

• Transportation cost to final destination: 
5

5 s s
s S

C gα
∈

= ∑  

• The total revenue for harvesting is: 

i
i T

yδ
∈

= ∑B  

The objective function is, thus, to maximize 

{ }1 5…= − + +z C CB . 

It should be noted that the value of δ can be used to represent actual benefit, or to force, by 
setting it to a large value, the harvesting of most of the timber in the forest. The 
computational experiments reported will show that the difficulty of the problem is sensitive 
to this parameter. 

 
3.4 Difficulty of the Problem and Solution Strategy 

The model we have described combines two well known hard combinatorial optimization 
problems: a location problem and a network design problem. This is an indication that the 
problem on hand should be very difficult to solve, particularly for reasonably large instances. 
In practice we expect this model to be applied to areas in the order of 50 to 500 hectares, which 
means about at least 3,000 to 50,000 cells, while the number of integer variables goes from 
several hundreds to several thousands, but even the smaller instances have proved difficult to 
solve. The solution strategy we present in this paper comprises the following elements: 
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1. Defining additional constraints in order to make the original formulation stronger. 
2. Partition the problem in the context of a Lagrangian relaxation approach. 
3. Strengthen the partitioned subproblems, if possible. 
4. Solve the Lagrangian relaxation using a pure subgradient algorithm, or a combined 

hybrid approach, which consists of subgradient iterations followed by a Dantzig-
Wolfe method or by the bundle method. 

5. Obtain primal feasible solutions using a Lagrangian heuristic. 

The approach we described is justified on the fact that attempting solution of the problem 
with a simple branch and bound approach leads to excessively large solution times. In fact, 
as we will see in the computational results, for an instance corresponding to 40 hectares, 
CPLEX stops after more than 600 minutes only with a feasible solution which gap is 27%. 
Strengthening can reduce this gap significantly, and the use of a Lagrangian relaxation can 
provide an even much better bound. 

In the following sections of the paper we present the developments of these solution strategies 
and we finally show some computational results of the approaches in some of our test problems. 

 

4. Strengthening of the Model 

It is customary in mixed integer problems to introduce additional constraints that might help 
in the solution of the problem (see, for example, Wolsey, 1998). These additional relations 
strengthen the formulation by excluding some fractional solutions. We describe now the 
improvements we developed for this problem. We first added some constraints to the model. 
These are redundant for the integer model, but not for its continuous relaxation, thus they 
could cut off some fractional LP solutions. The constraints we present now are of the 
“trigger” type based on logical relations between the elements of the model. We also 
performed an adjustment of the bounds Kij to the maximum possible flow of timber through 
each arc used in constraints (4). 

Location to road triggers: In order to install machinery in a cell, at least one of the roads 
incident to the corresponding node in the network must be built. The following constraint is 
generated for each index i ∈ T such that this location is not connected to any existing roads, 
that is if no q exists such that (i,q) ∈ Ae or (q,i) ∈ Ae: 

p p1 ( , ) ( , )

K
k
i iq ri

k i q A r i A
x z z

= ∈ ∈

≤ +∑ ∑ ∑ . (8) 

There are as many of these constraints as location points not connected to existing roads. We 
do not expect a large number of them, so this does not imply adding an excessive number of 
constraints to the model. 

Road to Road Triggers: These constraints establish that a road cannot exist alone in the 
network: it has to be connected to others. Let (q,r) ∈ Ap be such that neither q nor r are 
connected to existing roads. Let us define the set of those arcs by A. Then, the following 
constraints have to be satisfied by any feasible solution: 

p p p p( , ) ( , ) ( , ) ( , )
, ( , )qr rt tr qt tq

r t A t r A q t A t q A
z z z z z q r A

∈ ∈ ∈ ∈

≤ + + + ∀ ∈∑ ∑ ∑ ∑ . (9) 
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Implicit Equations: For all cells which can be harvested from only one cell (that is, Pij
k = 1, 

for only one index i), we can write immediately: 
k k
ij j iw x= Ω . (10) 

It is necessary here to make the assumption that if Pij
k = 1 then αij

2k < δ, that is the unit 
harvesting cost cannot be greater than the unit revenue. 

Capacity Adjustment: To tighten constraints (4), capacities are lowered to the maximum 
flow that could go through each road. To determine this value, a preprocessor examines for 
each road all possible timber flows that might flow through that road. This bound can be 
quite tight in tree-like network sections, but not so in more dense networks with multiple 
alternative paths for the flows. 

In the computational results we show that these improvements to the model by themselves 
help in the solution of the problem using a branch and bound algorithm. 

 

5. The Lagrangian Relaxation Idea 

The power of commercial mixed-integer programming solvers has improved greatly over the 
last ten to fifteen years. This is due partly to much faster LP solvers, which allow a much 
quicker processing of the nodes in the Branch-and-Bound tree. It is also due to the increased 
use of logical processing and heuristic tools for tightening models and for finding solutions. 
It remains true, however, that some combinatorial optimization problems are still very 
difficult to solve by Branch-and-Bound alone. This seems to be the case particularly for 
problems containing different components that are only loosely connected together by 
constraints. 

In some situations, Lagrangian relaxation has proved to be a useful tool. In this approach, 
sets of constraints are relaxed and dualized by adding them to the objective function with 
penalty coefficients, the Lagrangian multipliers. The objective, in our case, in the relaxation, 
is to dualize, possibly after a certain amount of remodelling, the constraints linking the 
component together in such a way that the original problem is transformed into disconnected 
and easier to solve subproblems. One is able in this way to obtain bounds on the actual 
integer optimal value, and separate solutions to the individual subproblems which, while not 
necessarily consistent because they may violate some of the linking constraints, might 
however suggest ways of constructing good globally feasible solutions. Early papers dealing 
with Lagrangian Relaxation include Everett (1963), while the first successful application was 
due to Held & Karp (1970) for the travelling salesman problem. It has been the subject of 
much research since then. A thorough review can be found in Geoffrion (1974) and Fisher 
(1985). Several application examples can also be found in Ahuja et al. (1993). In order to get 
the tightest possible bound on the optimal value, one must solve an auxiliary problem 
consisting in optimizing the bound over all possible values of the multipliers. This can 
traditionally be accomplished in three ways. The first method is the well known subgradient 
method where the value of the slack vector in the relaxed constraints is a subgradient 
(a generalization of the gradient in case of a nondifferentiable objective function) of the optimal 
Lagrangian value with respect to the multipliers. In the second method, one solves a linear 
programming problem, called a master problem, in terms of the multipliers. The constraints 
of the master problem are not all known in advance, and one extra constraint, at least, 
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obtained from the current solution of the Lagrangian subproblem, is added to the current 
master problem at each iteration, thus the name constraint generation. The optimal bound is 
contained in the bracket between the optimal value of the current LP master problem and the 
value of the best Lagrangian relaxed problem. A composite (hybrid) method, called two-step 
dual method, was proposed in Guignard & Zhu (1994). In a first phase it updates the 
multipliers via a subgradient formula, while building a master problem in the background. 
The estimate of the optimal bound is taken as the optimal value of the current master 
problem. In the second phase, in order to ensure convergence of the process, it only uses the 
master problem approach. This approach has proved very successful in optimizing 
Lagrangian bounds for some problems that could not be handled easily by either of the first 
two (Guignard & Zhu, 1994). A third approach is the Bundle method. In this approach the 
past information of subgradients already generated is incorporated into the process, as they 
already constitute a partial description of the dual function. The rest of the approximation is 
constructed with a quadratic term. A hybrid method with a bundle approach would start with 
the subgradient method and shift to the bundle method after an appropriate criteria is 
satisfied. For details see Hiriart-Urruty & Lemarechal (1993). We tested all three main 
procedures to solve the Lagrangian relaxation for the problem. 

 

6. Decomposition of the Model 

Our problem consists of a machinery location problem, connected to a road construction 
problem. Given the difficulty in solving the complete problem via Branch-and-Bound 
techniques, we attempt to separate it into two subproblems using Lagrangian relaxation. We 
do this by dualizing the constraints that link the two, namely constraints (2). For each one of 
these constraints a Lagrangean multiplier µi is defined. The corresponding objective function 
of the relaxed problem is: 

1 1

3 4

( , )( , )

( , , , , , , ) ( ) ( )

p

k k k
i i ik i ij ik i ij

i T i T k k i T j M

ij ij ij ij
i j Ai j A

L x y w z f y x P w

z f

λ µ δ µ α α µ

α α
∈ ∈ ∈ ∈

∈∈

= + − − − −

−

∑ ∑∑ ∑∑ ∑

∑ ∑
 

The corresponding relaxed problem is: 

max ( , , , , , , )
. .

L x y w z f
s a

λ µ
 

 ,
k

k k
ij ij j

k i T
w P j M

∈

≤ Ω ∀ ∈∑ ∑  (11) 

 , , , 1k k k
ij i j ijw x i j kP≤ Ω ∀ =  (12) 

 1 ,k
i

k
x i T≤ ∀ ∈∑  (13) 

 p, ( , )rq qr qr qrf f z K q r A+ ≤ ∀ ∈  (14) 

 
( , ) ( , )

0 ( )
∈ ∈

− ∈
− = ∈ −
 ∈
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r

qr rt
q r A r t A

r

y r T
f f r N T S

g r S
 (15) 
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 i s
i T s S

y g
∈ ∈

=∑ ∑  (16) 

 { }, 0,1 , 0, 0, 0, 0x z f w g y∈ ≥ ≥ ≥ ≥  

Observe that all constraints appearing in this problem are the same as in the original 
problem, except that original constraints (2) had been excluded as they were relaxed. 
Variables x and w in constraints (11), (12) and (13) represent a location problem, while 
variables f, z, y and g in constraints (14) and (15) represent a network design problem. The 
problem decomposes in two: one problem involves the location of harvesting machinery, and 
the other the design of a road network. Both of them are hard problems by themselves, but 
we expect they can be treated better separately than together in the original formulation. 

The Lagrangian algorithm will proceed by solving these two problems, and updating the 
value of the multipliers. We will show in the next sections that by using some heuristic 
approaches we can reduce considerably the computational effort involved in getting optimal 
solutions for the subproblems. Also, the algorithm will allow us to obtain, heuristically, 
feasible solutions to the original problem. 

 

6.1 Strengthening to the Subproblems 

The two subproblems are by themselves hard combinatorial optimization problems. The 
Lagrangian relaxation is applied to the original problem and both subproblems are 
strengthened independently. Notice that the location to road triggers cannot be used here as 
they involve both location and road construction variables. However, the implicit equalities 
(10) are kept. 

In the road network design problem, the road to road triggers (9) are kept and two new sets 
of constraints are added as a way of strengthening the formulation, and replace constraints 
that are lost in the relaxation. The following constraints: 

: 1=

≤ Ω∑
k

ij

i j
j P

y , (17) 

reflect, as constraints (3) did in the original problem, that total inflow to a production origin 
cannot exceed existing timber volume accessed through that origin. The constraint  

i j
i T j M

y
∈ ∈

≤ Ω∑ ∑  (18) 

is another redundant constraint which is expected to contribute to strengthening the model. 
The following constraints: 

p p( , ) ( , ): 1 ∈ ∈≥

≤ +
Ω ∑ ∑∑ k

ij

i
ri it

j r i A i t Aj P

y z z , (19) 

are a surrogate to the location to road trigger and are obtained by relaxing (8) using (2) and 
(3). The two subproblems are: 
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Location Subproblem: 
2 1max ( )
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,

, , , 1

, 1
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k k k
ij i ij ij ik ii T j M i T k
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µ α α∈ ∈ ∈

∈

+ −
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≤ Ω ∀ =

= Ω ∀ ∈ =

≤ ∀ ∈

∈ ≥

∑ ∑ ∑ ∑
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Network Design Subproblem: 
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7. Implementation of the Solution Approach 

We implemented the solution approach on a PC Pentium MMX running at 200 Mhz with 
64 Mb RAM, under the Windows 95 operative system. GAMS was used to code the models 
and algorithms, with OSL as the linear programming and MIP solver. For each instance we 
first solved the original formulation using Branch and Bound. We then solved the strengthened 
formulations using Branch and Bound. In both cases we used the linear programming 
relaxation of the corresponding MIP to obtain a feasible mixed integer solution, using a 
rounding heuristic we describe below. This feasible solution gives a lower bound on the 
optimal value. We then solved the Lagrangian relaxation using all strengthenings. From the 
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solutions of the subproblems, we used a Lagrangian heuristic to obtain another feasible 
mixed integer solution. We discuss now the specifics of the implementation, basically the 
criterias used in the Lagrangian relaxation algorithms, and the heuristics used to obtain 
feasible solutions. 

 
7.1 Implementation of the Lagrangean Approach 

Three algorithmic approaches to solve the Lagrangian relaxation were implemented and 
tested: 

1. A basic algorithm based only on pure subgradient iterations. 
2. A hybrid method starting with subgradient iterations and shifting to dual Dantzig-

Wolf iterations. \item The pure bundle method. 
3. A hybrid method starting with subgradient iterations and shifting to the bundle 

method. 

In all cases, the subproblems were solved using Branch and Bound, but all the relevant 
strengthenings were kept in the subproblems in order to help the search for the optimal 
solutions. For the subgradient iterations, the stopping criteria was given by having a small 
tolerance for a given number of iterations. 

For the two hybrid approaches, the switching criteria was given by the following rules: 

1. when a cut is repeated by the Lagrangian solution, as in Guignard & Zhu (1994). 
2. when the optimal value of the master dual problem is under the value of the best 

feasible solution. 
3. according to a bound on the number of iterations. 
4. when the Lagrangian bound does not show significant improvement. In fact, it is 

typically observed that the convergence of the subgradient iterations is fast at the 
beginning but no significant improvement is observed in later iterations. 

The first criteria to be satisfied triggers the shifting of method. The stopping rule was the 
same as for the pure subgradient implementation. 

The pure bundle approach was less efficient than the hybrid method starting with pure 
subgradient iterations followed by the bundle method, and these results are not reported. 
 

7.2 Obtaining Feasible Solutions from the Linear Relaxation of the Original Problem 

To obtain a feasible solution based on the linear relaxation of the original model, we 
implemented a simple rounding heuristic which takes the (fractional) values of the location 
variables and round them in order to make them integer. The road structure is modified in 
order to guarantee that the locations get connected to the exists. The procedure is as follows: 

1. All location variables which are already integer are fixed in their values (zero or one). 

2. For the remaining fractional location variables, we test whether the marginal benefit 
obtained by harvesting from a given location is greater than the corresponding 
installation cost. We do this by evaluating two criterias, which generate two different 
heuristics. After applying both to the whole problem, we keep the result with the best 
reduction in costs. 
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Criteria 1:  Fix variable xi
k to 1 if 

1 2

: 0, 0
( )α δ α

> >

≤ − Ω∑
k k

ij ij

k
ik ij j

j P w
. 

This compares the total installation cost for location i with the additional net benefit 
obtained from harvesting at that location. 

 
Criteria 2:  Fix variable xi

k to 1 if 
1 2

: 0, 0
(1 ) ( )( )α δ α

> >

− ≤ Ω − −∑
k k

ij ij

k k k
ik i j ij ij

j P w
x w . 

This compares the installation cost still to be allocated (the fraction 1 – xi
k) with the 

remaining net benefit from harvesting. 
If a variable in fractional value does not satisfies neither of the criterias, it is fixed to 
zero. 

 
3. We then adjust the road network. All road construction variables with positive values 

are rounded up to value one. The others are kept at value zero. This leaves a road 
network which connects every location actually used with the exists. We now run the 
remaining flow problem on the variables (y,w) maximizing net benefits and using the 
locations and roads already defined by the variable fixing criterias. All roads which 
end up carrying no flow are eliminated from the solution. 

 

7.3 Obtaining Feasible Solutions from the Lagrangian Relaxation 

One of the interesting aspects of Lagrangian Relaxation is the possibility of obtaining 
feasible solutions to the problem based on the solutions computed from the subproblems, by 
trying to make them feasible. We developed the following heuristic: 

1. If the solution obtained so far is feasible, keep it. 

2. If not, it means that the road network is not compatible with the locations defined by 
the subproblem, which means that some machinery locations are not connected to the 
exit. The objective is, then, to build up the necessary elements to achieve that 
connection. 

3. We define an auxiliary problem consisting of all machinery locations defined by the 
location subproblem and an auxiliary road network consisting of a minimum spanning 
tree connecting all possible machinery locations to the exit. The spanning tree is 
constructed using a standard algorithm of the Kruskal type (see Ahuja et al., 1993). 

4. We solve the auxiliary linear problem to take out all timber to the exits. 

5. We eliminate all roads which are not taking any flow of timber. 

Now we have a feasible solution which can still be improved through a local search approach 
which adds or eliminates machinery from the solution in such a way to improve the optimal 
value. This procedure is as follows: 
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1. We select all candidate locations to be added to the solution by computing, for 
candidate location i, the following number: 

2 1

: 1
( )δ α α

=

Ω − −∑
k

ij

k k
j ij i

j P
. 

This number, if positive, indicates that the total timber harvested at the candidate is 
enough to compensate the installation cost. 

2. After this, the corresponding linear problem is solved again. 

3. If the objective does not improve, we eliminate machinery by selecting as candidates 
all locations corresponding to leafs of the spanning tree. For candidate i we compute 

2 1 3

: 0: 0
( )δ α α α

>>

Ω − − −∑ ∑
k

irij

k k
j ij i ir ir

r fj w
f . 

This number, if negative indicates that the transportation cost incurred to take out 
timber (at least to the immediate roads) is excessive and we should eliminate that 
installation. 

4. We solve the corresponding linear program again. 

5. To avoid cycling by examining locations which have been recently considered, we 
keep a register with that information. This is a sort of tabu list, as used in Tabu 
Search, a heuristic approach to solve combinatorial optimization problems which has 
been successful in recent years to tackle difficult problems. (For a detailed discussion, 
see Glover (1994)). Our local search, however, is not a full implementation of a Tabu 
Search heuristic and only a few iterations for improvement are performed. 

 

8. An Alternative Formulation 

An alternative formulation of the problem is obtained by realizing that the constraints (3): 

, , , 1k k k
ij j i ijw x i j k P≤ Ω ∀ =  

can be replaced by one for each location by adding in the index j. The constraint 

: 1 : 1
,

= =

≤ Ω ∀ ∈∑ ∑
k k

ij ij

k k
ij i j

j P j P
w x i T  (20) 

is an aggregation of the above and if included instead of them provides a more compact 
representation of the model. In fact, for large size problems, most of the constraints in the 
original model are of the type (3). Replacing them by (20) implies only one constraint for 
each potential machinery location point. This formulation, however, since it is less tight, 
proved to be less powerful for solving the problem using Branch and Bound, although the 
linear relaxation could be solved faster as there are less constraints. 

From this new formulation, an alternative is to consider adding a subset of constraint of the 
type (3) only as they are needed. This is implemented by solving the linear relaxation with 
constraints (20) and then considering all indexes (i,j) where wij

k/Ωj is “close” to one. We 
assume that these disaggregated constraints are more likely to be active in the optimal 
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solution. We then add to the problem the corresponding disaggregated constraints only for 
the indexes (i,j) that satisfies the above criteria. This approach, however, did not provide 
better solutions at reasonable CPU time compared with the use of the full set of constraints 
(3), and these tests are not reported. 

 

9. Computational Results 

9.1 Test Problems 

We tested the algorithms on two different data sets. The first one represents a small problem. 
The second one corresponds to a larger problem and it is based on real data from a 
plantation. For this problem we generated two different cases based on different structures of 
the network of potential roads. We did this to test the robustness of the algorithm to changes 
in the structure of the network. In the first case we generated a simplified structure consisting 
on a spanning tree connecting all location points, together with the existing roads. For the 
second case, we used the original network of potential roads available from the original data, 
which is substantially more complex than a spanning tree. Table 1 summarizes the 
characteristics of both instances. We also generated different instances based on a different 
value for the benefit obtained from harvesting, in order to test for the sensitivity of the 
approach to changes in market conditions. 

 
Table 1 – Description of the test problems 

DIMENSIONS SET 1 SET 2 (simple) SET 3 (complex) 
Area (hs.) 10 40 40 
Number of cells 1.000 4.071 4.071 
Tower loc. points 4 17 17 
Skidders loc. points 6 41 41 
Constraints 1.620 16.046 16.046 
Continuous variables 955 12.688 12.688 
Potential roads 16 65 109 
Binary variables 26 123 167 

 

9.2 Results of the Runs 

We performed testing of the algorithms developed using both instances presented in the 
previous section. For each instance, we first solved the linear relaxation of the original 
problem, and applied the rounding heuristic described in 5.3 We then attempted to solve the 
problem using a Branch & Bound procedure. This was successful only for the small problem 
and for the large one only with the simple road structure. We then applied the Lagrangian 
relaxation, in its three different implementations, to the problem, using the Lagrangian 
heuristic to obtain a feasible solution. 

The tables summarize the results for both instances, differentiating for SET2 according to the 
road structure, and to the value of the benefit used. 
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Table 2 – Results for δ = 18 

INSTANCE Linear Relaxation Branch & Bound Lagrangian relaxation 

 normal strengthened normal strengthened Subgradient Hibrid Bundle 
SET 1        
Feas. sol. 9,341 9,687 10,704 10,704 10,704 10,704 10,704 
Bound 14,299 11,785 10,704 10,704 11,423 11,281 11,281 
Gap (%) 34.7 17.8 0.0 0.0 6.3 5.1 5.1 
Time (min) 0.05 0.03 1.50 0.75 2.36 2.96 2.334 
SET 2        
Feas. sol 81,857 86,411 83,989 91,888 90,546 91,542 91,542 
Bound 105,911 102,321 99,875 91,888 101,321 97,512 96,524 
Gap (%) 22.7 15.5 15.9 0.0 10.6 6.1 5.2 
Time (min) 8.63 10.23 600.28 29.18 150.31 165.12 143.34 
SET 3        
Feas. sol 70,776 81,475 76,125 91,888 92,056 * * 
Bound 106,227 101,5554 104,278 98,765 97,890   
Gap (%) 33.4 19.8 27.0 7.0 6.0   
Time (min) 10.30 12.54 632.14 629.18 340.45   

 

Table 3 – Results for δ = 50 

INSTANCE Linear Relaxation Branch & Bound Lagrangian relaxation 

 normal strengthened normal strengthened Subgradient Hybrid Bundle 
SET 1        
Feas. sol 84,629 85,452 85,992 85,992 85,992 85,992 85,992 
Bound 89,588 87,056 85,992 85,992 86,874 86,486 86,486 
Gap (%) 5.5 1.8 0.0 0.0 1.0 0.6 0.6 
Time (min) 0.05 0.03 0.42 0.15 4.70 5.43 4.02 
SET 2        
Feas. sol 410,300 421,992 410,258 415,248 414,259 415,248 415,248 
Bound 433,885 421,670 431,581 415,248 421,345 418,123 417,253 
Gap (%) 5.4 2.5 4.9 0.0 1.7 0.7 0.5 
Time (min) 5.60 7.49 425.21 17.45 82.41 87.45 78.49 
SET 3        
Feas. sol 400,063 407,038 381,427 415,248 415,547 * * 
Bound 434,177 428,382 420,156 426,174 425,782   
Gap (%) 7.9 5.0 9.2 2.6 2.4   
Time (min) 5.70 8.78 453.57 342.47 165.58   
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Several conclusions are obtained from the results. First, the fact that the problem is hard is 
reflected in that the Branch and Bound algorithm was not able to solve the basic formulation 
in a reasonable time, except in the small instance. However, a significant improvement is 
obtained by strengthening the formulation of the model. This benefits both the straightforward 
use of Branch and Bound, and the Lagrangian relaxation. Notice that the Branch and Bound 
leads to significantly lower gaps, in particular for the higher benefit cases, but at the cost of 
higher CPU times compared to the Linear Relaxation approach. The larger problem with 
complex road structure is harder to solve. In the Lagrangian relaxation approach we have the 
following conclusions: 

1. The hybrid method with bundle iterations appears slightly better than the hybrid 
combined with Dantzig-Wolfe iterations, and both are better than the pure subgradient 
approach. 

2. For the most difficult problem (large instance with complex road structure), the 
algorithm did not reach the shifting stage in the hybrid method and only subgradient 
iterations were performed. 

3. The Lagrangian approach appears worse for the easier problems. 

In fact, the linear relaxation of the problem, when those constraints are added shows an 
improvement of the gap, for the linear relaxation of the large problem with complex 
structure, from the order of 30% to the order of 20%, in an acceptable time. Moreover, the 
Branch and Bound procedure greatly benefits from the additional constraints, as can be 
seen from the tables. A gap of 27.0% without strengthening reduces to 7.0% with them, for 
the same order of computation time. Finally, the Lagrangian Relaxation also takes advantage 
of this. The main conclusion of the results is that the Lagrangian procedure can achieve a 
slightly smaller gap than the best Branch and Bound but, roughly in one half of the time. 

We can also see from the results that a simpler road structure definitely favors the 
performance of the algorithm. Also the benefit associated to harvesting has an important 
effect. This is explained by the fact that a large benefit translates into a much larger 
importance of the cost coefficient associated to the continuous variables of the problem. This 
favors the faster computation of a good approximation. 

 

10. Conclusions 

We have analyzed a forest management problem modelled through a combinatorial 
optimization formulation, that can be viewed as the composition of a location problem and a 
fixed charge problem. It is a difficult problem to solve given the combinatorial complexity of 
both subproblems. We considered the potential of a Lagrangian relaxation approach and 
devised a corresponding decomposition coupled with a corresponding Lagrangian heuristic. 
We tested a real forest problem as well as some small instances, with both tree like network 
structure and more dense networks. A straightforward solution through branch and bound 
gave satisfactory solutions only for the small, tree like problems. To improve the solution 
process we implemented several roads: strengthening the formulation and Lagrangian 
relaxation. Strengthening the formulation led to optimal solutions for the medium sized, tree 
structure problems in reasonable CPU time. For the more difficult medium sized problems 
with a dense network strengthening the formulation led to gaps of 2.6% and 7% using large 
amounts of CPU time. The use of Lagrangian relaxation led to worse solution processes for 
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the easier problems, but was superior for the more difficult medium sized, dense network, 
leading to slightly smaller gap in about one third of the CPU time. 

As conclusion we note that strengthening of the formulation does significantly improve the 
solutions process, and Lagrangian relaxation seems to be a promising approach for larger, 
more difficult to solve problems. It also provides a method to obtain a bound on the objective 
for the purpose of evaluating heuristic procedures. But, in the few test cases carried out, the 
proposed approach appears to not be able to tackle larger, dense network problems 
successfully. More extensive testing is required to achieve clear conclusions on the 
applicability of Lagrangian relaxation, but this preliminary study suggests that the approach 
is promising, specially if it is combined with strengthening procedures. 
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