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Abstract 
 
In this paper we attempt to determine the optimal allocation of aircraft parts used as spares for 
replacement of defective parts on-board of a departing flight.  In order to minimize the cost of delay 
caused by unexpected failure, Genetic algorithms (GAs) are used to allocate the initial quantity of parts 
among the airports.  GAs are a class of adaptive search procedures, that distinguish themselves from 
other optimization techniques by the use of concepts from population genetics to guide the search.  
Problem-specific knowledge is incorporated into the problem and efficient parameters are identified 
and tested for the task of optimizing the allocation of parts.  The approach is illustrated by numerical 
results. 
 
Keywords:  genetic algorithms; allotment of spares; cost of delay. 
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1.  Introduction 

When a repairable item on an aircraft becomes defective, it is removed and replaced by 
another item from the spare stock.  The defective part is then sent to the maintenance shop 
for repair. Should the station not have a spare part in stock, the aircraft will remain on ground 
and will be delayed until an incoming flight brings a replacement part from the maintenance 
shop or from a neighboring station. In this context, a repairable item represents any aircraft 
part from a small electronic component to a whole engine.  Spare inventory is placed at line 
stations to decrease time delays due to unanticipated failures, and is placed also at the 
maintenance shop to quickly replenish remote station allotments while their parts are being 
repaired. 

An agreement (“International Airlines Technical Pool”) between airlines exists to share 
certain parts at specific stations when parts fail.  An airline is said to be the provider of a part 
at a specific station, when all the participant airlines of the agreement can borrow from the 
spare stock of the provider.  In this case, a minimum of one part is allocated by the provider 
airline at that station. 

A station is said to have maintenance ability for a certain part, when there is maintenance 
staff at the station accredited to remove and replace the defective part on the aircraft.  When 
there is no maintenance ability for a specific part at a station, the aircraft with a defective 
part remains on ground until a technician flies into the station along with a replacement part.  
Therefore, the stations are given nil allotment for parts with no maintenance ability. 

In this paper, we determine the optimal distribution of parts among the existing stations using 
a class of adaptive search procedures called genetic algorithms (GAs).  The class of GAs 
distinguish themselves from other optimization techniques by the use of concepts from 
population genetics to guide the search.  It would be difficult to use classical approaches 
based on exact algorithms since the economic function here is rather complex and thus 
requires much computational effort.  Moreover, as will be seen below, an economic function 
has no particular structure that we could take advantage of in assessing the effect of slightly 
modifying a solution.  When the number of spare parts is small an exhaustive search of the 
optimal solution can be made.  But the solution space increases very quickly as the number 
of spare parts increases and consequently heuristic methods must be used.  We chose to use 
genetic type methods to solve the problem.  It will be seen that they yield good results and 
can be useful in some practical problems. 

This problem is related to the mathematical model METRIC (Multi-Echelon Technique for 
Recoverable Item Control).  See for example Albright (1989), Demmy (1979), Demmy & 
Presutti (1981), Graves (1985), Muckstadt (1973, 1978), Muckstadt & Thomas (1980) and 
Sherbrooke (1967).  METRIC was designed for military application at the weapon-system 
level where a particular item (part) may be demanded at several stations that are replenished 
by one central depot.  The major difference with our model is the fact that in the METRIC 
model when an item becomes defective at a station, it can be replaced only by another item 
available at the station or at the central depot.  Hence there is no lateral re-supply between 
stations which we consider in our model.  Tedone (1989) describes the RAPS (Rotables 
Allocation and Planning System) system used by American Airlines and having similarities 
with the METRIC system.  In this approach, the spare parts are distributed among stations 
according to weights based on the past history of failures at the stations.  Other related papers 
are Cho & Parlar (1991), Kim, Shin & Park (2000) and Zorn, Deckro & Lehmkuhl (1999). 



Batchoun, Ferland & Cléroux  –  Allotment of aircraft spare parts using genetic algorithms 

Pesquisa Operacional, v.23, n.1, p.141-159, Janeiro a Abril de 2003 143 

The problem formulation is introduced in Section 2 as well as the failure process of parts and 
the evaluation of the delay associated with a given solution.  Like some classes of 
algorithms, GAs include several parameters and strategies leading to several variants.  In 
Section 3, the genetic algorithm implementation and its variations are described.  Section 4 
includes the numerical experiments to identify efficient parameters for optimizing the 
distribution of parts.  A conclusion follows in Section 5. 

 

2. Problem Formulation 

A different problem is formulated for each type of part. The mathematical formulation of the 
problem for a specific type of part is quite straightforward, but the evaluation of the objective 
function is complex and time consuming. 

 
2.1 Objective function and constraints 

Assume that an initial quantity of  N  parts of a given type is available for redistribution 
among the stations and the maintenance shop for an airline.  Denote 

A: the set of line stations indices  i  (including the maintenance shop which is assumed to 
be located at one of the stations) 

PP = { i ∈ A \ the airline is the provider of the part type at station  i} 

PA = {i ∈ A \ the airline is a participant to the pool at station  i} 

M  = {i ∈ A \ maintenance capacity exists for that part at station  i} 

M =  A – M 

Let  S  be the total number of stations operated by the airline:  S = |A|.  Let  xi  be the number 
of parts allocated to stations  i ∈ A  by the airline.  The problem is to distribute the  N  parts 
among the  S  stations in order to minimize the expected cost of delay  D = D(X)  due to 
unexpected failures, where  X = (x1, x2,…, xs).  The problem then is to determine the optimal 
solution to the following optimization problem: 

Minimize  D(X) 

 s.t. 
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2.2 Evaluation of the cost of delay D(X) 

In this section, we indicate how to determine the excepted cost of delay  D(X)  given a 
specific allotment of spares  X.  The parts considered are all of the same type. 
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2.2.1 Average cost of delay per removal 

At station  i, the total time delay  δik  due to the failure of a part prior to flight departure  k 
includes the time to receive a serviceable part and the time to replace it on the aircraft.  Since 
the replacement time of the part is constant regardless of the number of spares allocated at 
the station, it is not included in the time delay  δik.  Then if station  i  has a spare part to 
replace the unserviceable one at the time of failure, the time delay is nil.  Otherwise, the time 
delay  δik  is the time it takes to receive a part through an incoming flight. 

The flights considered in this study belong to a one week flight schedule.  Consider the 
flight  k, leaving from the origin station  i.  To determine the time delay  δik  in the case 
where no spare part is available at the time of failure on flight  k, we take into account each 
flight  io → i, leaving from origin station  io, within 24 hours after the scheduled departure 
time of flight  k, such that station  io  can provide a spare part.  Denote  δik(io)  the time delay 
of flight  k  if the spare part is provided at station  i  by an incoming flight at station  i and 
originating from station  io. 

Hence  δik(io)  is equal to the difference between the arrival time at  i  of this flight leaving 
from  io  and the schedule departure time of flight  k. 

To illustrate the evaluation process, consider the following time-space diagram where flights 
are illustrated with arcs: 
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In this illustration, the flight leaving from  i2  cannot bring a spare part because its departure 
time is prior to the scheduled departure time of flight  k.  Furthermore, it follows that  
δik(ij) = tj –t  for  j = 1, 3,4. 

Recall that our model is a planning tool to be used at the tactical level.  Hence we do not 
know precisely which station will have a spare part to provide station  i  prior to the 
departure of flight  k.  Therefore we approximate  δik  using the following underestimate: 

 
{ }min ( ) 0
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 (2.2) 

where  Γik = {io : io  is the origin station of an incoming flight to  i  such that its departure time 
is within 24 hours after the scheduled departure time of  k, and 

oi
x > 0 }.  Here 1440 

(24 hours × 60 min) is the delay corresponding to waiting for the same flight the next day. 
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The average cost of delay  di  caused by the failure of a type of a part prior to any flight 
departure at station  i  is evaluated as follows: 
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where  K  denotes the set of flights departing from station  i  during the week, and that are 
operated with an aircraft using a type of part. 

 
2.2.2 Expected removals in a given period of time 

The expected number of removals for a type of parts is the expected number of times a part 
fails during that time period.  Based on historical data, the mean time between removals 
(MTBR) τ, is the average number of flying hours between two successive removals.  A type 
of parts can belong to one or more types of aircraft.  Let  Q(u)  be the quantity of parts 
belonging to the aircraft of type  u.  Let  H(u)  be the total hours operated by aircraft of 
type  u  during the week.  Then the total expected number of removals  λ  for the part in a 
year is as follows: 

 ( ) ( ) 52 .
u
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τ
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=∑  (2.4) 

In order to calculate the expected number of removals per station during a year, let  F(i,u)  be 
the total number of flights per year with aircraft of type  u, departing from station  i.  Then 
the total expected number of removals  λi  of that type of part at station  i  during a year is 
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2.2.3 Failure process 

When failures of parts occur at a rate less than 10 per year, removals are assumed to follow a 
Poisson process.  Since  λ  is the expected number of removals of the part during a year, the 
probability distribution of the number of removals  kλt  of the part in  [0, t]  is as follows: 

 
0 !

( )( ) ( ) .
!

t rU U

t p t
r r

e tP k U P k r
r

λ

λ λ
λ

=
≤ = = =∑ ∑  (2.6) 

Similarly, the probability distribution of the number of removals of the part at station  i  in  
[0, t]  is 
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When failures of the part occur at a rate greater than or equal to 10 per year  ( 10),λ ≥  the 
number of removals in  [0, t]  is assumed to have a normal distribution with mean equal to  λt  
and standard deviation  tσ λ= : 

 ,( ) .N t N
U tP k U P Zλ σ

λ
σ
− ≤ = ≤ 

 
 (2.8) 

 
2.2.4 Expected number of removals causing a delay 

The variable  xi  denotes the initial number of spares allocated at station  i.  However this 
number is reduced whenever a spare part is being used.  Let  xi(t)  be the number of spare 
parts available at time of failure  t  at station i: 

 xi(t) ≤ xi    ∀ t. (2.9) 

Two cases have to be considered to calculate the expected delay for station  i  according to 
the fact that  xi = 0  or  xi > 0. 

If no spare part is allocated at station  i  then  xi = xi(t) = 0,  ∀ t.  In this case, the expected 
number of removals at station  i  causing a delay is equal to the expected number of removals  
λi  (see subsection 2.2.2) at station  i. 

If  xi > 0, let  µi  be the expected number of removals at station  i  per year causing a delay.  
Note that  xi ≤ λi,  ∀ i.  Let  µi(t)  be the expected number of removals at station  i  during a 
time period  t, causing a delay.  Then given the allotment  xi, 
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To evaluate  µi  we suppose that the stock runs out at station  i  during replenishment time  R  
required to receive a serviceable part at the station from the shop in replacement of its 
unserviceable one.  Now,  R  is equal to the transit time  TT  when the shop has spare part in 
stock.  Otherwise,  R = TT + TA  where  TA  (Turn Around Time) is the time required to repair 
a defective part at the maintenance shop. 

If we denote 
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it follows that the expected number of removals  µi  of the part causing a delay at station  i  is 
as follows: 

 [ ] (1 ) [ ]µ µ µ= ∗ + − +i i T i T AL T L T T  (2.11) 

In order to simplify the computations, the expected number of removals at the shop (located 
at station  M ) is taken to be equal to  the total expected number of removals  λ ( )i

i
λ λ= ∑ .  

The probability  L  is computed using the Poisson distribution function when  λ < 10  or 
using the Normal distribution when  λ ≥ 10.  Given the initial quantity of spare parts  xD  and 
the quantity of spare parts at the time of failure  xM(t)  at the shop, the probability  L  is 
given by 

 ( ( )ML P x t= > 0) ( )TP R T= =  (2.12) 

and it is approximated by 

( )T DP k xλ ≤  

that is the probability that the expected number of removals from the maintenance shop 
during the time required to repair a part is less than or equal to the number of spare parts at 
station M. 

 
2.3 Average cost of delay 
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Then  D(X),  the expected total cost of delay caused by a failure given the allotment 
1 2( , , , ),sX x x x= …  is as follows: 
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It is worthy of note that we have to scan the weekly schedule file in order to evaluate the 
function  D(X)  for each solution  X.  Since the schedule may include a large number of 
flights, it follows that the evaluation of function  D(X)  is in general costly and computation-
intensive to run. 

 

3. Solution Approach Using Genetic Algorithms 

Conventional computational techniques, or exact algorithms, are difficult to apply to our 
optimization problem since, as mentioned before, the objective function is very complex and 
time consuming to evaluate.  Furthermore, it does not include any nice structure to take advantage 
of in order to easily evaluate the effect on its value induced by a slight modification of the 
solution.  If the search space is not too large, one can usually develop an enumeration search 
strategy with appropriate heuristic cutoffs, thus keeping the computation time under control.  
Otherwise if the search space is large, exhaustive search techniques are computationally too 
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expensive.  Indeed, for a part with an allotment of  N  spare parts to be allocated at  S  
feasible stations, the total number of possible solutions  F(S, N)  is as follows: 

1 ( 1)!( , ) .
!( 1)!

N S N SF S N
N N S
+ −  + −

= =  − 
 

Hence if  S = 15  and  N = 6, then  F(S, N) = 38,760, and if  N  increases to 11, the search 
space can be as large as 4,457,400 solutions. 

Heuristic or approximate algorithms are often preferred in this case to quickly generate an 
approximate optimal solution.  Genetic algorithms are population based heuristic techniques 
relying on the genetic inheritance, and allowing a more exhaustive search of the solution space.  
Some references on Genetic algorithms are the following:  Buckles & Petry (1992), Davis 
(1987, 1991), Fox & Landi (1970), Goldberg (1989), Holland (1975) and Michalewicz (1992). 
 
3.1 Presentation of the Algorithm 

An initial population of  n  chromosomes or solutions is created.  All  n  chromosomes are 
evaluated.  At each generation,  n  chromosomes are chosen for reproduction from the current 
population.  The selection is completed according to the proportional selection inducing a random 
process ensuring that the expected number of times a chromosome is chosen is approximately 
proportional to that chromosome’s performance relative to the rest of the population.  Hence 
the same chromosome can be selected more than once.  New chromosomes are generated by 
means of genetic recombination operators. The recombination operator is called crossover, 
and in general, it generates two new candidate solutions called offsprings.  Then some 
perturbations are applied to the offsprings with low frequency via the mutation operator.  All 
the new offsprings are added to the set of parents to create a temporary population of size  2n.  
n  chromosomes are selected from the temporary population via proportional selection, to 
create a new generation of size n.  This process if repeated until a maximum number of 
generations is reached.  The genetic algorithm used in our study is summarized in Figure 1: 
 

1. Create a temporary initial population of  n  chromosomes (Generation 0) 
2. Evaluate the fitness of each chromosome 
Repeat while the number of generations is less than the maximum number 
    of generations: 
    3. Select  n  parents from the temporary population via proportional 
         selection to create a new generation 
    Repeat until all parents are selected  (n  offsprings are created): 
        4. Choose a pair of parents for mating.  Apply the crossover to create 
            two offsprings 
        5. Process each offspring by the mutation operator 
    End repeat 
    6. Evaluate the fitness of each offspring 
    7. Add the offsprings to the set of parents to form a new temporary 
        population of size  2n 
End repeat 

Figure 1 – Basic lines of the proposed GA 



Batchoun, Ferland & Cléroux  –  Allotment of aircraft spare parts using genetic algorithms 

Pesquisa Operacional, v.23, n.1, p.141-159, Janeiro a Abril de 2003 149 

3.2 Solution encoding 

A crucial operation in using a genetic algorithm to solve a problem is the way of representing 
or encoding a solution.  The technique for encoding a solution may vary from one problem to 
another.  In earlier works, researchers used to encode all solutions as bit strings, regardless of 
the problem.  Later, other types of encoding techniques were used.  In our case, a bit string 
encoding is not natural.  Indeed, a solution vector X = (x1, x2, …, xs)  (the phenotype form of 
the solution) is encoded into a genotype form of dimension  N, the initial number of spare 
parts.  Each vector component contains the station index where one part is allocated.  If more 
than one part is allocated at the station, then the station index is repeated for the next vector 
component.  Denote G = (g1, g2, …, gN)  the genotype representation of a vector solution, 
where  gl ∈ A,  l = 1, …, N, and  A  is a set of all stations.  For example, for a part where  
N = 6  and  S = 60, let  X = (x1, x2, x3, …, xs) = (1, 0, 2, 0, …, 0, 3), the genotype vector  G  is 
represented as  G = (1, 3, 3, 60, 60, 60). 

The fitness of a chromosome solution  G  denoted as  f(G),  is defined to be the inverse of the 
cost of delay function  D (X): 

1( ) .
( )

f G
D X

=  

 
3.3 Population 

The population size  n  is the number of solutions or chromosomes per population.  The 
population size remains constant from generation to generation.  Population size is a 
fundamental parameter of any GA.  If the selected population size is too small, the algorithm 
may converge too quickly but not necessarily to a global or local optimal solution.  On the 
other hand, a population with too many members offers a larger pool of diverse solutions, but 
might result in long waiting times for significant improvement. 

The key feature of GAs is their ability to take advantage of the cumulated information about 
an initially unknown search space in order to bias subsequent search into useful subspaces.  
Most genetic algorithm implementations do begin with random populations.  However, if 
problem-specific knowledge is available to indicate interesting regions of the feasible 
domain, then it should be used to guide the process.  Initial solutions generated according to 
problem specific-knowledge are called seeded solutions.  Only the initial population is 
seeded with good initial members. 

For the Aircraft Spare Parts problem, preliminary results indicate that the time delay is 
smaller when more parts are assigned to stations with high frequency of departures.  Indeed, 
consider a problem where  N = 8 and  S = 10.  Table 1 and Figure 2 illustrate the delay for 
ten different solutions where the total number of parts is assigned to one station, and none to 
the other 9 stations.  In general, the delay decreases as the departure frequency of the station 
where all the spare parts are allocated increases. 
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Table 1 – First situation: Seeded Solutions 

Solution Station Frequency Parts @ station Delay (min.) 
#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 

#10 

YYZ 
YUL 
YVR 
YYC 
YHZ 
YWG 
YOW 
YEG 
SFO 
MIA 

317 
134 
103 
101 
  79 
  79 
  53 
    7 
    7 
    1 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

 97 
149 
187 
178 
180 
196 
224 
261 
246 
257 
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Figure 2 – First situation: Frequency-Delay Relationship 

 
Since the time delay at a station does not depend uniquely on the number of spare parts but 
also on the providing from the neighboring stations, another situation is analyzed.  Here, we 
use the same part with the same feasible stations, but we assume that 72 spare parts are 
available.  Ten different solutions are evaluated where no spare part is assigned to one station 
and 8 spares to each of the other 9 stations.  The results in Table 2 and Figure 3 indicate that, 
in general, the time delay increases with the augmenting of the departure frequency of the 
station having no spare part. 
 

Table 2 – Second situation: Seeded Solutions 

Solution Station Frequency Parts @ station Delay (min.) 
#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 

#10 

YYZ 
YUL 
YVR 
YYC 
YHZ 
YWG 
YOW 
YEG 
SFO 
MIA 

317 
134 
103 
101 
  79 
  79 
  53 
   7 
   7 
   1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

64 
40 
43 
43 
38 
40 
40 
35 
35 
34 
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Figure 3 – Second situation: Frequency-Delay Relationship 

 
Relying on these observations, the initial population can be partially seeded using frequency 
of departures per station as a parameter.  In this case, some seeded chromosomes are included 
in the initial population.  Each seeded chromosome is specified according to the following 
proportional selection process.  First, the stations are ordered in some sequence.  To 
determine the station in each position of the chromosome, a random positive integer smaller 
than or equal to the total number of flights is generated.  Then we select the first station in 
the sequence such that the sum of its frequency and those of the previous stations in the 
sequence is greater than or equal to the random number.  This proportional selection process 
ensures that the expected number of times a station is chosen is approximately proportional 
to that station frequency relative to the rest of the stations.  Station indices per generated 
solution are sorted in ascending order, i.e. for an initial solution  G = (g1, g2, …, gN),  gl ≤ gm  
∀ l ≤ m.  In Section 4, numerical results are used to analyze the influence of the percentage 
of seeded solutions in the initial population and the effect of sorted initial solutions. 

At each generation,  n  new parents are selected from the temporary population.  Each new 
parent is selected according to a proportional selection process, also known as the roulette 
wheel parent selection in order to ensure that the expected number of times a chromosome is 
chosen is approximately proportional to its performance relative to the rest of the population.  
First the fitness values of all chromosomes in the current population is determined and the 
chromosomes are ordered in some sequence.  Then the following procedure is applied to 
determine each of the  n  parents: 

1. Generate a random number between 0 and the total of the fitness values. 
2. Select the first chromosome in the sequence whose fitness value added to the sum of 

the fitness values of the previous chromosomes in the sequence is greater than or 
equal to the random number generated at step 1. 

As mentioned before, proportional selection process is applied to the temporary population 
formed by  n  parents and their  n  offsprings in order to form a new generation of  n  
chromosomes (with the exception of the temporary initial solution which contains only  n  
initial solutions).  The advantage of this selection technique is that it directly promotes 
reproduction of the fittest population members.  Several other replacement strategies are 
currently used where only a portion of the population is kept from one generation to another.  
In Section 4, numerical results are used to evaluate the efficiency of other strategies, by 
keeping a small percentage of best performing chromosomes from generation to generation 
and selecting the rest of the population via proportional selection. 
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3.4 Operators 

Crossover is an extremely important component of genetic algorithm.  It is regarded as the 
distinguishing feature of GAs and as a critical accelerator of the search process.  Crossover 
is a structured yet randomized information exchange between two chromosomes.  The role 
of the crossover operator is to combine two solutions into an offspring that shares 
characteristics from both parents.  The more widely used operators are the 1-point, the 
2-point, and the uniform crossovers.  Since in our problem the dimension of the vector 
solution varies between 3 and 11, only the 1-point and the uniform operators are compared. 

In the 1-point crossover, we randomly select a cut point in the parents.  Then offsprings are 
generated by combining the genetic material of one parent on the left-hand side of the cut 
point with that of the other parent for the positions on the right-hand side (and including the 
cut point).  Figure 4 illustrates an example where two parents are combined via the 1-point 
crossover. 

 
Parent 1 MIA SFO YEG YHZ YVR YWG YUL YUL YYZ 
Parent 2 SFO YEG YHZ YWG YWG YUL YYZ YYZ YYZ 

Random 
Position      ↑    

Offspring 1 MIA SFO YEG YHZ YVR YUL YYZ YYZ YYZ 
Offspring 2 SFO YEG YHZ YWG YWG YWG YUL YUL YYZ 

Figure 4 – 1-point Crossover 

 
In the uniform crossover operator, a random bit string of size  N  is generated.  The station in 
each position of the offsprings is specified according to the bit string as follows: if there is a 
0 in a given position of the bit string, the offspring 1 inherits the station of parent 2 for the 
same position, and offspring 2, that of parent 1.  If there is a 1 instead, offspring 1 inherits 
the station of parent 1, and offspring 2, that of parent 2.  Figure 5 illustrates the combination 
of two parents using a uniform crossover. 

Mutation occurs after crossover is applied, but only a small percentage of the time.  Indeed, 
with a 1% probability, every component of each vector solution is replaced by a random 
feasible station. 

 

Parent 1 MIA SFO YEG YHZ YVR YWG YUL YUL YYZ 
Parent 2 SFO YEG YHZ YWG YWG YUL YYZ YYZ YYZ 

Random Bit 
String 0 1 1 1 0 1 0 0 0 

Offspring 1 SFO SFO YEG YHZ YWG YWG YYZ YYZ YYZ 
Offspring 2 MIA YEG YHZ YWG YVR YUL YUL YUL YYZ 

Figure 5 – Uniform Crossover 
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4. Numerical Results 

Choosing a suitable population size, the right combination operator or even a reasonable 
stopping criteria are key decisions faced by all genetic algorithm users.  Parameter settings 
greatly influence performance.  Some of the parameters are tested individually and some 
dependent parameters are tested when combined.  In order to test one parameter, all the 
others are fixed and the tested parameter is assigned various values. 

Three different problems with 3, 6 and 9 spare parts available are used to analyze the 
parameter values.  Each part type belongs to a different aircraft type, but each fleet covers a 
similar network of stations.  The number of parts per aircraft, the number of flight  
departures per week, and the number of feasible stations covered by the fleet type are 
summarized in Table 3. 
 

Table 3 – Part types 

Problem 
number 

Initial 
Quantity N 

Quantity per 
aircraft 

Departures 
per week 

Feasible 
stations 

1 
2 
3 

3 
6 
9 

2 
9 
2 

  864 
  410 
1222 

10 
10 
12 

 

For each test, each problem is solved 10 times.  In the different tables summarizing the 
results, the “Best Value” column indicates the minimum cost of delay achieved among the 
total number of runs.  The average cost of delay for the 10 tests is also indicated together 
with the confidence interval having a 95% confidence level.  A confidence interval noted  ±β  
corresponds to  A(X) ± β, where  A(X)  is the average of the 100 tests.  The tables also 
include the number of times (out of the 10 runs) that the best value is reached, the average 
number of solutions generated per test, and the average time of execution.  Note that the 
computations were executed on a PC based Toshiba 4030 CDS, 233 MHz. 

 
4.1 Stopping criteria 

The stopping criterion used in our tests consists of stopping the process when the number of 
iterations reaches 10 ∗ N/2, a number proportional to the number  N  of spare parts 
available for the problem.  This stopping criterion results in exploring a reasonable number 
of solutions and obviously not exceeding the total number of feasible solutions. 

 
4.2 Population size 

The population size  n  remains constant from generation to generation, and it is directly 
proportional to the length of the genotype vector  N  (the number of spare parts available):  
n = α N, where  α  is a positive integer.  Three different values of  α  are tested, and the 
results are summarized in Table 4.  The parameters are fixed as follows: 

Population size test:  n = 3N  or  n = 5N  or  n = 7N  (α = 3,5  or  7). 
 Mutation operator rate: 1% 
 Percentage of seeded solutions in initial population: 50% 
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 Percentage of best solutions for new generation: 10% 
 Crossover operator: Uniform 
 Initial solutions are sorted: G = (g1, g2, …, gN),  gl ≤ gm    ∀ l ≤ m. 

As far as solution quality is concerned, the results are quite similar when  α  is equal to 3 and 
5. However, the larger the population size, the more solutions are evaluated, and therefore 
solution time increases.  Hence, the population size  n = 5N  is selected. 
 

Table 4 – Population Size Test Results 

Problem 
Size  N 

Best 
value 

Population 
size  n 

Avg. cost 
of delay 

A(X) 

Confidence 
interval 

Total best 
solutions 

Solutions 
generated 

Times 
(mns) 

3 17.80 3N 
5N 
7N 

18.33 
17.82 
18.02 

±0.59 
±0.02 
±0.27 

  6 
  8 
  8 

    90 
  150 
  210 

  2.2 
  3.6 
  4.9 

6   7.20 3N 
5N 
7N 

  7.29 
  7.24 
  7.21 

±0.06 
±0.04 
±0.02 

  5 
  7 
  9 

  539 
  900 
1260 

  7.2 
11.8 
16.3 

9 91.00 3N 
5N 
7N 

92.41 
91.27 
91.00 

±1.48 
±0.50 
±0.00 

  5 
  9 
10 

1079 
1800 
2520 

19.0 
30.4 
41.8 

 

4.3 Seeded initial population 

As it has been indicated in Section 3, the delay is inversely proportional to the departure 
frequency at the station when all spare parts are allocated to the same station.  However, the 
presence of too many highly fit chromosomes in the initial population may result in 
premature termination at a local optimum.  In order to identify the best strategy, three values 
are tested for the percentages of seeded initial solutions: 

Percentage of seeded solutions in initial population: 20% or 50% or 80% 
Population size  n = 5N 
Mutation operator rate: 1% 
Percentage of best solutions for new generation: 10% 
Crossover operator: Uniform 
Initial solutions are sorted:  G = (g1, g2, …, gN),  gl ≤ gm    ∀ l ≤ m. 

The results in Table 5 indicate that in general, an initial population with 50% seeded 
solutions seems to be a good choice.  Figure 6 illustrates how the cost of delay decreases 
during the resolution for each percentage (20%, 50%, 80%) for problem 1 with  N = 3.  Each 
point on the graph represents the average cost of delay for the  n  solutions.  As expected, for 
the initial population with 20% seeded solutions (i.e. 80% random solutions), the average 
cost is initially higher, and it takes longer to converge to a minimum.  However, for the initial 
population with 80% seeded solutions, the average cost is initially better and it converges 
rapidly, reaching sometimes a local minimum.  With a 50% seeded initial population, the 
algorithm seems to converge to optimal solutions more likely than with 20% or 80%. 



Batchoun, Ferland & Cléroux  –  Allotment of aircraft spare parts using genetic algorithms 

Pesquisa Operacional, v.23, n.1, p.141-159, Janeiro a Abril de 2003 155 

Table 5 – Initial Population Test Results 

Problem 
Size  N 

Best 
value 

Seed 
percentage 

Avg. cost 
of delay 

A(X) 

Confidence 
interval 

Total best 
solutions 

Solutions 
generated 

Times 
(mns) 

3 17.80 20% 
50% 
80% 

18.29 
17.80 
18.23 

±0.50 
±0.00 
±0.41 

  5 
10 
  7 

  176 
  150 
  160 

  5.2 
  4.3 
  4.7 

6   7.20 20% 
50% 
80% 

  7.25 
  7.24 
  7.26 

±0.05 
±0.04 
±0.06 

  7 
  7 
  7 

  930 
  930 
  900 

12.6 
12.1 
11.7 

9 91.00 20% 
50% 
80% 

91.47 
91.27 
91.24 

±0.48 
±0.50 
±0.30 

  7 
  9 
  8 

1804 
1804 
1804 

30.0 
30.5 
30.1 

 

4.4 Parent selection 

At each iteration, a small percentage of best performing chromosomes selected as parents at 
the preceding iteration is kept, and the others are selected according to proportional selection.  
The results for four different percentages are summarized in Table 6. 

Percentage of best solutions: 0% or 4% or 10% or 25% 
Population size  n =5 N 
Mutation operator rate: 1% 
Percentage of seeded solutions in initial population: 50% 
Crossover operator: Uniform 
Initial solutions are sorted:  G = (g1, g2, …, gN),  gl ≤ gm   ∀ l ≤ m. 

When the best performing solutions are not forced to remain from generation to generation 
(best solutions percentage = 0%), they tend to be lost.  Hence, the results in Table 6 indicate 
that the algorithm takes longer to regenerate good performing solutions.  However, when the 
percentage selection is 10% or 25%, the results for all 3 problem-tests are very good.  For the 
problem when  N = 3, a percentage selection of 25% seems to be a bit too aggressive as 3 out 
of 10 tests converge to a local minimum. 
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30.00

35.00

40.00
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0 2 4 6 8 10
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Figure 6 – Seeded Population Comparison 
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4.5 Crossover operator 

The uniform crossover and the 1-point crossover operators are compared.  An additional 
component is added to the tests of the crossover operators in order to analyze the relevance 
of sorting the chromosomes in the initial solutions.  Both parameters are tested jointly since 
the value of one can be dependent on the other.  The results summarized in Table 7 are 
obtained using the following parameters: 

Crossover operators: Uniform or 1-point. 

Initial solutions are sorted: G = (g1, g2, …, gN),  gl ≤ gm   ∀ l ≤ m or non-sorted. 

Percentage of best solutions: 10% 

Population size  n = 5N 

Mutation operator rate: 1% 

Percentage of seeded solutions in initial population: 50% 

The results for problem 2 where  N = 6  are not very conclusive, since the average values for 
the 4 combinations of the two parameters are very similar and the confidence intervals are 
short.  Now, for the problems with  N = 3  and  N = 9, the results in Table 7, indicate that 
sorting the initial solutions (i.e. sorting the station indices within each chromosome) seems to 
allow generating better chromosomes and therefore the algorithm converges to better 
solutions. 

 
Table 6 – Offsprings Selection Test Results 

Problem 
Size  N 

Best 
value 

% Best 
solutions 

Avg. cost 
of delay 

A(X) 

Confidence 
interval 

Total best 
solutions 

Solutions 
generated 

Times 
(mns) 

3 17.80   0% 
  4% 
10% 
25% 

18.23 
17.91 
17.80 
18.01 

±0.30 
±0.18 
±0.00 
±0.40 

  5 
  8 
10 
  7 

  176 
  176 
  176 
  176 

  4.00 
  4.60 
  4.25 
  4.30 

6   7.20   0% 
  4% 
10% 
25% 

  7.59 
  7.28 
  7.24 
  7.22 

±0.13 
±0.05 
±0.04 
±0.02 

  2 
  4 
  7 
  8 

  930 
  930 
  930 
  918 

12.70 
12.20 
12.13 
12.00 

9 91.00   0% 
  4% 
10% 
25% 

94.71 
92.17 
91.27 
91.00 

±2.66 
±0.99 
±0.50 
±0.00 

  4 
  6 
  9 
10 

1804 
1804 
1804 
1804 

30.02 
30.00 
30.50 
31.50 
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Table 7 – Crossover Test Results 

Problem 
Size  N 

Best 
value 

Crossover 
operator 

Sorted 
initial 

solutions 

Avg. Cost 
of delay 

A(X) 

Confidence 
interval 

Total 
best 

solution 

Times  
(mns) 

3 17.80 Uniform 
1-Point 
Uniform 
1-Point 

No 
No 
Yes 
Yes 

18.06 
17.92 
17.80 
17.93 

±0.26 
±0.33 
±0.00 
±0.33 

  4 
  8 
10 
  7 

  4.50 
  4.10 
  4.25 
  4.60 

6   7.20 Uniform 
1-Point 
Uniform 
1-Point 

No 
No 
Yes 
Yes 

  7.25 
  7.22 
  7.24 
  7.27 

±0.10 
±0.04 
±0.07 
±0.10 

  8 
  8 
  7 
  6 

11.60 
11.60 
12.13 
11.60 

9 91.00 Uniform 
1-Point 
Uniform 
1-Point 

No 
No 
Yes 
Yes 

94.71 
92.02 
91.27 
91.36 

±0.77 
±1.28 
±0.50 
±0.55 

  7 
  5 
  9 
  7 

30.30 
30.90 
30.50 
31.50 

 

Table 8 – Test Results for Various Part Types 

Problem 
Size  N 

Best 
value 

Avg. Cost  
of delay  

A(X) 

% Variance 
from best 

value 

Total best 
solutions out 

of 10 tests 

  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 

17.80 
11.80 
26.20 
  7.20 
88.80 
34.70 
91.00 
59.10 
62.40 

17.80 
11.93 
26.28 
  7.24 
88.99 
35.15 
91.27 
59.10 
62.48 

0.0% 
1.1% 
0.3% 
0.6% 
0.2% 
1.3% 
0.3% 
0.0% 
0.1% 

10 
  9 
  6 
  7 
  9 
  7 
  9 
10 
  7 

 

The uniform crossover is more efficient than the 1-point crossover in 5 out of 6 cases, as 
shown in the “Total Best Solutions” column.  This result is consistent with the one obtained 
in Syswerda (1989) (Section 4.6). 

 
4.6 Numerical results for 9 problems 

Other results are obtained for other problems including different numbers of spare parts 
(3 ≤ N ≤ 11), and belonging to different aircraft types.  Table 8 includes the average results 
taken over 10 tests for each problem when the parameter values are fixed according to the 
preceding analysis.  These results are very encouraging, showing the good performance of 
the Genetic Algorithms to solve the Spares problem. 
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5. Conclusion 

Since the problem includes a small number of constraints, Genetic Algorithms seem to be 
very appropriate to deal with the Aircraft Spare Parts problem.  The percentage variance of 
the average cost from the best value varies between 0.0% to 1.3%.  This is the case for all 
problem sizes, for various part types and aircraft types. 

It is worth noting that the algorithm is computation intensive to run.  The evaluation of a 
solution is making the algorithm computationally expensive, as the delay is estimated for 
every single flight of the week.  Should this optimization be required on a frequent basis, or 
within few hours, the cost of delay could be simulated instead of being fully evaluated.  By 
doing so, the execution would be reduced. 

Of course comparisons should be made with other approaches.  But this would be the object 
of another paper. 
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