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Abstract 
 
This work discusses the use of a neighbouring structure in the design of specific heuristics for the 
Quadratic Assignment Problem (QAP). This structure is formed by the 4- and 6-cycles adjacent to a 
vertex in the Hasse diagram of the permutation lattice and it can be adequately partitioned in subsets of 
linear and quadratic cardinalities, a characteristics which frequently allows an economy in the 
processing time. We propose also a restart strategy and a mechanism for generating initial solutions 
which constitute, together with the neighbouring structure, a possible QAP-specific heuristic proposal. 
For the construction of these instruments we used the relaxed ordered set of QAP solutions. 
 
Keywords:  quadratic assignment problem; combinatory; heuristics. 
 
 

Resumo 
 
Este trabalho discute o uso de uma estrutura de vizinhança em heurísticas específicas para o Problema 
Quadrático de Alocação (PQA). Esta estrutura envolve os ciclos de comprimento 4 e 6 adjacentes a um 
vértice do diagrama de Hasse do reticulado das permutações e pode ser particionada em subconjuntos 
de cardinalidade linear e quadrática em relação à ordem da instância, o que permite frequentemente 
uma economia de tempo de processamento. Propõem-se ainda uma estratégia de repartida e um 
mecanismo de geração de soluções iniciais, que constituem, ao lado da estrutura de vizinhança, uma 
proposta de heurística específica para o PQA. Na construção desses instrumentos foi utilizada a noção 
de conjunto relaxado ordenado das soluções do PQA. 
 
Palavras-chave:  problema quadrático de alocação; combinatória; heurísticas. 
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1. Introduction 

QAP is a NP-hard problem that has been studied by a number of researchers in combinatorial 
optimization through the second half of the 20th century and which continues to excite the 
curiosity of many others, both in the study of exact algorithms and through the formulation 
of information mechanisms for heuristics. The exact approach is severely limited by the high 
complexity of the problem, a difficult 30-order instance (Nug30) having been solved exactly 
only through a huge work of metacomputing. More recent years have seen an increased 
interest in the use of metaheuristic schemes: some examples are [AQB99], [BT94], 
[AOT00], [CMMT97], [Ma00], [TRFR01] and [TS95]. 

Specific heuristics for the QAP are normally classified as being constructive, limited 
enumeration and improvement ones. 

Constructive methods build a solution by choosing an image element at each step through the 
use of a given criterion, until a complete solution is obtained ([BAV62], [AB63], 
[SWHH95], [TB98], [SWH98], [Bu91], [Lo00], [AHS01], [GY02] and [YSA03]). 

Limited enumeration methods use available information to guide solution enumeration. 
Evidently an optimum value cannot be guaranteed unless the whole solution set is 
enumerated, so it is necessary to establish stopping criteria. This approach seems to have 
been abandoned since the eighties ([We83], [BB83]). 

Improvement methods involve local search algorithms and most of the specific QAP 
heuristics are classified in this category. The main elements in these methods are the 
neighborhood definition and the order user for the analysis of the neighbors ([MO79], 
[Br84], [LS95], [BÇ95], [An96], [THKG98]). These methods are frequently utilized within 
the logic of the metaheuristics. The technique here presented can be included in this group. 

We refer to [Ma00] for the discussion of QAP origins and for its definitions, from which we 
retain only that a QAP instance is a pair of matrices (MF,MD) where MF = [φij] corresponds 
to flows and MD = [δij] to distances traversed by these flows in a context of n machines 
functionally connected two by two in a shop. Through this work we will consider MF and 
MD as symmetric. 

In what concerns the theoretical work on QAP the majority of the studies concerned the 
definition of better lower bounds for the optimal solution to be used in exact algorithms, such 
as in [KÇCE00]. A characterization of some polynomial cases has also been presented [Çe98]. 

The approach used in this paper is an algebraic and combinatorial one (AC) [Ab84], which 
considers some properties of the permutation set and its graph-theoretical description in 
order to propose three basic instruments which constitute together a proposal of a specific 
heuristic. The AC approach has already been used to inform metaheuristics such as simulated 
annealing [QAB99] and GRASP [RAB00] and also in the definition of a new difficulty 
measure for QAP instances [ABQG02]. 

The AC approach associates the solution set of a QAP instance to the set Sn of 
n-permutations. Graph-theoretical models are applied to allow the definition of a 
neighbourhood structure [LB01]. The corresponding definitions and notation follow [Be73] 
and [Bo01]. A relaxing and ordering scheme is applied to Sn which allows to the definition of 
a generator of initial solutions and a restart strategy. This whole set of instruments constitutes 
a QAP-specific heuristic algorithm. 
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Sections 2 and 3 present some concepts, definitions and instruments from AC. Sections 4 and 
5 discuss some specific questions related to the proposed neighbourhood. Section 6 is related 
to the algorithm construction and finally Section 7 presents some results of tests with 
QAPLIB instances [BKR97]. 

 

2. A relaxed set and the question of feasibility 

2.1 A graph-theoretical model 

Let ϕ ∈ Sn be a permutation, 

 ϕ = (ϕ1, ϕ2, …, ϕn) (2.1) 

and consider the function 

 ψij = (i – 1)n – i(i + 1) /2 + j        i < j, (2.2) 

where ψij is the numerical ordering of the couple (i,j) within a lexicographical ordering. 

We can then define a N-order permutation (where N = Cn,2), corresponding to ϕ: 

 ξ = (ξ1, ξ2, …, ξN) (2.3) 

whose kth element, k = ψij, is, with ϕ(i) = ϕi, 

 ξk = ξψ(ϕ(i),ϕ(j)) (2.4) 

a permutation of couples of elements from ϕ. 

Let SN be the set of permutations with N elements. Every solution from Sn has a corresponding 
solution within SN. The reciprocal is not true and we have then to distinguish feasible and 
infeasible solutions in SN. This situation is more easily examined through a graph-theoretical 
model where we associate MF and MD respectively to complete undirected graphs KF and 
KD, whose edges will be valued after the corresponding entries in the matrices (Figure 1): 

 
 
 
 
 
 
 
 
 

Figure 1 – A graph model for QAP relaxation 

 
In this model the elements of a permutation set as defined in (2.1) will be vertex-
permutations and those following (2.3) will be edge-permutations, so we will use these 
designations from now on. We will call SN the relaxed set of Sn. 

The infeasibility of most solutions corresponds to the fact that when we make a vertex 
exchange all edge extremities concerned with the exchanged vertices have also to exchange. 
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Then every edge permutation having not a coherent allocation of edge extremities will not be 
associated to a vertex permutation, so it will not be feasible. It is important to observe that 
instance values have nothing to do with this question. 

 
2.2 The feasibility matrix 

We can define a feasibility matrix in order to verify if a given solution ξ ∈ SN is feasible or 
not. To obtain it we can observe that an edge (i,j) from KD can be associated to an edge (k,l) 
from KF either by associating k to i and l to j, or by associating k to j and l to i. So we build a 
matrix Mξ whose elements are the sums of the association possibilities for every pair (i,j), 
(k,l) of edges. If a relaxed solution ξk is feasible we will find in this matrix n independent 
positions with value n – 1. 

For this calculation we use the inverse function (ψij)-1 to recover the vertex couples defining 
the edges. 

Example: ( )
12 13 14 23 24 34

3 6 5 2 1 4
14 34 24 13 12 23

 ξ = =  
 

 

Let’s sum a unity over a null 4 x 4 matrix to the positions 

from ξ1 : (1,1), (1,4), (2,1), (2,4);    from ξ2 : (1,3), (1,4), (3,3), (3,4); 
from ξ3 : (1,2), (1,4), (4,2), (4,4);    from ξ4 : (2,1), (2,3), (3,1), (3,3); 
from ξ5 : (2,1), (2,2), (4,1), (4,2);    from ξ6 : (3,2), (3,3), (4,2), (4,3). 

The final matrix is 

 1 1 1 3  
3 1 1 1 Mξ = 
1 1 3 1 

    then  ϕ = ( 4  1  3  2 ) 

 1 3 1 1  

Here we found n – 1 edges associated with each vertex and the n independent positions with 
this value correspond to a vertex permutation. The solution is feasible. 

If we take, on the other hand, the permutation ( )
12 13 14 23 24 34

2 1 4 3 6 5
13 12 23 14 34 24

 ξ = =  
 

, 

we will obtain 

 2 2 2 0 
2 0 2 2 Mξ = 2 2 0 2 

 0 2 2 2 

where the matrix structure does not show any association with a vertex permutation. This 
solution is infeasible. 

It is convenient to observe that the element sum is constant for every row and for every 
column, only the element distribution changes from a solution to another. 
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3. The ordering by value within an instance 

Let we consider an instance (MF,MD). The cost of a solution ϕ ∈ Sn from (MF,MD) is 

 
n n

ij (i) ( j) n
i 1 j 1

z( ) d f Sϕ ϕ
= =

ϕ = ∀ϕ∈∑∑  (3.1) 

For the symmetric QAP we can define N-component vectors F = [fi] and D = [dj] containing 
the values of the upper triangles of MF and MD. Then we can obtain their product [GP66]: 

 Q = FDT. (3.2) 

The N x N matrix Q contains every cost parcel for every ϕ ∈ Sn . The cost is associated to 
the elements of the permutation ξ ∈ SN corresponding to ϕ, 

 
N

i (i) N
i 1

z( ) d f Sξ
=

ξ = ∀ξ ∈∑  (3.3) 

It is possible to define a partial order by value on SN. We order F and D by opposite orders, 
for instance F → F+ (non-decreasing) and D → D- (non-increasing). Then we can define a 
new matrix, 

 Q* = (F+)(D-)T (3.4) 

whose trace ∑ qii (i = 1,…,N) is an absolute lower bound for the instance (we can also 
observe that the opposite trace ∑ qi,N+1-i (i = 1,…,N) is an absolute upper bound for it). 

We have a new (ordered) solution set which corresponds to a new permutation lattice. To 
distinguish it from the former we will respectively denote them SN(Q*) and SN(Q). 

Figure 2 shows a scheme of SN(Q*), a polygon, as a pictorial representation of level 
cardinalities: the upper and lower vertices of the polygon correspond to the single-solution 
extreme levels and between them the level cardinality grows from 1 (at N0) through the 
lower half of the figure, goes to a maximum in the middle and shrinks to 1 (at NN) through its 
upper half. For more details see Item 4.2 and Eq. 5.4 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Orderings and bounds on SN(Q*) 

N0 (0 inversions, absolute LB for cost) 

NN (Cn,2 inversions, absolute UB for cost) 

Partial orderings on cost
and inversions 
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4. The Hasse diagram of the permutation set 

4.1 The permutation lattice 

The n-order permutation set Sn can be described as a lattice (Sn, ≤) [Be68] where the partial 
ordering is given by the number of inversions, that is, the number of times an element of a 
permutation has another element lesser than it in a more advanced position, for each element 
concerned. The Hasse diagram of this lattice is an undirected graph Gn = (Sn,U) where U is 
the set of permutation pairs differing between them by one and only one inversion. This 
(partial) ordering is not the same as that of SN(Q*) but it is close enough in most instances to 
allow its use as a guide for finding better solutions. That is, we can think of inversion 
reduction as a strategy for getting better costs. 

The number of inversions related to a given element πi ∈ π will be 

 x(πi) = |{πj | j > i, πj < πi}. (4.1) 

and the inversion number ν(π) of a permutation will be the sum of the inversion numbers 
related to their elements, 

 
n

i
i 1

( ) x( )
=

ν π = π∑ . (4.2) 

It is convenient to define an inversion at the positions (i,j) as corresponding to the effect of an 
inversion operator τij which exchanges the positions of the ith and jth elements of a permutation. 

 
4.2 Some properties of Gn 

Most of the properties here discussed was presented in [LB01] but the discussion made here 
has been elaborated in some details. 

Property 1:  Gn is a regular graph of degree n – 1. 

Proof.  (Immediate)  

Property 2:  Gn is bipartite and we can partition Sn by the number of inversions of its elements. 

Proof. We can define subsets N(νi) ⊂ Sn (i = 0, …, N = Cn,2) such that every 
permutation ϕ ∈ N(νi) has νi inversions. As every permutation has a unique inversion 
number these subsets constitute a partition of Sn. Owing to the definition of Gn, there 
are no edges within vertices of the same level and every Gn edge will connect vertices 
of consecutive levels. Then we can designate even and odd colors to the N(νi) 
according to their index, in the sense of vertex coloring. So Gn is bipartite.  

Obs.:  The zero level N0 and the opposite level NN have exactly one element (resp. 
identity and opposite permutations). 

Property 3:  We can define a level set for Gn having in N0 a given permutation. 

Proof.  We can take a permutation ϕ ∈ Sn and do the necessary inversions to obtain a 
first level, a second level and so on. The content of the image is irrelevant.  

Remark.  We will use this property to define a level set on Gn and we will then speak 
of a level set related to a given permutation ϕ. 
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Property 4:  Gn  has girth g(Gn) = 4. 

Proof.  Gn is a 1-graph, so there are no 2-cycles. As Gn is bipartite, it has no odd cycles. 
Finally, the successive operations τij, τkl, τji and τlk (i, j consecutive, k, l consecutive, 
{i,j} ∩ {k,l} = ∅) define a 4-cycle which establish the girth value.  

Example:  For n = 4 we have (1234) → (2134) → (2143) → (1243) → (1234). 

Property 5:  A vertex ϕ ∈ Sn belongs to Cn-1,2 adjacent 4- and 6-cycles, from which Cn-2,2 
4-cycles and n – 2 6-cycles. 

Proof.  From Property 1 the immediate neighbouring Γ(ϕ) has n – 1 vertices. A cycle 
adjacent to ϕ will have two vertices ϕ1 and ϕ2 in Γ(ϕ). Then there will be Cn-1,2 ways 
to choose a pair of these vertices. From these, there will be n – 2 intersecting pairs 
made of consecutive triples and Cn-1,2 – (n – 2) = Cn-2,2 disjoint pairs which, by 
Property 4, give way to 4-cycles. The remaining n – 2 cases being those of ϕ-element 
triples we can have 6 permutations of their positions, giving 6 different solutions. 
Then we will have 6-cycles.  

Example:  For n = 3 on a (123) → (132) → (312) → (321) → (231) → (213) → (123). 

Property 6:  No 6-cycle from Gn has chords. 

Proof.  A 6-cycle corresponds to 2 non-disjoint pairs, a 4-cycle to 2 disjoint pairs. So 
a 6-cycle cannot contain every vertex of a 4-cycle. As a consequence, no 6-cycle on 
Gn has chords.  

 

5. A cycle-built neighbouring structure 

We can now define a neighbouring structure based on the 4- and 6-cycles adjacent to a 
vertex ϕ in Gn. We call it a rosace of order n, Rn = Rn(ϕ) = (S34,U34). The vertex ϕ is the root 
of Rn(ϕ). The notation involves the fact that the cycles are generated by exchanges on three 
or four elements. 

Applying Property 3 we can say that a rosace contains vertices from the levels N1, N2 and N3 
with respect to its root ϕ. 

The rosace R4(ϕ), for ϕ = (3 1 4 2) is (Figure 3): 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – The rosace R4(3 1 4 2) 
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Theorem 1:  The cardinality of S34 is O(n2) owing to the 4-cycle external extremities. 

Proof.  We have Cn-2,2 = (n – 2)(n – 3)/2, which is O(n2). The only vertices which are 
exclusive of 4-cycles are their external vertices. From Properties 1 and 5, both N1 and 
6-cycle cardinalities are O(n).  

Remark.  From Props. 1 to 5 we can obtain Gn order and size, 

 | S34
 | = n + (n – 2)(n – 3)/2 + 3(n – 2) = (n – 2)(n + 3)/2 + n (5.1) 

and 

 | U34
 | = n – 1 + (n – 2)(n – 3) + 4(n – 2) = n2 – 3. (5.2) 

Theorem 2:  A rosace Rn is the union of N1 and N2 vertices with the N3 vertices opposite to 
the root in the 6-cycles. 

Proof.  We have ϕ ∪ Γ(ϕ) ⊂ Rn. As we take Cn-1,2 pairs from N1 to apply the 
inversion operator we use it in every possible situation, then we will generate the 
whole N2 level. But in N3 we will attain only the n – 2 vertices opposite to ϕ in the 
6-cycles.  

 
So N2 will have a vertex within each 4-cycle and two vertices within each 6-cycle, then 

 |N2| = (n – 2)(n – 3)/2 + 2(n – 2) = (n – 2)(n + 1)/2. (5.3) 

For n = 6, we will have |N2| = 14, which is also the value of the third coefficient of this 
lattice’s generating function (see for instance [Ka68]): 

 
n 1 k

r 2 k
n

r 0k 1
F(G ) t (1 t)(1 t t ) . . . (1 t . . . t )

−

==
= = + + + + + +∑∏  (5.4) 

For n = 6 we obtain (1, 5, 14, 29, 49, 71, 90, 101, 101, 90, …). 

When exploring a rosace we will then visit the 6-cycle farthest vertices and also do a two-
level exhaustive local search (that is, to explore Γ(ϕ) and Γ(ϕ1) for every ϕ1 ∈ Γ(ϕ)). 
Nevertheless there are two important differences: 

− economy of repetitions (e.g., with n = 6 we would have (n – 1)(n – 2) = 20 vertices, while 
R6 has only 14 vertices); 

− we can easily explore separately the linear substructures (Γ(ϕ), intermediate and farthest 
6-cycle points) and 4-cycle extremities and select what to explore according to the 
obtained results and to the behavior of the instance. 

We refer to [LB01] and [Bo02] for additional information about the properties of a rosace. 

 

6. A proposal of a rosace-based algorithm 

6.1 The initial solutions 

As it was already discussed we can easily obtain the feasibility matrix of any solution of the 
relaxed set SN(Q). One could then think about solving the QAP by transposing to SN(Q) the 
identity permutation from SN(Q*) – whose cost is the absolute lower bound of the instance – 
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and so look for the nearest feasible solution by trying to find a set of greater-valued elements 
in its matrix. 

Unfortunately the feasibility matrix is not so a precise instrument, owing to the very high 
value of the ratio N!/n! even for modest-sized instances (for n = 5 we have already 
10!/5! = 30240). So it is not generally possible to identify such a set in the matrix, the closest 
feasible solution being frequently so far that its influence on the matrix entries becomes 
negligible. 

We used it nevertheless to induce a sort of proximity, in order to generate intermediate-
valued solutions. The process is as follows: 

• we take the lower-bound and upper-bound solutions in SN(Q*), transpose them to 
SN(Q) and calculate their feasibility matrices and the difference between them; 

• we sum to each entry a pseudorandom integer value rij ∈ {0, n/k}, where k ≤ n; 
• we subtract every matrix entry from the maximum entry. 

This way we are trying to get nearer to the lower bound and farther from the upper bound. 
The practical result is a set of intermediate solutions which are obtained by iteratively 
applying the Hungarian algorithm to the current matrix after penalizing the selected entries 
from the preceding iteration by summing one unity to them. Finally we order the solutions by 
non-decreasing cost and use the first nsol ones (nsol being the number of initial solutions 
obtained from each pseudorandom seed). 

 
6.2 Generating the neighbouring structure 

The initial rosace was built at the initialization stage, the identity permutation In being used 
as root. The vertices were stocked in matrices of the form M(2,p,q) where the first and 
second dimensions receive the position of an exchange and its content. The third dimension 
corresponds to the list of exchanges. We have p = 3 for the 6-cycles and p = 4 for the 4-cycle 
extremities. There are two 6-cycle matrices, one for the N3- elements and another for the N2-
elements. 

Example: for n = 5 the N3- element matrix of the 6-cycles is, with q = n – 2 = 3, 

1 2 3 2 3 4 3 4 5

3 2 1 4 3 2 5 4 3

and the 4-cycle matrix is, with q = Cn-2,2 = C3,2 = 3, 

1 2 3 4 1 2 4 5 2 3 4 5

2 1 4 3 2 1 5 4 3 2 5 4

A set of routines is used that starts with N1 vertices and couples them to obtain the 4- and the 
6-cycle vertices. The process begins at a management routine, gerapar and for the non-
intersecting couples it is executed there, the control passing then to a stock routine stocpar 
which fills the adequate positions in the 4-cycle matrix. If the couple intersection is not void 
three vertices will be calculated and this is done for each one by C6 and gama routines. After 
each pass stocpar is called to fill in the corresponding matrix. The scheme of the process is 
as follows: 
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begin 
 # N1 generation (by enumeration) 
 gerapar 
      begin 
  for i from 1 to n – 2 
   for j from i + 1 to n – 1 
            begin 
         generate a 4-tuple = (i, i + 1, j, j + 1) 
         if {i,i + 1} ∩ {j,j + 1} = ∅  then 
         #pair inversion 
            else ( #C6 ) 
         gama(4-tuple(1),4-tuple(4)) 
         stocpar 
         gama(4-tuple(3),4-tuple(4)) 
         stocpar 
         gama(4-tuple(1),4-tuple(2)) 
         stocpar 
            end; 
      end; 
end. 
 
Example of a 6-cycle generation 

Let n = 5 and let (2 1 3 4 5) and (1 3 2 4 5) be two permutations from N1. The first 4-tuple will 
be (1,2,2,3) with non-void intersection. We apply gama(4-tuple(1),4-tuple(4)) to (2 1 3 4 5), 
looking for the values 1 and 3 at the image and exchanging them to obtain (2 3 1 4 5). Now 
we apply gama(4-tuple(3),4-tuple(4)): the elements 3 and 4 of the 4-tuple are 2 and 3, so we 
obtain (3 2 1 4 5). Finally with gama(4-tuple(1),4-tuple(2)) we get (3 1 2 4 5). We could also 
begin with the second permutation (1 3 2 4 5) to obtain the same result. 

 
6.3 The use of the structure 

As we have a current solution ϕ we calculate the products π o ϕ, where π ∈ Rn(In) is a 
permutation from the initial rosace. As the operations are limited to the exchanged elements, 
the process is of constant complexity order for each permutation. On the other hand we can 
thus preserve the adjacency relations within Gn despite the fact that the composition of 
permutations does not generally preserve these relations. 

Each matrix is inspected to determine the cost differences which allow the algorithm to 
choose the most convenient exchange. The linear-order rosace subsets are explored in the 
first place, beginning by the most external ones. We usually limit the search to these sets if a 
better solution is found; the quadratic-order 4-cycle subset is normally explored in case of 
failure of the former exploration and normally just until the point where a better solution is 
found. 
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The main exploration routine is called varre. It receives the current solution and uses a 
subsidiary named autom to make the subset-to-subset transfer of the basic rosace to this 
new root. 

We use two types of blocking strategies to avoid direct return of the algorithm path, one-
iteration blockings and taboo blockings. These last ones were applied with the aid of taboo 
vectors. If the new solution has a higher cost we call for a restart routine. 

 
6.4 A restart strategy 

This strategy has already been used as an information tool for a simulated annealing 
application to QAP [QAB99]. We work within the ordered relaxed set SN(Q*) where the cost 
and inversion orderings can be approximately matched. 

If we have a current solution ϕ which is considered not adequate as a rosace root for the next 
iteration, we try to obtain new starting solutions ϕ’, ϕ”, …, for which the corresponding 
SN(Q*) permutations have less inversions. For that we determine an edge-permutation 
ρ ∈ SN(Q*) corresponding to the current ϕ and look into it for a pair of positions whose 
exchange brings maximum reduction to ρ inversion number. After that we search for vertex 
permutations differing by one exchange from ϕ such that this exchange will imply the edge 
exchange we selected in ρ. 

We then begin by applying (2.2) to obtain the edge-permutation ξ ∈ SN(Q) associated to ϕ. 

The composition allowing us to find ρ ∈ SN(Q*) corresponding to ξ is 

 ρ = 1
F Do o−φ ξ φ  (6.1) 

where φF : F → F+ and φD : D → D- are the permutations resulting respectively from the 
sortings of F into F+ and of D into D- . 

The first target to be found in this permutation is a position whose exchange (with another 
unknown position) implies the greatest inversion reduction: this is fulfilled by k1 such that 
|k1 – ρ(k1)| has maximum value. The second position for the exchange should be one 
bringing the minimum loss – if a loss should arrive – on the inversion reduction, that is, a k2 
such that the sum of crossed differences |k1 – ρ(k2)| + |k2 – ρ(k1)| will be minimum. 

As we already pointed, the resulting solution will not be feasible but we will look for feasible 
solutions whose exchanges, when made on ϕ, imply the one we selected. For that we have to 
return into vertex permutations. 

We then apply 1
F
−φ  to k1 and k2 to find the corresponding m1 and m2 positions into ξ and 

their images p1 = ξ(m1) and p2 = ξ(m2). Their exchange will give us a new permutation ξ’. To 
return into Gn we have to apply the inverse ψ-1 of (2.2). We will obtain four different vertex 
permutations if the edges k1 and k2 are non-adjacent or three ones if they are adjacent. 

Example: We will take F = (5, 2, 3, 1, 3, 0, 2, 0, 0, 5) and D = (1, 1, 2, 3, 2, 1, 2, 1, 2, 1), the 
instance Nug05 from the literature. A (non unique) ordering possibility for F and D is 

φF = (9 5 8 4 7 1 6 2 3 10)    and    φD = (6 7 2 1 3 8 4 9 5 10). 
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Let ϕ = (4 1 3 5 2) be the current solution. The edge permutation associated to ϕ is 

ξ = (3 8 10 6 2 4 1 9 5 7). 

The cost of the current solution is 32 and the permutation ρ ∈ SN(Q*) is ρ = (1 5 3 8 9 6 7 10 
2 4). It has 18 inversions; taking the differences |i – ρ(i)| for every i we find k1 = 9 and, with 
the values of | k1 – ρ(i) | + | i – ρ(k1) | for every i we find k2 = 4, then the new permutation is 
ρ’ = (1 5 3 2 9 6 7 10 8 4). 

By going into SN(Q) we find, for the new permutation ξ’, 

1 1
F F(9) 1 then (1) 3 and (4) 4 then (4) 6− −φ = ξ = φ = ξ =  

and finally 

ψ -1(3) = (1,4)      and      ψ -1(6) = (2,4). 

In this case the two edges are adjacent, so we will have only three possible exchanges, (1,2), 
(1,4) and (2,4). It is important to observe that we are working on the image, so when we 
take the current solution (4 1 3 5 2) we will obtain as new solutions (4 2 3 5 1), (1 4 3 5 2) 
and (2 1 3 5 4). The last one has a favorable difference of 2 cost units, then it will have 
cost 30. 

In order to assure a greater distance from the last rosace we doubled this scheme to obtain 
two 2-exchanges. A better cost is certainly not guaranteed as we selected a single edge 
exchange among n – 2 ones. With two exchanges, according to edge adjacencies, we will 
have between 9 to 16 solutions to choose among. 

This work is done by the routine novsol. It finds the permutation ρ ∈ SN(Q*) and looks for 
the best ε exchange first positions in it, then it makes a random choose for k1 and goes 
through the whole process already described. (We found it convenient to use ε = 3 + [n/12] 
in the tests). 

The cost differences for every new solution are determined and ordered, the first difference 
being added to the current value and the corresponding solution is sent to a local search 
routine, buscaloc. 

We can use just the best solution of the ordered list or go further while the solutions have 
favorable differences. The best solution is always used but if it is worse than the current one 
we reject the remaining list regardless of the strategy used. 

 
6.5 Value repetition 

The algorithm has two security schemes to avoid its path to stake at local optima. In the first, 
the routine verepet examines the set of the last p values and looks there for q equal ones, 
calling for a restart if it founds them. Best results have been found with p = 5 and q = 2. The 
second scheme looks for a given percent of the (specified) iteration number without global 
improvements and goes through a double restart scheme if this percent is attained. 

 



Boaventura-Netto  –  Combinatorial instruments in the design of a heuristic for the quadratic assignment problem 

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 395 

7. Some results 

Two codes were used in the tests whose results are presented: Code 1, with simple blocking 
and use of a single restart solution and Code 2, with tabu blocking and use of several better 
restart solutions. The tests were run on QAPLIB instances [BKR97], [QAPLIB] and Drezner 
and new Taillard instances [DHT02]. Both codes used the option of restart after a worse 
solution. 

The programming was done in Fortran 77. The execution times here presented correspond to 
the use of an onboard computer with an Athlon 2.4 chip. Typical values for both codes, 
compiled with optimization option, are shown at Figure 4. 
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Figure 4 – Typical execution times for the two codes 

 
The results were quite equilibrated among the two codes with respect to the set of instances 
utilized. We can distinguish four groups of instances according to the results: 

(a) NugXX, SkoXX, WilXX, ThoXX, RouXX, Chr18b and Kra30X: optimal / better 
known value obtained, or approximation below 1% for greater instances. Low 
average with good convergence. 

(b) EscXX, ScrXX, Els19, Chr12a, Chr18a: like (a) for optimal / better value, higher 
average. 

(c) TaiXXa: better value with approximation over 1% for orders over 40. High 
averages. 

(d) ChrXX with n ≥ 20, DreXX (n ≤ 28) and TaiXXe0x (n = 27, 45, 75), poor general 
average performance, unstable with respect to size for ChrXX and worsening with 
size for the other instances. 

In the tables that follows we show the results obtained with series of T tests with its/T 
iterations for each one. The best obtained values (min) and the series averages (avg) are 
given in percentual difference over the optimal or best known cost value, so the zero entries 
indicate the algorithm attained this value. 
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Table 1 – Results for little and medium instances, Groups (a) - (b) 

Code 1 Code 2 Inst. T Its/T 
min avg % min avg % 

Nug12 50 1000 0 0 1.0 0 0 2.0 
Chr12a 50 1000 0 0.23 1.0 0 0.54 2.0 
Nug15 50 1000 0 0.04 2.0 0 0.10 2.0 
 25 2000 0 0.01 1.0 0 <0.01 1.0 
Rou15 50 1000 0 0.25 2.0 0 0.47 1.0 
 25 2000 0 0.09 1.0 0 0.11 1.0 
Scr15 50 1000 0 0.71 2.0 0 0.18 2.0 
 25 2000 0 0.80 1.0 0 0 1.0 
Chr15a 50 1000 0 3.81 2.0 0 4.27 2.0 
 25 2000 0 1.79 1.0 0 2.21 1.0 
Chr18a 25 2000 0 5.77 1.0 0.18 8.59 1.0 
 25 4000 0 2.61 0.5 0 5.85 0.5 
Chr18b 25 2000 0 0 1.0 0 0 1.0 
Els19 25 2000 0 2.56 1.0 0 0.75 0.5 
Nug20 25 2000 0 0.01 1.0 0 <0.01 1.0 
Scr20 25 2000 0 0.87 1.0 0 0.20 1.0 
Rou20 25 2000 0 0.36 1.0 0 0.32 1.0 
Nug25 25 2000 0 0.10 1.0 0 0.12 1.0 
Nug30 25 2000 0 0.34 1.0 0 0.36 1.0 
Tho30 25 2000 0 0.30 1.0 0 0.39 1.0 
Kra30a 25 2000 0 1.40 1.0 0 1.38 1.0 
Kra30b 25 2000 0 0.32 1.0 0 0.36 1.0 
Esc32a 25 2000 0 1.54 1.0 0 2.46 1.0 
Esc32b 25 2000 0 0.48 1.0 0 0 1.0 
Esc32h 25 2000 0 0.94 1.0 0 <0.01 1.0 
Tho40 25 2000 0.04 0.46 1.0 0.05 0.52 0.5 
 25 4000 0.01 0.33 0.5 0.01 0.26 1.0 
Sko42 25 2000 0.08 0.30 1.0 0.15 0.35 1.0 
 25 4000  0.03 0.20 0.5 0.04 0.24 0.5 
Wil50 25 2000 0.02 0.17 1.0 0.05 0.15 1.0 
 25 4000 0.02 0.10 1.0 0.07 0.13 0.5 

 
Table 2 – Results for greater instances, Groups (a) to (c) 

Code 1 Code 2 Inst. T Its/T 
min avg % min avg % 

Sko56 5 2000 0.30 0.43 1.0 0.33 0.52 1.0 
Sko64 5 2000 0.21 0.38 1.0 0.14 0.34 1.0 
Sko72 5 2000 0.41 0.55 1.0 0.42 0.66 1.0 
Sko81 5 2000 0.43 0.66 1.0 0.34 0.46 1.0 
Sko90 5 2000 0.44 0.56 1.0 0.33 0.49 1.0 
Sko100a 5 2000 0.35 0.55 1.0 0.41 0.53 1.0 
Sko100b 5 2000 0.51 0.61 1.0 0.53 0.66 1.0 
Sko100c 5 2000 0.22 0.52 1.0 0.25 0.53 1.0 
Sko100d 5 2000 0.32 0.56 1.0 0.37 0.78 1.0 
Wil100 5 2000 0.20 0.31 1.0 0.32 0.36 1.0 
Esc64a 5 2000 0 0.69 1.0 0 0.34 1.0 
Tai60a 5 2000 2.08 2.57 1.0 2.15 2.56 1.0 
Tai80a 5 2000 2.07 2.16 1.0 1.96 2.11 1.0 
Tai100a 5 2000 1.77 1.91 1.0 1.56 1.90 1.0 
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Table 3 – Results for Group (c) instances 

Code 1 Code 2 Inst. T Its/T 
min avg % min avg % 

Tai20a 25 2000 0 1.04 1.0 0 0.91 1.0 
  4000 0 0.89 0.5 0 0.63 0.5 
Tai25a 25 2000 0.73 1.76 1.0 0.71 1.86 1.0 
  4000 0 1.40 0.5 0.80 1.55 0.5 
Tai30a 25 2000 0.53 1.62 1.0 0.59 1.58 1.0 
  4000 0.02 1.34 0.5 0.51 1.36 0.5 
Tai40a 25 2000 1.58 2.17 1.0 1.30 2.13 1.0 
  4000 1.58 1.98 0.5 1.38 1.96 0.5 
Tai50a 25 2000 1.79 2.47 1.0 2.15 2.58 1.0 
  4000 1.82 2.33 0.5 1.99 2.35 0.5 

 
Table 4 – Results for Group (d) instances 

Code 1 Code 2 Inst. T Its/T 
min avg % min avg % 

Chr20a 25 2000 4.38 11.49 1.0 2.37 9.14 1.0 
  4000 2.74 9.07 0.5 1.37 7.99 0.5 
Chr20b 25 2000 4.87 12.51 1.0 4.79 11.85 1.0 
  4000 2.79 12.46 0.5 3.31 11.43 0.5 
Chr22a 25 2000 2.40 4.20 1.0 3.02 4.71 1.0 
  4000 0.88 4.29 0.5 1.17 4.45 0. 5 
Chr22b 25 2000 2.10 5.00 1.0 2.24 5.00 1.0 
  4000 2.68 4.46 0.5 1.61 4.29 0.5 
Chr25a 25 2000 8.38 17.57 2.0 7.22 17.91 1.0 
  4000 2.32 14.70 1.0 9.33 16.20 0.5 
Dre15 50 2000 0 6.08 2.0 0 4.44 2.0 
  4000 0 1.11 2.0 0 1.11 2.0 
  4000 0 3.46 0.5 0 3.85 0.5 
  4000 0 1.57 1.0 0 3.01 1.0 
Dre18 50 2000 0 4.04 2.0 0 6.26 1.0 
  4000 0 1.63 1.0 0 2.71 0.5 
Dre21 50 2000 0 34.61 1.0 0 33.03 1.0 
  8000 10.11 33.48 1.0 0 32.47 0.5 
Dre24 50 4000 8.59 37.98 2.0 9.60 39.34 2.0 
  8000 12.63 35.56 0.25 0 33.38 0.25 
Dre28 50 8000 28.15 42.35 1.0 0 39.37 1.0 
Tai27e01 25 2000 0 154.20 1.0 0 151.73 1.0 
  2000 0 152.35 0.5 0.78 153.67 0.5 
  4000 0 137,14 0.5 0 150.66 0.5 
Tai27e02 25 2000 1.26 240.05 1.0 0 256.52 1.0 
  2000 0 237.42 0.5 0 252.28 0.5 
  4000 0 236.18 0.5 0 131.65 0.5 
Tai45e01 25 2000 0 167.38 1.0 1.65 135.21 1.0 
  4000 0 164.82 0.5 0 131.65 0.5 
Tai75e01 5 2000 16.29 130.53 0.5 10.73 69.20 1.0 
 10 8000 9.94 122.50 0.25 8.72 94.59 1.0 
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8. Conclusions 

8.1 Discussion 

For many instances, specially those from Group (a), the instance order does not sensibly 
influence the performance, which is an interesting characteristic of the method. This can be 
seen quite well with the instances SkoXX. 

Group (b) goes well from the same point of view for the best value found but the average 
suffers the influence of high-valued differences when compared to best known value, as it 
can be seen with EscXX instances. 

Group (c) seems to show failed approaches, probably owing to the presence of many bad 
solutions around good ones, local optima at which the algorithm stakes. This should ask for 
local approach improvement. 

Group (d) seems to show an influence of the arborescence structure in the polynomial 
instances ChrXX, which offers difficulties for heuristic algorithms. Owing to the sparsity of 
one of their matrices the DreXX instances are also difficult for heuristic methods, despite the 
fact that they are also polynomial, as tr(Q*) is an optimal value for them. Finally the staged 
TaiXXe0x instances present difficulties associated to the starting points utilized and also to 
the easy stacking at local optima. The average values are high owing to the values of these 
local optima. With some of these instances the second code was able to find an optimum 
value, while thw first was not. 

Some time economy can be obtained through the use of more than one solution from novsol 
list, but it depends on the instance structure, as for some of them it is frequently difficult to 
obtain more than one positive difference. The difference in processing time between the two 
codes corresponds to this economy. The taboo blocking seems to be at least as efficient as 
the single blocking to avoid path return. 

 
8.2 Further developments 

Different restart approaches could be designed: for example, to use the rosace building 
functions to expand it in order to get a solution set for choosing a restart point. This could 
eventually give better chances of finding good restarts, specially if we could detect directions 
of inversion reduction which could be used to build a variable neighborhood. 

We could also imagine the use of a path-relinking strategy using a set of good solutions 
obtained from a test or from three tests run in parallel. This last strategy would present the 
advantage of producing again three solutions which could be used to continue the process the 
same way. The speed could be improved by using parallelism on rosace exploration. 
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