
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 383

COMBINATORIAL INSTRUMENTS IN THE DESIGN OF A HEURISTIC FOR
THE QUADRATIC ASSIGNMENT PROBLEM

Paulo Oswaldo Boaventura-Netto
Laboratoire PriSM
Université de Versailles à St. Quentin-en-Yvelines
Versailles Cedex – França
Programa de Engenharia de Produção / COPPE
Universidade Federal do Rio de Janeiro
Rio de Janeiro – RJ
pboav@prism.uvsq.fr; boaventu@pep.ufrj.br

Recebido em 08/2002; aceito em 08/2003
Received August 2002; accepted August 2003

Abstract

This work discusses the use of a neighbouring structure in the design of specific heuristics for the
Quadratic Assignment Problem (QAP). This structure is formed by the 4- and 6-cycles adjacent to a
vertex in the Hasse diagram of the permutation lattice and it can be adequately partitioned in subsets of
linear and quadratic cardinalities, a characteristics which frequently allows an economy in the
processing time. We propose also a restart strategy and a mechanism for generating initial solutions
which constitute, together with the neighbouring structure, a possible QAP-specific heuristic proposal.
For the construction of these instruments we used the relaxed ordered set of QAP solutions.

Keywords: quadratic assignment problem; combinatory; heuristics.

Resumo

Este trabalho discute o uso de uma estrutura de vizinhança em heurísticas específicas para o Problema
Quadrático de Alocação (PQA). Esta estrutura envolve os ciclos de comprimento 4 e 6 adjacentes a um
vértice do diagrama de Hasse do reticulado das permutações e pode ser particionada em subconjuntos
de cardinalidade linear e quadrática em relação à ordem da instância, o que permite frequentemente
uma economia de tempo de processamento. Propõem-se ainda uma estratégia de repartida e um
mecanismo de geração de soluções iniciais, que constituem, ao lado da estrutura de vizinhança, uma
proposta de heurística específica para o PQA. Na construção desses instrumentos foi utilizada a noção
de conjunto relaxado ordenado das soluções do PQA.

Palavras-chave: problema quadrático de alocação; combinatória; heurísticas.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

384 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

1. Introduction

QAP is a NP-hard problem that has been studied by a number of researchers in combinatorial
optimization through the second half of the 20th century and which continues to excite the
curiosity of many others, both in the study of exact algorithms and through the formulation
of information mechanisms for heuristics. The exact approach is severely limited by the high
complexity of the problem, a difficult 30-order instance (Nug30) having been solved exactly
only through a huge work of metacomputing. More recent years have seen an increased
interest in the use of metaheuristic schemes: some examples are [AQB99], [BT94],
[AOT00], [CMMT97], [Ma00], [TRFR01] and [TS95].

Specific heuristics for the QAP are normally classified as being constructive, limited
enumeration and improvement ones.

Constructive methods build a solution by choosing an image element at each step through the
use of a given criterion, until a complete solution is obtained ([BAV62], [AB63],
[SWHH95], [TB98], [SWH98], [Bu91], [Lo00], [AHS01], [GY02] and [YSA03]).

Limited enumeration methods use available information to guide solution enumeration.
Evidently an optimum value cannot be guaranteed unless the whole solution set is
enumerated, so it is necessary to establish stopping criteria. This approach seems to have
been abandoned since the eighties ([We83], [BB83]).

Improvement methods involve local search algorithms and most of the specific QAP
heuristics are classified in this category. The main elements in these methods are the
neighborhood definition and the order user for the analysis of the neighbors ([MO79],
[Br84], [LS95], [BÇ95], [An96], [THKG98]). These methods are frequently utilized within
the logic of the metaheuristics. The technique here presented can be included in this group.

We refer to [Ma00] for the discussion of QAP origins and for its definitions, from which we
retain only that a QAP instance is a pair of matrices (MF,MD) where MF = [φij] corresponds
to flows and MD = [δij] to distances traversed by these flows in a context of n machines
functionally connected two by two in a shop. Through this work we will consider MF and
MD as symmetric.

In what concerns the theoretical work on QAP the majority of the studies concerned the
definition of better lower bounds for the optimal solution to be used in exact algorithms, such
as in [KÇCE00]. A characterization of some polynomial cases has also been presented [Çe98].

The approach used in this paper is an algebraic and combinatorial one (AC) [Ab84], which
considers some properties of the permutation set and its graph-theoretical description in
order to propose three basic instruments which constitute together a proposal of a specific
heuristic. The AC approach has already been used to inform metaheuristics such as simulated
annealing [QAB99] and GRASP [RAB00] and also in the definition of a new difficulty
measure for QAP instances [ABQG02].

The AC approach associates the solution set of a QAP instance to the set Sn of
n-permutations. Graph-theoretical models are applied to allow the definition of a
neighbourhood structure [LB01]. The corresponding definitions and notation follow [Be73]
and [Bo01]. A relaxing and ordering scheme is applied to Sn which allows to the definition of
a generator of initial solutions and a restart strategy. This whole set of instruments constitutes
a QAP-specific heuristic algorithm.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 385

Sections 2 and 3 present some concepts, definitions and instruments from AC. Sections 4 and
5 discuss some specific questions related to the proposed neighbourhood. Section 6 is related
to the algorithm construction and finally Section 7 presents some results of tests with
QAPLIB instances [BKR97].

2. A relaxed set and the question of feasibility

2.1 A graph-theoretical model

Let ϕ ∈ Sn be a permutation,

 ϕ = (ϕ1, ϕ2, …, ϕn) (2.1)

and consider the function

 ψij = (i – 1)n – i(i + 1) /2 + j i < j, (2.2)

where ψij is the numerical ordering of the couple (i,j) within a lexicographical ordering.

We can then define a N-order permutation (where N = Cn,2), corresponding to ϕ:

 ξ = (ξ1, ξ2, …, ξN) (2.3)

whose kth element, k = ψij, is, with ϕ(i) = ϕi,

 ξk = ξψ(ϕ(i),ϕ(j)) (2.4)

a permutation of couples of elements from ϕ.

Let SN be the set of permutations with N elements. Every solution from Sn has a corresponding
solution within SN. The reciprocal is not true and we have then to distinguish feasible and
infeasible solutions in SN. This situation is more easily examined through a graph-theoretical
model where we associate MF and MD respectively to complete undirected graphs KF and
KD, whose edges will be valued after the corresponding entries in the matrices (Figure 1):

Figure 1 – A graph model for QAP relaxation

In this model the elements of a permutation set as defined in (2.1) will be vertex-
permutations and those following (2.3) will be edge-permutations, so we will use these
designations from now on. We will call SN the relaxed set of Sn.

The infeasibility of most solutions corresponds to the fact that when we make a vertex
exchange all edge extremities concerned with the exchanged vertices have also to exchange.

f13d43

 2

 4 3

 1 2

 4 3

 1 2

4 3

1 4

 3 2

 1
f21d14

f43d23

f24d12

f23d13

f14d42

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

386 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

Then every edge permutation having not a coherent allocation of edge extremities will not be
associated to a vertex permutation, so it will not be feasible. It is important to observe that
instance values have nothing to do with this question.

2.2 The feasibility matrix

We can define a feasibility matrix in order to verify if a given solution ξ ∈ SN is feasible or
not. To obtain it we can observe that an edge (i,j) from KD can be associated to an edge (k,l)
from KF either by associating k to i and l to j, or by associating k to j and l to i. So we build a
matrix Mξ whose elements are the sums of the association possibilities for every pair (i,j),
(k,l) of edges. If a relaxed solution ξk is feasible we will find in this matrix n independent
positions with value n – 1.

For this calculation we use the inverse function (ψij)-1 to recover the vertex couples defining
the edges.

Example: ()
12 13 14 23 24 34

3 6 5 2 1 4
14 34 24 13 12 23

 ξ = =  
 

Let’s sum a unity over a null 4 x 4 matrix to the positions

from ξ1 : (1,1), (1,4), (2,1), (2,4); from ξ2 : (1,3), (1,4), (3,3), (3,4);
from ξ3 : (1,2), (1,4), (4,2), (4,4); from ξ4 : (2,1), (2,3), (3,1), (3,3);
from ξ5 : (2,1), (2,2), (4,1), (4,2); from ξ6 : (3,2), (3,3), (4,2), (4,3).

The final matrix is

 1 1 1 3
3 1 1 1 Mξ =
1 1 3 1

 then ϕ = (4 1 3 2)

 1 3 1 1

Here we found n – 1 edges associated with each vertex and the n independent positions with
this value correspond to a vertex permutation. The solution is feasible.

If we take, on the other hand, the permutation ()
12 13 14 23 24 34

2 1 4 3 6 5
13 12 23 14 34 24

 ξ = =  
 

,

we will obtain

 2 2 2 0
2 0 2 2 Mξ = 2 2 0 2

 0 2 2 2

where the matrix structure does not show any association with a vertex permutation. This
solution is infeasible.

It is convenient to observe that the element sum is constant for every row and for every
column, only the element distribution changes from a solution to another.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 387

3. The ordering by value within an instance

Let we consider an instance (MF,MD). The cost of a solution ϕ ∈ Sn from (MF,MD) is

n n

ij (i) (j) n
i 1 j 1

z() d f Sϕ ϕ
= =

ϕ = ∀ϕ∈∑∑ (3.1)

For the symmetric QAP we can define N-component vectors F = [fi] and D = [dj] containing
the values of the upper triangles of MF and MD. Then we can obtain their product [GP66]:

 Q = FDT. (3.2)

The N x N matrix Q contains every cost parcel for every ϕ ∈ Sn . The cost is associated to
the elements of the permutation ξ ∈ SN corresponding to ϕ,

N

i (i) N
i 1

z() d f Sξ
=

ξ = ∀ξ ∈∑ (3.3)

It is possible to define a partial order by value on SN. We order F and D by opposite orders,
for instance F → F+ (non-decreasing) and D → D- (non-increasing). Then we can define a
new matrix,

 Q* = (F+)(D-)T (3.4)

whose trace ∑ qii (i = 1,…,N) is an absolute lower bound for the instance (we can also
observe that the opposite trace ∑ qi,N+1-i (i = 1,…,N) is an absolute upper bound for it).

We have a new (ordered) solution set which corresponds to a new permutation lattice. To
distinguish it from the former we will respectively denote them SN(Q*) and SN(Q).

Figure 2 shows a scheme of SN(Q*), a polygon, as a pictorial representation of level
cardinalities: the upper and lower vertices of the polygon correspond to the single-solution
extreme levels and between them the level cardinality grows from 1 (at N0) through the
lower half of the figure, goes to a maximum in the middle and shrinks to 1 (at NN) through its
upper half. For more details see Item 4.2 and Eq. 5.4 below.

Figure 2 – Orderings and bounds on SN(Q*)

N0 (0 inversions, absolute LB for cost)

NN (Cn,2 inversions, absolute UB for cost)

Partial orderings on cost
and inversions

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

388 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

4. The Hasse diagram of the permutation set

4.1 The permutation lattice

The n-order permutation set Sn can be described as a lattice (Sn, ≤) [Be68] where the partial
ordering is given by the number of inversions, that is, the number of times an element of a
permutation has another element lesser than it in a more advanced position, for each element
concerned. The Hasse diagram of this lattice is an undirected graph Gn = (Sn,U) where U is
the set of permutation pairs differing between them by one and only one inversion. This
(partial) ordering is not the same as that of SN(Q*) but it is close enough in most instances to
allow its use as a guide for finding better solutions. That is, we can think of inversion
reduction as a strategy for getting better costs.

The number of inversions related to a given element πi ∈ π will be

 x(πi) = |{πj | j > i, πj < πi}. (4.1)

and the inversion number ν(π) of a permutation will be the sum of the inversion numbers
related to their elements,

n

i
i 1

() x()
=

ν π = π∑ . (4.2)

It is convenient to define an inversion at the positions (i,j) as corresponding to the effect of an
inversion operator τij which exchanges the positions of the ith and jth elements of a permutation.

4.2 Some properties of Gn

Most of the properties here discussed was presented in [LB01] but the discussion made here
has been elaborated in some details.

Property 1: Gn is a regular graph of degree n – 1.

Proof. (Immediate)

Property 2: Gn is bipartite and we can partition Sn by the number of inversions of its elements.

Proof. We can define subsets N(νi) ⊂ Sn (i = 0, …, N = Cn,2) such that every
permutation ϕ ∈ N(νi) has νi inversions. As every permutation has a unique inversion
number these subsets constitute a partition of Sn. Owing to the definition of Gn, there
are no edges within vertices of the same level and every Gn edge will connect vertices
of consecutive levels. Then we can designate even and odd colors to the N(νi)
according to their index, in the sense of vertex coloring. So Gn is bipartite.

Obs.: The zero level N0 and the opposite level NN have exactly one element (resp.
identity and opposite permutations).

Property 3: We can define a level set for Gn having in N0 a given permutation.

Proof. We can take a permutation ϕ ∈ Sn and do the necessary inversions to obtain a
first level, a second level and so on. The content of the image is irrelevant.

Remark. We will use this property to define a level set on Gn and we will then speak
of a level set related to a given permutation ϕ.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 389

Property 4: Gn has girth g(Gn) = 4.

Proof. Gn is a 1-graph, so there are no 2-cycles. As Gn is bipartite, it has no odd cycles.
Finally, the successive operations τij, τkl, τji and τlk (i, j consecutive, k, l consecutive,
{i,j} ∩ {k,l} = ∅) define a 4-cycle which establish the girth value.

Example: For n = 4 we have (1234) → (2134) → (2143) → (1243) → (1234).

Property 5: A vertex ϕ ∈ Sn belongs to Cn-1,2 adjacent 4- and 6-cycles, from which Cn-2,2
4-cycles and n – 2 6-cycles.

Proof. From Property 1 the immediate neighbouring Γ(ϕ) has n – 1 vertices. A cycle
adjacent to ϕ will have two vertices ϕ1 and ϕ2 in Γ(ϕ). Then there will be Cn-1,2 ways
to choose a pair of these vertices. From these, there will be n – 2 intersecting pairs
made of consecutive triples and Cn-1,2 – (n – 2) = Cn-2,2 disjoint pairs which, by
Property 4, give way to 4-cycles. The remaining n – 2 cases being those of ϕ-element
triples we can have 6 permutations of their positions, giving 6 different solutions.
Then we will have 6-cycles.

Example: For n = 3 on a (123) → (132) → (312) → (321) → (231) → (213) → (123).

Property 6: No 6-cycle from Gn has chords.

Proof. A 6-cycle corresponds to 2 non-disjoint pairs, a 4-cycle to 2 disjoint pairs. So
a 6-cycle cannot contain every vertex of a 4-cycle. As a consequence, no 6-cycle on
Gn has chords.

5. A cycle-built neighbouring structure

We can now define a neighbouring structure based on the 4- and 6-cycles adjacent to a
vertex ϕ in Gn. We call it a rosace of order n, Rn = Rn(ϕ) = (S34,U34). The vertex ϕ is the root
of Rn(ϕ). The notation involves the fact that the cycles are generated by exchanges on three
or four elements.

Applying Property 3 we can say that a rosace contains vertices from the levels N1, N2 and N3
with respect to its root ϕ.

The rosace R4(ϕ), for ϕ = (3 1 4 2) is (Figure 3):

Figure 3 – The rosace R4(3 1 4 2)

1324

3214 1432

3241 4132

3142

3124

3412

1342

3421 4312

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

390 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

Theorem 1: The cardinality of S34 is O(n2) owing to the 4-cycle external extremities.

Proof. We have Cn-2,2 = (n – 2)(n – 3)/2, which is O(n2). The only vertices which are
exclusive of 4-cycles are their external vertices. From Properties 1 and 5, both N1 and
6-cycle cardinalities are O(n).

Remark. From Props. 1 to 5 we can obtain Gn order and size,

 | S34
 | = n + (n – 2)(n – 3)/2 + 3(n – 2) = (n – 2)(n + 3)/2 + n (5.1)

and

 | U34
 | = n – 1 + (n – 2)(n – 3) + 4(n – 2) = n2 – 3. (5.2)

Theorem 2: A rosace Rn is the union of N1 and N2 vertices with the N3 vertices opposite to
the root in the 6-cycles.

Proof. We have ϕ ∪ Γ(ϕ) ⊂ Rn. As we take Cn-1,2 pairs from N1 to apply the
inversion operator we use it in every possible situation, then we will generate the
whole N2 level. But in N3 we will attain only the n – 2 vertices opposite to ϕ in the
6-cycles.

So N2 will have a vertex within each 4-cycle and two vertices within each 6-cycle, then

 |N2| = (n – 2)(n – 3)/2 + 2(n – 2) = (n – 2)(n + 1)/2. (5.3)

For n = 6, we will have |N2| = 14, which is also the value of the third coefficient of this
lattice’s generating function (see for instance [Ka68]):

n 1 k

r 2 k
n

r 0k 1
F(G) t (1 t)(1 t t) . . . (1 t . . . t)

−

==
= = + + + + + +∑∏ (5.4)

For n = 6 we obtain (1, 5, 14, 29, 49, 71, 90, 101, 101, 90, …).

When exploring a rosace we will then visit the 6-cycle farthest vertices and also do a two-
level exhaustive local search (that is, to explore Γ(ϕ) and Γ(ϕ1) for every ϕ1 ∈ Γ(ϕ)).
Nevertheless there are two important differences:

− economy of repetitions (e.g., with n = 6 we would have (n – 1)(n – 2) = 20 vertices, while
R6 has only 14 vertices);

− we can easily explore separately the linear substructures (Γ(ϕ), intermediate and farthest
6-cycle points) and 4-cycle extremities and select what to explore according to the
obtained results and to the behavior of the instance.

We refer to [LB01] and [Bo02] for additional information about the properties of a rosace.

6. A proposal of a rosace-based algorithm

6.1 The initial solutions

As it was already discussed we can easily obtain the feasibility matrix of any solution of the
relaxed set SN(Q). One could then think about solving the QAP by transposing to SN(Q) the
identity permutation from SN(Q*) – whose cost is the absolute lower bound of the instance –

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 391

and so look for the nearest feasible solution by trying to find a set of greater-valued elements
in its matrix.

Unfortunately the feasibility matrix is not so a precise instrument, owing to the very high
value of the ratio N!/n! even for modest-sized instances (for n = 5 we have already
10!/5! = 30240). So it is not generally possible to identify such a set in the matrix, the closest
feasible solution being frequently so far that its influence on the matrix entries becomes
negligible.

We used it nevertheless to induce a sort of proximity, in order to generate intermediate-
valued solutions. The process is as follows:

• we take the lower-bound and upper-bound solutions in SN(Q*), transpose them to
SN(Q) and calculate their feasibility matrices and the difference between them;

• we sum to each entry a pseudorandom integer value rij ∈ {0, n/k}, where k ≤ n;
• we subtract every matrix entry from the maximum entry.

This way we are trying to get nearer to the lower bound and farther from the upper bound.
The practical result is a set of intermediate solutions which are obtained by iteratively
applying the Hungarian algorithm to the current matrix after penalizing the selected entries
from the preceding iteration by summing one unity to them. Finally we order the solutions by
non-decreasing cost and use the first nsol ones (nsol being the number of initial solutions
obtained from each pseudorandom seed).

6.2 Generating the neighbouring structure

The initial rosace was built at the initialization stage, the identity permutation In being used
as root. The vertices were stocked in matrices of the form M(2,p,q) where the first and
second dimensions receive the position of an exchange and its content. The third dimension
corresponds to the list of exchanges. We have p = 3 for the 6-cycles and p = 4 for the 4-cycle
extremities. There are two 6-cycle matrices, one for the N3- elements and another for the N2-
elements.

Example: for n = 5 the N3- element matrix of the 6-cycles is, with q = n – 2 = 3,

1 2 3 2 3 4 3 4 5

3 2 1 4 3 2 5 4 3

and the 4-cycle matrix is, with q = Cn-2,2 = C3,2 = 3,

1 2 3 4 1 2 4 5 2 3 4 5

2 1 4 3 2 1 5 4 3 2 5 4

A set of routines is used that starts with N1 vertices and couples them to obtain the 4- and the
6-cycle vertices. The process begins at a management routine, gerapar and for the non-
intersecting couples it is executed there, the control passing then to a stock routine stocpar
which fills the adequate positions in the 4-cycle matrix. If the couple intersection is not void
three vertices will be calculated and this is done for each one by C6 and gama routines. After
each pass stocpar is called to fill in the corresponding matrix. The scheme of the process is
as follows:

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

392 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

begin
 # N1 generation (by enumeration)
 gerapar
 begin
 for i from 1 to n – 2
 for j from i + 1 to n – 1
 begin
 generate a 4-tuple = (i, i + 1, j, j + 1)
 if {i,i + 1} ∩ {j,j + 1} = ∅ then
 #pair inversion
 else (#C6)
 gama(4-tuple(1),4-tuple(4))
 stocpar
 gama(4-tuple(3),4-tuple(4))
 stocpar
 gama(4-tuple(1),4-tuple(2))
 stocpar
 end;
 end;
end.

Example of a 6-cycle generation

Let n = 5 and let (2 1 3 4 5) and (1 3 2 4 5) be two permutations from N1. The first 4-tuple will
be (1,2,2,3) with non-void intersection. We apply gama(4-tuple(1),4-tuple(4)) to (2 1 3 4 5),
looking for the values 1 and 3 at the image and exchanging them to obtain (2 3 1 4 5). Now
we apply gama(4-tuple(3),4-tuple(4)): the elements 3 and 4 of the 4-tuple are 2 and 3, so we
obtain (3 2 1 4 5). Finally with gama(4-tuple(1),4-tuple(2)) we get (3 1 2 4 5). We could also
begin with the second permutation (1 3 2 4 5) to obtain the same result.

6.3 The use of the structure

As we have a current solution ϕ we calculate the products π o ϕ, where π ∈ Rn(In) is a
permutation from the initial rosace. As the operations are limited to the exchanged elements,
the process is of constant complexity order for each permutation. On the other hand we can
thus preserve the adjacency relations within Gn despite the fact that the composition of
permutations does not generally preserve these relations.

Each matrix is inspected to determine the cost differences which allow the algorithm to
choose the most convenient exchange. The linear-order rosace subsets are explored in the
first place, beginning by the most external ones. We usually limit the search to these sets if a
better solution is found; the quadratic-order 4-cycle subset is normally explored in case of
failure of the former exploration and normally just until the point where a better solution is
found.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 393

The main exploration routine is called varre. It receives the current solution and uses a
subsidiary named autom to make the subset-to-subset transfer of the basic rosace to this
new root.

We use two types of blocking strategies to avoid direct return of the algorithm path, one-
iteration blockings and taboo blockings. These last ones were applied with the aid of taboo
vectors. If the new solution has a higher cost we call for a restart routine.

6.4 A restart strategy

This strategy has already been used as an information tool for a simulated annealing
application to QAP [QAB99]. We work within the ordered relaxed set SN(Q*) where the cost
and inversion orderings can be approximately matched.

If we have a current solution ϕ which is considered not adequate as a rosace root for the next
iteration, we try to obtain new starting solutions ϕ’, ϕ”, …, for which the corresponding
SN(Q*) permutations have less inversions. For that we determine an edge-permutation
ρ ∈ SN(Q*) corresponding to the current ϕ and look into it for a pair of positions whose
exchange brings maximum reduction to ρ inversion number. After that we search for vertex
permutations differing by one exchange from ϕ such that this exchange will imply the edge
exchange we selected in ρ.

We then begin by applying (2.2) to obtain the edge-permutation ξ ∈ SN(Q) associated to ϕ.

The composition allowing us to find ρ ∈ SN(Q*) corresponding to ξ is

 ρ = 1
F Do o−φ ξ φ (6.1)

where φF : F → F+ and φD : D → D- are the permutations resulting respectively from the
sortings of F into F+ and of D into D- .

The first target to be found in this permutation is a position whose exchange (with another
unknown position) implies the greatest inversion reduction: this is fulfilled by k1 such that
|k1 – ρ(k1)| has maximum value. The second position for the exchange should be one
bringing the minimum loss – if a loss should arrive – on the inversion reduction, that is, a k2
such that the sum of crossed differences |k1 – ρ(k2)| + |k2 – ρ(k1)| will be minimum.

As we already pointed, the resulting solution will not be feasible but we will look for feasible
solutions whose exchanges, when made on ϕ, imply the one we selected. For that we have to
return into vertex permutations.

We then apply 1
F
−φ to k1 and k2 to find the corresponding m1 and m2 positions into ξ and

their images p1 = ξ(m1) and p2 = ξ(m2). Their exchange will give us a new permutation ξ’. To
return into Gn we have to apply the inverse ψ-1 of (2.2). We will obtain four different vertex
permutations if the edges k1 and k2 are non-adjacent or three ones if they are adjacent.

Example: We will take F = (5, 2, 3, 1, 3, 0, 2, 0, 0, 5) and D = (1, 1, 2, 3, 2, 1, 2, 1, 2, 1), the
instance Nug05 from the literature. A (non unique) ordering possibility for F and D is

φF = (9 5 8 4 7 1 6 2 3 10) and φD = (6 7 2 1 3 8 4 9 5 10).

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

394 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

Let ϕ = (4 1 3 5 2) be the current solution. The edge permutation associated to ϕ is

ξ = (3 8 10 6 2 4 1 9 5 7).

The cost of the current solution is 32 and the permutation ρ ∈ SN(Q*) is ρ = (1 5 3 8 9 6 7 10
2 4). It has 18 inversions; taking the differences |i – ρ(i)| for every i we find k1 = 9 and, with
the values of | k1 – ρ(i) | + | i – ρ(k1) | for every i we find k2 = 4, then the new permutation is
ρ’ = (1 5 3 2 9 6 7 10 8 4).

By going into SN(Q) we find, for the new permutation ξ’,

1 1
F F(9) 1 then (1) 3 and (4) 4 then (4) 6− −φ = ξ = φ = ξ =

and finally

ψ -1(3) = (1,4) and ψ -1(6) = (2,4).

In this case the two edges are adjacent, so we will have only three possible exchanges, (1,2),
(1,4) and (2,4). It is important to observe that we are working on the image, so when we
take the current solution (4 1 3 5 2) we will obtain as new solutions (4 2 3 5 1), (1 4 3 5 2)
and (2 1 3 5 4). The last one has a favorable difference of 2 cost units, then it will have
cost 30.

In order to assure a greater distance from the last rosace we doubled this scheme to obtain
two 2-exchanges. A better cost is certainly not guaranteed as we selected a single edge
exchange among n – 2 ones. With two exchanges, according to edge adjacencies, we will
have between 9 to 16 solutions to choose among.

This work is done by the routine novsol. It finds the permutation ρ ∈ SN(Q*) and looks for
the best ε exchange first positions in it, then it makes a random choose for k1 and goes
through the whole process already described. (We found it convenient to use ε = 3 + [n/12]
in the tests).

The cost differences for every new solution are determined and ordered, the first difference
being added to the current value and the corresponding solution is sent to a local search
routine, buscaloc.

We can use just the best solution of the ordered list or go further while the solutions have
favorable differences. The best solution is always used but if it is worse than the current one
we reject the remaining list regardless of the strategy used.

6.5 Value repetition

The algorithm has two security schemes to avoid its path to stake at local optima. In the first,
the routine verepet examines the set of the last p values and looks there for q equal ones,
calling for a restart if it founds them. Best results have been found with p = 5 and q = 2. The
second scheme looks for a given percent of the (specified) iteration number without global
improvements and goes through a double restart scheme if this percent is attained.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 395

7. Some results

Two codes were used in the tests whose results are presented: Code 1, with simple blocking
and use of a single restart solution and Code 2, with tabu blocking and use of several better
restart solutions. The tests were run on QAPLIB instances [BKR97], [QAPLIB] and Drezner
and new Taillard instances [DHT02]. Both codes used the option of restart after a worse
solution.

The programming was done in Fortran 77. The execution times here presented correspond to
the use of an onboard computer with an Athlon 2.4 chip. Typical values for both codes,
compiled with optimization option, are shown at Figure 4.

Execution time

0,1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100
Instance order n

Ti
m

e,
 m

se
c/

ite
ra

tio
n

 Code 1
 Code 2

Figure 4 – Typical execution times for the two codes

The results were quite equilibrated among the two codes with respect to the set of instances
utilized. We can distinguish four groups of instances according to the results:

(a) NugXX, SkoXX, WilXX, ThoXX, RouXX, Chr18b and Kra30X: optimal / better
known value obtained, or approximation below 1% for greater instances. Low
average with good convergence.

(b) EscXX, ScrXX, Els19, Chr12a, Chr18a: like (a) for optimal / better value, higher
average.

(c) TaiXXa: better value with approximation over 1% for orders over 40. High
averages.

(d) ChrXX with n ≥ 20, DreXX (n ≤ 28) and TaiXXe0x (n = 27, 45, 75), poor general
average performance, unstable with respect to size for ChrXX and worsening with
size for the other instances.

In the tables that follows we show the results obtained with series of T tests with its/T
iterations for each one. The best obtained values (min) and the series averages (avg) are
given in percentual difference over the optimal or best known cost value, so the zero entries
indicate the algorithm attained this value.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

396 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

Table 1 – Results for little and medium instances, Groups (a) - (b)

Code 1 Code 2 Inst. T Its/T
min avg % min avg %

Nug12 50 1000 0 0 1.0 0 0 2.0
Chr12a 50 1000 0 0.23 1.0 0 0.54 2.0
Nug15 50 1000 0 0.04 2.0 0 0.10 2.0
 25 2000 0 0.01 1.0 0 <0.01 1.0
Rou15 50 1000 0 0.25 2.0 0 0.47 1.0
 25 2000 0 0.09 1.0 0 0.11 1.0
Scr15 50 1000 0 0.71 2.0 0 0.18 2.0
 25 2000 0 0.80 1.0 0 0 1.0
Chr15a 50 1000 0 3.81 2.0 0 4.27 2.0
 25 2000 0 1.79 1.0 0 2.21 1.0
Chr18a 25 2000 0 5.77 1.0 0.18 8.59 1.0
 25 4000 0 2.61 0.5 0 5.85 0.5
Chr18b 25 2000 0 0 1.0 0 0 1.0
Els19 25 2000 0 2.56 1.0 0 0.75 0.5
Nug20 25 2000 0 0.01 1.0 0 <0.01 1.0
Scr20 25 2000 0 0.87 1.0 0 0.20 1.0
Rou20 25 2000 0 0.36 1.0 0 0.32 1.0
Nug25 25 2000 0 0.10 1.0 0 0.12 1.0
Nug30 25 2000 0 0.34 1.0 0 0.36 1.0
Tho30 25 2000 0 0.30 1.0 0 0.39 1.0
Kra30a 25 2000 0 1.40 1.0 0 1.38 1.0
Kra30b 25 2000 0 0.32 1.0 0 0.36 1.0
Esc32a 25 2000 0 1.54 1.0 0 2.46 1.0
Esc32b 25 2000 0 0.48 1.0 0 0 1.0
Esc32h 25 2000 0 0.94 1.0 0 <0.01 1.0
Tho40 25 2000 0.04 0.46 1.0 0.05 0.52 0.5
 25 4000 0.01 0.33 0.5 0.01 0.26 1.0
Sko42 25 2000 0.08 0.30 1.0 0.15 0.35 1.0
 25 4000 0.03 0.20 0.5 0.04 0.24 0.5
Wil50 25 2000 0.02 0.17 1.0 0.05 0.15 1.0
 25 4000 0.02 0.10 1.0 0.07 0.13 0.5

Table 2 – Results for greater instances, Groups (a) to (c)

Code 1 Code 2 Inst. T Its/T
min avg % min avg %

Sko56 5 2000 0.30 0.43 1.0 0.33 0.52 1.0
Sko64 5 2000 0.21 0.38 1.0 0.14 0.34 1.0
Sko72 5 2000 0.41 0.55 1.0 0.42 0.66 1.0
Sko81 5 2000 0.43 0.66 1.0 0.34 0.46 1.0
Sko90 5 2000 0.44 0.56 1.0 0.33 0.49 1.0
Sko100a 5 2000 0.35 0.55 1.0 0.41 0.53 1.0
Sko100b 5 2000 0.51 0.61 1.0 0.53 0.66 1.0
Sko100c 5 2000 0.22 0.52 1.0 0.25 0.53 1.0
Sko100d 5 2000 0.32 0.56 1.0 0.37 0.78 1.0
Wil100 5 2000 0.20 0.31 1.0 0.32 0.36 1.0
Esc64a 5 2000 0 0.69 1.0 0 0.34 1.0
Tai60a 5 2000 2.08 2.57 1.0 2.15 2.56 1.0
Tai80a 5 2000 2.07 2.16 1.0 1.96 2.11 1.0
Tai100a 5 2000 1.77 1.91 1.0 1.56 1.90 1.0

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 397

Table 3 – Results for Group (c) instances

Code 1 Code 2 Inst. T Its/T
min avg % min avg %

Tai20a 25 2000 0 1.04 1.0 0 0.91 1.0
 4000 0 0.89 0.5 0 0.63 0.5
Tai25a 25 2000 0.73 1.76 1.0 0.71 1.86 1.0
 4000 0 1.40 0.5 0.80 1.55 0.5
Tai30a 25 2000 0.53 1.62 1.0 0.59 1.58 1.0
 4000 0.02 1.34 0.5 0.51 1.36 0.5
Tai40a 25 2000 1.58 2.17 1.0 1.30 2.13 1.0
 4000 1.58 1.98 0.5 1.38 1.96 0.5
Tai50a 25 2000 1.79 2.47 1.0 2.15 2.58 1.0
 4000 1.82 2.33 0.5 1.99 2.35 0.5

Table 4 – Results for Group (d) instances

Code 1 Code 2 Inst. T Its/T
min avg % min avg %

Chr20a 25 2000 4.38 11.49 1.0 2.37 9.14 1.0
 4000 2.74 9.07 0.5 1.37 7.99 0.5
Chr20b 25 2000 4.87 12.51 1.0 4.79 11.85 1.0
 4000 2.79 12.46 0.5 3.31 11.43 0.5
Chr22a 25 2000 2.40 4.20 1.0 3.02 4.71 1.0
 4000 0.88 4.29 0.5 1.17 4.45 0. 5
Chr22b 25 2000 2.10 5.00 1.0 2.24 5.00 1.0
 4000 2.68 4.46 0.5 1.61 4.29 0.5
Chr25a 25 2000 8.38 17.57 2.0 7.22 17.91 1.0
 4000 2.32 14.70 1.0 9.33 16.20 0.5
Dre15 50 2000 0 6.08 2.0 0 4.44 2.0
 4000 0 1.11 2.0 0 1.11 2.0
 4000 0 3.46 0.5 0 3.85 0.5
 4000 0 1.57 1.0 0 3.01 1.0
Dre18 50 2000 0 4.04 2.0 0 6.26 1.0
 4000 0 1.63 1.0 0 2.71 0.5
Dre21 50 2000 0 34.61 1.0 0 33.03 1.0
 8000 10.11 33.48 1.0 0 32.47 0.5
Dre24 50 4000 8.59 37.98 2.0 9.60 39.34 2.0
 8000 12.63 35.56 0.25 0 33.38 0.25
Dre28 50 8000 28.15 42.35 1.0 0 39.37 1.0
Tai27e01 25 2000 0 154.20 1.0 0 151.73 1.0
 2000 0 152.35 0.5 0.78 153.67 0.5
 4000 0 137,14 0.5 0 150.66 0.5
Tai27e02 25 2000 1.26 240.05 1.0 0 256.52 1.0
 2000 0 237.42 0.5 0 252.28 0.5
 4000 0 236.18 0.5 0 131.65 0.5
Tai45e01 25 2000 0 167.38 1.0 1.65 135.21 1.0
 4000 0 164.82 0.5 0 131.65 0.5
Tai75e01 5 2000 16.29 130.53 0.5 10.73 69.20 1.0
 10 8000 9.94 122.50 0.25 8.72 94.59 1.0

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

398 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

8. Conclusions

8.1 Discussion

For many instances, specially those from Group (a), the instance order does not sensibly
influence the performance, which is an interesting characteristic of the method. This can be
seen quite well with the instances SkoXX.

Group (b) goes well from the same point of view for the best value found but the average
suffers the influence of high-valued differences when compared to best known value, as it
can be seen with EscXX instances.

Group (c) seems to show failed approaches, probably owing to the presence of many bad
solutions around good ones, local optima at which the algorithm stakes. This should ask for
local approach improvement.

Group (d) seems to show an influence of the arborescence structure in the polynomial
instances ChrXX, which offers difficulties for heuristic algorithms. Owing to the sparsity of
one of their matrices the DreXX instances are also difficult for heuristic methods, despite the
fact that they are also polynomial, as tr(Q*) is an optimal value for them. Finally the staged
TaiXXe0x instances present difficulties associated to the starting points utilized and also to
the easy stacking at local optima. The average values are high owing to the values of these
local optima. With some of these instances the second code was able to find an optimum
value, while thw first was not.

Some time economy can be obtained through the use of more than one solution from novsol
list, but it depends on the instance structure, as for some of them it is frequently difficult to
obtain more than one positive difference. The difference in processing time between the two
codes corresponds to this economy. The taboo blocking seems to be at least as efficient as
the single blocking to avoid path return.

8.2 Further developments

Different restart approaches could be designed: for example, to use the rosace building
functions to expand it in order to get a solution set for choosing a restart point. This could
eventually give better chances of finding good restarts, specially if we could detect directions
of inversion reduction which could be used to build a variable neighborhood.

We could also imagine the use of a path-relinking strategy using a set of good solutions
obtained from a test or from three tests run in parallel. This last strategy would present the
advantage of producing again three solutions which could be used to continue the process the
same way. The speed could be improved by using parallelism on rosace exploration.

Acknowledgements

This work belongs to a research project developed within the Group of Graphs, Combinatorics
and Operations Research Applications from COPPE/Federal University of Rio de Janeiro
(UFRJ). We are indebted to COPPE/UFRJ and to the National Council for Scientific and
Technological Development (CNPq), whose sponsorship was essential for the consecution of
the stage at the PRISM Laboratory, University of Versailles at St. Quentin-en-Yvelines,

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 399

where we developed the basic work from where this paper was written. We are also indebted
to the colleagues of PRISM who gave support to our work, specially Catherine Roucairol,
Van-Dat Cung, Adriana Alvim and Thierry Mautor. Finally, we are grateful for the very
useful criticism and suggestions from the anonymous referees.

References

[Ab84] Abreu, N.M.M. (1984). An algebraic and combinatorial study of the quadratic
assignment problem on the sense of Koopmans and Beckmann (in Portuguese).
D.Sc. Thesis, COPPE/UFRJ.

[AB63] Armour, G.C. & Buffa, E.S. (1963). Heuristic algorithm and simulation approach to
relative location of facilities. Man. Sci., 9, 294-309.

[ABQG02] Abreu, N.M.M.; Boaventura Netto, P.O.; Querido, T.M. & Gouvêa, E.F. (2002).
Classes of quadratic assignment instances: isomorphism and difficulty measures using a
statistical approach. Discr. Appl. Maths., 124, 103-116.

[AHS01] Arkin, E.M.; Hassin, R. & Sviridenko, M. (2001). Approximating the maximum
quadratic assignment problem. Inf. Proc. Lett., 77(1), 13-16.

[An96] Anderson, E.J. (1996). Mechanisms for local search. EJOR, 88, 139-151.

[AQB99] Abreu, N.M.M.; Querido, T.M. & Boaventura-Netto, P.O. (1999). RedInv-SA:
A simulated annealing for the quadratic assignment problem. RAIRO Opns. Res., 33,
249-273.

[AOT00] Ahuja, R.; Orlin, J.B. & Tivari, A. (2000). A greedy genetic algorithm for the
quadratic assignment problem. Comp. Opns. Res., 27, 917-937.

[BAV62] Buffa, E.S.; Armour, G.C. & Vollmann, T.E. (1962). Allocating facilities with
CRAFT. Harvard Business Review, 42, 136-158.

[BB83] Burkard, R.E & Bonniger, T. (1983). A heuristic for quadratic boolean programs
with applications to quadratic assignment problems. EJOR, 13, 374-386.

[BÇ95] Burkard, R.E. & Çela, E. (1995). Heuristics for biquadratic assignment problems
and their computational comparison. EJOR, 83(2), 283-300.

[Br84] Bruijs, P.A. (1984). On the quality of heuristic solutions to a 19 x 19 quadratic
assignment problem. EJOR, 17, 21-30.

[Bu91] Burkard, R.E. (1991). Locations with spatial interactions: the quadratic assignment
problem, Discrete Location Theory. John Wiley & Sons, New York, 387-437.

[BR94] Battiti, R. & Tecchiolli, G. (1994). The reactive tabu search. ORSA J. Comp.,
126-140.

[Be68] Berge, C. (1968). Principes de combinatoire. Dunod, Paris.

[Be73] Berge, C. (1973). Graphes et hypergraphes. 2ème édition. Dunod, Paris.

[BKR97] Burkard, R.E.; Karisch, S.E & Rendl, F. (1997). QAPLIB – A quadratic
assignment problem library. J. Global Opt., 10, 391-403.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

400 Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003

[Bo01] Boaventura-Netto, P.O. (2001). Graphs: theory, models, algorithms (in Portuguese).
Ed. Edgard Blucher, São Paulo.

[CMMT97] Cung, V-D; Mautor, T.; Michelon, P. & Tavares, A. (1997). A scatter search
based approach for the quadratic assignment problem. Proc. IEEE Int. Conf. on
Evolutionary Computation, 165-169.

[Çe98] Çela, E. (1998). The quadratic assignment problem. Kluwer, Dordrecht.

[DHT02] Drezner, Z.; Hahn, P. & Taillard, E. (2002). A study of quadratic assignment
problem instances that are difficult for meta-heuristic methods. Invited for submission
to Ann. Opns. Res.: State of the Art and Recent Advances in Integer Programming.
Available at Internet: <http://www.seas.upenn.edu/~hahn/new_instances.html>.

[GP66] Gavett, J.W. & Plyter, N.V. (1966). The optimal assignment of facilities to locations
by branch-and-bound. Opns. Res., 14, 210-232.

[GY02] Gutin, G. & Yeo, A. (2002). Polynomial approximation algorithms for TSP and
QAP with a factorial domination number. Discr. Appl. Maths., 119(1-2), 107-116.

[Ka68] Kaufmann, A. (1968). Introduction à la combinatorique et ses applications.
Dunod, Paris.

[KÇCE00] Karisch, S.E.; Çela, E.; Clausen, J. & Espersen, T. (2000). A dual framework for
lower bounds of the quadratic assignment problem based on linearization. SFB Rep.
120, Technical University of Graz / Tech. Rep. IMM-REP-1998-02, Department of
Mathematical Modeling, Technical University of Denmark.

[LB01] Loiola, E.M. & Boaventura-Netto, P.O. (2001). A neighbouring structure for the QAP
(in Portuguese). An. XXXIII SBPO, 1288-1297, Campos de Jordão, Brazil, novembre.

[Lo00] Loiola, E.M. (2000). An algorithm with statistical parameters for the QAP
(in Portuguese). M.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

[LS95] Li, W.-J. & Smith, M. (1995). An Algorithm for Quadratic Assignment Problems.
EJOR, 81, 205-216.

[Ma00] Mautor, T. (2000). Application des métaheuristiques au PAQ. Rapport #2000/15,
Laboratoire PRISM, Université de Versailles à St. Quentin-en-Yvelines.

[MO79] Mirchandani, P.B. & Obata, T. (1979). Algorithms for a class of quadratic
assignment problems. Presented at the Joint ORSA/TIMS National meeting, New Orleans.

[QAB99] Querido, T.M.; Abreu, N.M.M. & Boaventura Netto, P.O. (1999). RedInv-SA:
a simulated annealing for the quadratic assignment problem. RAIRO Opns. Res., 33,
249-273.

[QAPLIB] QAPLIB Home Page: <http://www.opt.math.tu-graz.ac.at/qaplib/>.

[RAB00] Rangel, M.C.; Abreu, N.M.M. & Boaventura-Netto, P.O. (2000). GRASP in the
QAP: an acceptance bound for initial solutions (in Portuguese). Pesq. Operacional, 20,
45-58.

[SWH98] Sarker, B.R.; Wilhelm, W.E. & Hogg, G.L. (1998). One-dimensional machine
location problems in a multi-product flowline with equidistant locations. EJOR, 105(3),
401-426.

Boaventura-Netto – Combinatorial instruments in the design of a heuristic for the quadratic assignment problem

Pesquisa Operacional, v.23, n.3, p.383-401, Setembro a Dezembro de 2003 401

[SWHH95] Sarker, B.R.; Wilhelm, W.E.; Hogg, G.L. & Han, M.-H. (1995). Backtracking
of jobs in one-dimensional machine location problems. EJOR, 85(3), 593-609.

[TB98] Tansel, B.C. & Bilen, C. (1998). Move based heuristics for the unidirectional loop
network layout problem. EJOR, 108(1), 36-48.

[THKG98] Talbi, E.-G.; Hafidi, Z.; Kebbal, D. & Geib, J.-M. (1998). A fault-tolerant
parallel heuristic for assignment problems. Fut. Gen. Comp. Sys., 14(5-6), 425-438.

[TRFR01] Talbi, E.G.; Roux, O.; Fonlupt, C. & Robillard, D. (2001). Parallel ant colonies
for the quadratic assignment problem. Fut. Gen. Comp. Sys., 17, 441-449.

[TS95] Tate, D.E. & Smith, A.E. (1995). A genetic approach for the quadratic assignment
problem. Comp. Opns. Res., 22, 73-83.

[We83] West, D.H. (1983). Algorithm 608: Approximate solution of the quadratic
assignment problem. ACM Trans. Math. Softw., 9, 461-466.

[YSA03] Youssef, H.; Sait, S.M. & Ali, H. (2003). Fuzzy simulated evolution algorithm for
VLSI cell placement. Comp. & Ind. Eng., 44(2), 227-247.

