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Abstract 
 
In this paper we present the optimum sampling size in zero-defect acceptance with rectification 
sampling scheme in the presence of misclassification errors. Its development is based on an economical 
model. The procedures are implemented in a program using the software Matlab and illustrated by an 
example. 
 
Keywords:  zero-defect acceptance sampling; diagnosis errors; cost function; rectification. 
 
 

Resumo 
 
Neste trabalho determinamos o tamanho ótimo amostral em uma amostragem de aceitação zero-
defeitos com retificação na presença de erros de diagnóstico. O desenvolvimento é baseado em um 
modelo econômico. Os procedimentos são implementados no Matlab e ilustrados através de um 
exemplo numérico. 
 
Palavras-chave:  amostragem de aceitação zero defeitos; erros de classificação; função 
custo; retificação. 
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1. Introduction 

Consider manufactured items evaluated by a sampling scheme known as zero-defect 
acceptance with rectification. That is, in T lots, each one having N products, a sample of size 
m is extracted from each. If all sampled items after non-destructive inspection are classified 
as conforming, then the lot is accepted. Otherwise all items (sampled and non-sampled) are 
inspected, the non-conforming ones are rectified (i.e. all non-conforming units may be 
replaced or discarded after 100% inspection) and then the lot is accepted. Such a procedure is 
known as zero-defect sampling with rectification. This type of sampling scheme is frequently 
used when manufacturing costs are very high, for example in the manufacturing of 
semiconductors. Figure 1 illustrates such a procedure. 

 

 
Figure 1 – Acceptance sampling: zero defect with rectification. 

 
Papers about zero-defect sampling with rectification can be found in the literature. We may 
mention the contributions from Hahn (1986), Brush et al. (1990), Greenberg & Stokes 
(1992) and Anderson et al. (2001). In them, the main objective is to present an estimator for 
the number of non-conforming items in such a sampling scheme. Anderson et al. (2001) 
introduced the possibility of misclassification errors in this type of acceptance sampling. 
That means one item is evaluated as non-conforming but in reality it is conforming, or an 
item is classified as conforming but it is in fact non-conforming. About diagnosis errors, 
many authors have made contributions in this direction. For an early example, Johnson et al. 
(1991) pointed out that the diagnosis errors can endanger the performance of an acceptance 
sampling. Minton (1972) provided expressions to analyze the effect of inefficient inspection 
and has proposed corrections on the power of single sampling inspection plans, mainly in 
misclassifications of defectives as non-defectives. Different authors have presented 
methodologies to minimize the impact of diagnosis errors in the acceptance sampling. We 
cite Greenberg & Stokes (1995), Markowski & Markowski (2002), Quinino & Ho (2004) 
and Quinino & Suyama (2002). 
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The use of an economical model to plan acceptance sampling is not a new idea, but it is still 
a subject of great interest as Wetherill & Chiu (1975) pointed out. It was recently used in 
Ferrel & Chhoker (2002) to determine the producer’s tolerance that minimizes the producer’s 
loss and consumer’s loss in a single sampling, with inspection and non-inspection procedures 
using a quadratic function to describe the consumer’s cost. Aminzadeh (2003) actually used 
the Inverse Gaussian distribution as a lifetime model to obtain optimal values for sample size 
and action limit employing economic variable acceptance-sampling plans based on a step-
loss function. Starbird (1997) has specified the condition under which zero-defect with 
rectification is the policy that minimizes the supplier’s expected annual cost. 

In this paper, we consider the determination of an economically optimum sample size m that 
minimizes the cost function in zero-defect acceptance sampling with rectification in the 
presence of misclassification errors. The inclusion of diagnosis errors in the determination of 
sample size in this sampling procedure is a natural extension of the earlier papers mentioned. 
Economical models mentioned in the literature do not include the possibility of the diagnosis 
errors and rectification. The components of cost function include inspection cost, costs due to 
the presence of non-conforming items in accepted lots and costs due to diagnosis errors. 

In Section 2, we introduce the notation and hypothesis considered in this paper. The expected 
cost function and the procedure to determine the optimum value of m is developed in Section 
3. As this probabilistic model of sampling process can be viewed as a Markov chain, the 
description of the absorbing and/or transient states and their transition probability matrices is 
presented in Section 4. The procedure is illustrated by a numerical example in Section 5 and 
we finish this paper with discussions and extensions for future research. 

 

2. Notation and Hypothesis 

Consider a lot with N units and a random sample of m units selected without replacement. 
 is the number of non-conforming units in the lot and it is a binomial random variable 

, with probability 
D
( , )N p π , or it is equal to zero with probability (1 π− ). So the probability 

of all items being conforming (D=0) is given by (1 ) )Np (1π π− + − . This family of 
distributions is flexible enough to show a good fit to observed distributions related to the 
quality of a lot with appropriate choice of the probability π , allowing a simple interpretation 
and leading to a simple theory (Hald, 1981). 

Let: 

1e  →  the probability of a conforming item being classified as non-conforming; 

2e  →  the probability of a non-conforming item being classified as conforming; 

0c  →  the cost to inspect an item; 

1c  →  the cost of a non-conforming item in the accepted lot; 

2c  →  the cost of judging erroneously an item as non-conforming when it is conforming; 

1D  →  the number of actual non-conforming items in the initial sample of size m in the lot; 

2D  →  the number of actual non-conforming items in (N-m) non-sampled items in the lot; 

1D D D= + 2   →  the number of non-conforming items in the lot; 
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1Y  →  the number of items declared non-conforming after inspection in the initial sample of 
size m in the lot; 

2Y  →  the number of items declared non-conforming in (N-m) non-sampled items in the lot 
if the lot were rectified; 

1Y Y Y= + 2

0)

  →  the number of items that would be declared as non-conforming in lot if the 
lot were rectified; 
D1|D   → denotes the conditioned distribution of D1 on D and it is assumed to be 
Hypergeometric (m, D, N). 

 

3. Cost Function 

This Section develops the expected cost function per lot ( ) employing the earlier 
notations and hypothesis from Section 2. The expected cost function is composed of three 
parts. The first one ( ) is related to costs of inspection of m items and the possibility of 
inspecting the (N-m) non-sampled items. The latter is conditioned to the event (Y ) 
(at least one non-conforming item in the m initial inspected items) so, it follows that: 

mE

1
mE

1 0>

1
0 0 1( ) (mE c m c N m P Y= + − > . 

The second component ( ) is due to the possibility of an item being classified as conforming 
when it is non-conforming. Such a result can produce differences in expenses when the lot is 
accepted or when it is rejected in the inspection. Figure 2 illustrates such a procedure. 

2
mE

 

 
Figure 2 – The number of non-conforming when the lot is accepted/rejected. 

 
Thus, resulting in 

[ ] [ ]1 1

2
1 20 0m Y YE c E I D e I D= > = +   

where [ ]I •  denotes an indicator function; ( )E • , the expected value of a random variable. 

The last part ( ) is due to the consequence of classifying an item as non-conforming when 
it is a conforming item. In this case, the lot is rejected, consequently all items inspected and 
there is a chance of it being rectified unnecessarily: 

3
mE

[ ]1

3
2 1 0( )m YE c e E N D I > = −  . 
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So the expected cost ( ) is . Specifically, mE 1 2
m m mE E E E= + + 3

m

1 0>[ ] [ ] [ ]1 10 0 1 1 2 2 10 0( ) ( 0) ( )m Y Y YE c m c N m P Y c E I D e I D c e E N D I= >  = + − > + + + − 
  

[ ] [ ] [ ]1 10 0 1 1 2 2 10 0( ) ( 0) (1 ) ( )Y Yc m c N m P Y c E I D e I D c e E N D I> >



1 0>Y  = + − > + − + + − 
  

[ ] [ ] [ ] [ ]10 0 2 1 1 1 1 2 2 1 1 20( ) ( 0) (1 ) (Yc m c N m c e N P Y c E D c e c e E I D D>



) = + − + > + − − + +   

 (3.1) 

with 

• [ ][ ]{ }1 1 1 1 1( 0) 1 ( 0) 1 ( 0 | ) | (1 ) (1 )mP Y P Y E E P Y D D eπ π> = − = = − = + − − ; 

and [ ][ ] 11

1

min( , )
1 1

1 1 1 2
0 0

( 0 | ) | (1 ) (1 )
m DN

Dm DD N D

D D

D N D
ND m D

E E P Y D D p p e e
N D
m

−−

= =

−  
  −    = = − −    

 
 

∑ ∑  

• [ ]E D Npπ=  

•  = [ ] [ ][ ]
1 1 1 1 10 ( 0 | ) |YE I D E E D P Y D Dπ>  = >  [ ][ ]{ }1 1 11 ( 0 | ) |E E D P Y D Dπ − = ; 

•  as  and  are conditionally 

independent on . 
[ ] [ ] [ ][ ]

1 2 2 1 10 ( 0 | ) |YE I D E D E E P Y D Dπ>  = > 

1D
2D 1( 0P Y > )

with [ ]2 ( )E D N m pπ= − ; 

and 

[ ][ ] 11

1

min( , )
1 1

1 1 1 1 12
0 0

( 0 | ) | (1 ) 1 (1 )
m DN

Dm DD N D

D D

D N D
ND m D

E E D P Y D D p p e e D
N D
m

−−

= =

−  
  −      > = − − −      

 
 

∑ ∑

( | )E • • →with  denoting the conditioned expectation value. 

 

4. Markov Chains in Zero-Defect Acceptance Sampling with Rectification in the 
Presence of Diagnosis Errors 

The processes of sampling and inspection and the decision to accept or reject the lot after the 
inspection presented in Section 3 can be modeled as a non-irreducible Markov chain with 
transition matrix P. The idea consists of sampling a single item systematically each time until 
a total of m units are extracted. The set of states can be denoted by the vector ( , , , , ),s j k t z  
such that s+ j+ k+ t=z; z=0, …, m, are absorbing or transient states. The variable s can be 
viewed as the number of conforming items correctly classified as conforming; j is the 
number of conforming items incorrectly judged as non-conforming; k is the number of non-
conforming items classified as conforming; t  is the number of non-conforming items 
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correctly judged as non-conforming and z the number of items evaluated. As the aim was to 
calculate the probability of a lot being accepted or rejected, the states ( 0j t and z m)= = =

D

1P

 
or  were considered as absorbing. They indicate respectively that the 
inspection procedure of the m items is finished or the lot was accepted or rejected even 
before the m inspections are finished. In this context it is necessary to examine only states for 
which . 

( 1 1j or t= =

j and≤ ≤

( ,  )N p

)

1 1t

π

[

1





→ 

1    1or t

P s
P s
P s
P s
P s
Oth

=

P







[

2

(
(

P s
P s
P s
Ot



→ 

,
( ,
herw

  1  0 or t k= >


P

Consider the probabilities in the transition matrix P conditioned on the random variable . 
 is the transition matrix conditioned on D when it follows a binomial distribution with 

parameters  and  the transition matrix when D=0. The matrix  occurs with 
probability 

1P

2P
 and the matrix  with probability (12P π− ). 

The probabilities in the transition matrices  and , related to the inspected lot are 
respectively: 

1P 2P

]
[ ]
[ ]
[ ]
[ ]

1

2

3

4

( 1, , , , 1) | ( , , , , )  
( , 1, , , 1) | ( , , , , )  
( , , 1, , 1) | ( , , , , )  
( , , , 1, 1) | ( , , , , )  
( , , , , ) | ( , , , , ) 1,         

0

j k t z s j k t z A
j k t z s j k t z A
j k t z s j k t z A
j k t z s j k t z A
j k t z s j k t z if z m or j

erwise

+ + =

+ + =

+ + =

+ + =

= = =

=

 

]
[ ]
[ ]

1

1

1, , 0, 0, 1) | ( , , 0, 0, ) (1 )
1, 0, 0, 1) | ( , , 0, 0, )

, , , ) | ( , , , , ) 1,         1  
0

j z s j z e
j z s j z e
j k t z s j k t z if z m or j
ise

+ + = −

+ + =

= = =

=

 

where 

1 1(1 )
N s

D k
C

N z D k BA e
N z

−

=

− − +
= − ×

−∑ ; 

2 1

N s

D k
C

N z D k BA e
N z

−

=

− − +
= ×

−∑ ; 

3 2

N s

D k
C

D k BA e
N z

−

=

−
= ×

−∑ ; 

and 

4 2(1 )
N s

D k
C

D k BA e
N z

−

=

−
= − ×

−∑ . 
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where 

(1 )D N D

D N D
N k z k

B p p
ND
z

−

−  
  −    = −    

 
 

 

is the probability of a lot containing D non-conforming items and z items being inspected 
with k non-conforming and s conforming ones and 

(1 )
N s

D N D

D k

D N D
N k z k

C p p
ND
z

−
−

=

−  
  −    = −    

 
 

∑  

is the probability of z items being inspected with k non-conforming and s conforming ones. 

The probability of each state after m inspections is given by the row vectors  

and , where  is the vector of the probabilities of initial 
state and the probability is equal to one for the state 

( ) 0m m=1 1P P P

0, 0, 0)t z

( ) 0m =2P P P m
2 ][0 1,0,0......,0=P

( 0, 0,s j k= = =
) ( ),  and  m m

1 2P

= =  and 

equal to zero for other states. Each element of  is associated with one 

state 

0 (P P

( , , , , )s j k t z . The non-null probabilities in row vectors  indicate 
absorbing states and the decision of acceptance or rejection of the lot. 

( )  and  m
1P ( )m

2P

Making , it is possible to calculate easily the probabilities of 
interest, mainly the one related to the acceptance of the lot. For example, summing up the 
probabilities of the absorbing states ( ,

( ) ( ) ( )-m m (1 )π π= 1P P + P m
2

, , , )s j k t z  such that 0,  0  and  j t z m= = =  will 
provide the probability of accepting a lot [This is denoted by P(Y1 =0)]. The probability of 
non-acceptance of a lot is given by the sum of the probabilities of the absorbing states 
( , , , , )s j k t z 1  or  1 j t= =

j
, when  in . States with  will indicate the wrong 

acceptance of the lot and states with 

( )mP
1

0>k
=  indicate that the lot was rejected wrongly. 

It is interesting to observe that the probabilities of a lot being correctly accepted, wrongly 
accepted, correctly rejected and wrongly rejected can be provided employing Markov chain 
properties but this approach is computationally intensive in this context since the number of 
states depends on the sample size m. 

 

5. Determination of the Optimum Sample Size  m

The optimum value of m ( m ) is the one that minimizes (3.1) and it can be obtained by 
direct search substituting values of 0,....,m N=  in (3.1). As N is usually a large number, a 
direct search can be a difficult task, demanding too much time. A limit 1L N≤  is proposed 
to speed up the search. Whether accepting or rejecting the lot, the cost to inspect  m  items 
will be at least c . For the optimum value , this will be . However, if the 0m m 0c m
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inspection is not performed, that is, when 0m = , the expected cost will be 0 1mE Np cπ= =

m

. 

As  then it follows that . So a direct search to find  

must be proceeded for all integer values of m satisfying 
0 mmm c E E =< ≤ 0 1 0/m Np c cπ≤

{ }1 1 0/Np c cπmin ;N≤ =m L . 

0.1m N≤

mE

mE ∆

mE ∆

mE ∆

*
mE /p D Nh = m•

0≤

1m N
• − •

0 2Nc

1 0
•

≤

)

( ) mm b k−−

2
1( )(1e π+ −

(1 )h hp1 1/(1 )e− + −

[ ] [ ]1 2

0 2 1 1

(1 )

c (
h h

h

l p c e p c

Nc e e p

= − +

+ +

[

1 2) (1h e e− − + 2 1) / 1e e− − 1 2(1 )hp e e− − −(1

;

p+

] [ ]1 2

0 1 1

(1 )

c ( (1
h h

h

p c e p

e p e

π π

π

= − +

+ −

a b

a Nb

a b

a b

π

π

π











1 2 )(h e e− −

1 1

0

m mb k

0  and  k

0  and  

,  if 

• •

<

>

≤

1 1(1he p+

0,  if  l 0

0

k 0

 l 0  and  k

− ≥

>

<

>

2 1)) / 1e e e− −

  and  k 0

0

≤ ≤

>

1 2(1 )hp e e− − − −

l

If , the hypergeometric distribution can be approximated by a binomial distribution 
(Johnson, 1994) and this approach simplifies the mathematical modeling. So a new 
expression for , denoted by mE ∆ , can be derived when this approximation is used for the 

random variable D1. In this sense, a new boundary built for  can be employed to search 

for the optimum sample size. To find a boundary for  may not be an easy task; a 

conditioned boundary on  for /p Dh =  will be proposed to simplify the task and then, 
a new limit can be established for  using this result. mE

N

Let  be the cost function of mE ∆  when  and  is its optimum sample 

size. Examining  and after some algebraic manipulation, the 
inequality 

* *
1m mE E• • •∆ = *

mE −−

  (5.1) a b lπ− −

can be stated with 

a c= ; 

b p e= ; 

][
[ ]

2 1 2 1

1 2

( 1)(

(1 ))

e ne e

e e

−

− −
 

−

and 

] [
[ ]

2 1

2

(1 )(1

)

k c e p

e

−

−
 

−

A set of inequalities expressed in (5.2) can be obtained from (5.1) as functions of  k  and . 

  (5.2) 
1

1

1 1

( )

0

0

m

m

m m

l N m

k ,  if  l

l ,  if  l

l Nb k

•

•

• •

− •

−

−

− −

− − −

− ≤

− ≤

− −

And from (5.2), a boundary  for 2L m•  is proposed in (5.3) 
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 2

0 0

log
1

log

log
1

log

log
1

log

m ,  if  l   and  k 0

a
Nkm ,  if  l 0  and  k 0
b

aL
lm ,  if  l 0  and  k 0

b

a
l Nkm ,  if  l 0  and  k 0

b

π

π

•

•

•

•

 = ≤ ≤



 ≤ + ≤ >

→ 
 ≤ + > ≤




+ ≤ + > >


 (5.3) 

Negative values on the right side of the inequality (5.3) mean 0m• = . The expression (5.3) 
indicates that values lower than the boundary will yield * 0mE •∆ ≤ . This indicates the 

existence of one and only one minimum value of  for values lower than the boundary and 
that it is also the global minimum. The limit expressed in (5.3) is conditioned on  and 

examining all possible values of  a new boundary for 

*
mE

hp

hp mE ∆  expressed as 

{ }3 2max ( ) ,   ,   h hL L p p D N= =

3L * *
1m mm

E E E∆ ∆∆
∆

−

,...,D 1

0

N=  can be proposed. This would be for integers 

lower than , ∆ = − ≤ , where m∆  denotes the optimum value. This 

means that there is one and only one extreme value for mE ∆  lower than this boundary and it 

is also the global minimum. Moreover, the condition 0.1m N≤  guarantees a good 
approximation of a hypergeometric distribution by a binomial distribution. So, this additional 
condition must also be verified, that is, if 3 0.1L N≤ . In this case, the boundary  can be 

employed to delimit a minimum for  which will be 
3L

mE m∆ . 

The strategy can be drawn to perform a computational search for the optimum value m ( ) 
for the expression (3.1). If  then search all integers lower than , until 

reaching the minimum value . If  then search all integers lower than 
 until reaching the minimum value. Compare this result with the result of 

search among integers higher than  but lower or equal to . The value of  is the 

lowest. Note that the computational search is performed searching only integer values, 
starting always with the lower one. The flowchart in Figure 3 illustrates the decision process 
described in this section. 

m
}1 0.1L ≤

m

0.1

N

N

}

{ 1 3min ;L L

m

1 0.1L >

{ 3min 0.1 ;N L

N 1L
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Start

L1 ≤ 0.1N

Obtain optimum
value, mo, such that:

mo ≤ min [L1; L3]. Stop
when a minimum

point is found.

Yes

Obtain optimum value
m∆, such that: m∆ ≤
min [0.1N; L3]. Stop

when a minimum
point is found.

Compare m∆ with all
values in [0.1N; L1].
Select the optimum

value mo.

End

No

 
Figure 3 – The decision process of the optimum value. 

 

6. Numerical Example and Discussions 

The example described in this section is based on Hahn (1986), Greenberg (1992), 
Greenberg (1995) and Anderson (2001). Consider lots with N=5000 items, each to be 
inspected by a zero-defect with rectification procedure. In this context consider: 0.1π = ; 

 and  and the following costs: 0.05p = 1 2 0.001e e= = 0 $3.00c = , , 

. The question is to find the optimum value of  ( m ) that allows for 
minimizing (3.1). This value can be found using direct search substituting values as shown in 
the flowchart (Figure 2). According to the earlier results, it indicates a search for integers 

 and . In the first interval, 

1c =

49

$100.00

2 $5c =

0 m≤ ≤

00.00

49

m

0 m1 833L≤ =0.1 500N m= < ≤ ≤ , the optimum 

value was found to be 15 ( ). m

A program using the software Matlab was developed (see Appendix 1) to find the optimum 
value . This program provided as the optimum sample size m 15m =  which corresponds 
to an expected cost of $2360.26. In the absence of diagnosis errors the optimum sample 
increases to 57m =

0.001

, which corresponds to an expected cost of $1707.02. If the sample size 
of were wrongly employed (i.e. discarding misclassifications errors), a serious error 
in cost estimation would result, with the expected cost becoming $2796.50 being 61% over 
the required $1707.02. Note that even small misclassification error probabilities as 

 can significantly alter the expected cost as well as the optimum sample size. 
To corroborate the analytical results, another program was developed using Matlab to 

57=

1 2= =

m

e e

38 Pesquisa Operacional, v.25, n.1, p.29-44, Janeiro a Abril de 2005 



Quinino, Ho & Suyama – Design of economically optimal zero-defect acceptance sampling with rectification when diagnosis errors are present 

simulate a zero-defect with rectification by Monte Carlo simulations with . Five 
hundred thousand runs were used in this simulation and the difference between the expected 
cost and the analytical results was lower than 0.3%. Figure 4 illustrates the behavior of  
as a function of the value of m. 

15m =

mE

m

2

 

 
Figure 4 – Values of m versus expected cost. 

 
A sensitivity analysis was performed to evaluate the behavior of the optimum values of m as 
functions of the parameters. Since all possible scenarios can result in a high number of 
possibilities to examine, and analyzing all of them can become unmanageable, here an 
analysis varying one parameter at a time was conducted. The ranges of the parameters 
explored in this case are 

• ; 00 5c≤ ≤

• ; 10 7c≤ ≤ 00

02
.15

• ; 20 2900c≤ ≤

• ; 10 0.0e≤ ≤

•  and 20 0e≤ ≤

• . 0 1p≤ ≤

The results of this analysis are plotted in Figure 5. It was observed that as  increases  
tends to zero, indicating that the best option is a non-sampling procedure. If c  increases, 

then the value of  tends to zero, which is justified by the fact that m

0c

0m =  results in the 
possibility of a cost  being eliminated. 2c

If  increases, the value of  tends to N since total inspection in a lot decreases 
considerably the number of non-conforming items. This is because the probability of a non-
conforming item being classified correctly is (1

1c m

2e− ) and certainly e2 0.5<  in practical 
situations. 
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If  and  increase, it is not feasible to do sampling with rectification since the amount of 
items wrongly classified will eliminate the benefit of the proposed procedure, which is to 
provide an accepted lot with lower quantity of non-conforming items. 

1e 2e

If ,  since there are only conforming items in the lot. As 0p ↓ 0m ↓ 1p ↑ , . This 
can be justified since the probability to reject the lot alters slightly when  indicating 
that there is no necessity to sample more than one item. 

1m ↓
1>m
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Figure 5 – Optimum values of m versus costs c , c , , , , and . 0 1 2c p 1e 2e

Now using the Markov chain approach and considering a sample size of 15 items ( ), the 
probability of accepting the lot is 0.93227 and to rejecting the lot is 0.06773. Possible routes 
to accept and to reject the lot are listed respectively in Tables 1 and 2. The vectors described 
in these tables are elements of P

m

(m). Such a vector allows the user to verify which absorbing 
states indicate the correct acceptance of the lot or the correct rejection of the lot. With the 
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vector P(m) it is possible to calculate conditional probabilities of interest. If the lot was 
accepted, the probability to be correctly accepted (only conforming items in the sample) is 
0.99996. Similarly, if the lot was rejected, the probability to be correctly rejected (at least 
one non-conforming units in the sample) is 0.78711. These results suggest a tighter 
verification in the rejected lots as an attempt to decrease the number of lots wrongly rejected. 

 
Table 1 – Absorbing states – lot accepted. 

s j k T Z Probability 
15 0 0 0 15 9,3223E-01 
14 0 1 0 15 3,6067E-05 
13 0 2 0 15 1,3301E-08 
12 0 3 0 15 3,0366E-12 
11 0 4 0 15 4,7995E-16 
10 0 5 0 15 5,5628E-20 
9 0 6 0 15 4,8846E-24 
8 0 7 0 15 3,3100E-28 

Sum of the values 9,3227E-01 

 

Table 2 – Absorbing states – lot rejected. 

s J K t z Probability 
0 0 0 1 1 4,9950E-03 
1 0 0 1 2 4,7405E-03 
2 0 0 1 3 4,4990E-03 
3 0 0 1 4 4,2698E-03 
4 0 0 1 5 4,0522E-03 
. . . . . . 
. . . . . . 
. . . . . . 
6 0 7 1 14 5,0000E-30 
5 0 7 1 13 2,0000E-30 
0 1 6 0 7 1,0000E-30 
4 0 7 1 12 1,0000E-30 

Sum of the probabilities 6,7731E-02 

 

Another point of interest is to evaluate the probability of rejecting a lot of only conforming 
items (rp) or the probability accepting a lot of at least one non-conforming unit (ad). The 
probability of observing only conforming units in a lot is given by (1 ) (1 )Npπ π− + −

0N
 but 

usually large lots are preferable (Montgomery, 2001) and (1 )pπ − ≅  is assumed to be 
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true, so the sum of the probabilities indicating acceptance of the lot according to vector 
 is 0.00036 and rejection of the lot according  is 0.015. These values correspond 

respectively to the conditional probabilities of accepting a lot given at least one non-
conforming item in a lot and to of rejecting the lot given only conforming items in a lot. 

( )m
1P ( )m

2P

005
ad =

1 0.e =

Consider the probability of finding only conforming units in a lot approximately equal to 0.9. 
In this case, 0.013rp =  and  but values of  can significantly alter 
these probabilities. For example, 

0.000036ad =

1 2e e
1 and  e 2e

0.= =

ad

, they correspond  and 
. However, it is important to keep in mind that the approach presented here is 

economical and that high values of  and  are strong indications of inadequate 
attributions for the costs. Another plausible solution is to try a semi-economical approach 
sometimes called statistical-economical with the goal of minimizing functions like (3.1) 
restricted to maximum values of  and , for example. 

0.065rp =
0.00171

rp

rp ad

 

7. Conclusions and Final Remarks 

Diagnosis errors can cause a significant impact in determining the optimum sample size in a 
zero-defect with rectification procedure. Even small diagnosis error probabilities, such as 

 and  can significantly alter the value of optimum m ( ), as 
illustrated in this study. Therefore, diagnosis errors must be incorporated in the model and 
evaluated from an economic perspective. 

001 2 0.001e = m

Extensions of this study can be made in two directions. One is to change the initial criteria in 
the sampling inspection for a value other than zero, that is . Another alternative is to 
make repetitive tests to minimize the effect of the diagnosis errors. An item would be 
classified as conforming if the number of conforming independent classifications is higher 
than a specified value a. In this situation, the objective is to determine the optimum values of 
m, the number of the independent repetitive inspections for an item, the value of a and the 
value of c in order to minimize the total expected cost. 

, 0c c ≥
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Appendix 

Use a Matlab Editor to write the files *.m. Run optimum.m the software Matlab. 
% optimum.m 
clear all; 
global c0 c1 c2 pi N e1 e2 
tic; 
c0 = 3; 
c1 = 100; 
c2 = 500; 
pi = 0.1; 
p = 0.05; 
N = 650; 
e1 = 0.001; 
e2 = 0.001; 
L1=ceil(min(N,N*p*pi*c1/c0)); 
L2=ceil(0.1*N); 
L3=ceil(limiteL3(N)); 
if L2 > L1    
    achouparou=1; 
    faixa1=[1:1:min(L1,L3)]; 
    faixa2=[]; 
elseif L2 < L3 
    achouparou=0; 
    faixa1=[1:1:L2]; 
    faixa2=[L2:1:L1]; 
else 
    achouparou=0; 
    faixa1=[1:1:L3]; 
    faixa2=[L2:1:L1]; 
end     
s5=inf; 
s4=1e30; 
i=0 
while i<length(faixa1) & s4<s5 
    i=i+1; 
    s5=s4; 
    m=faixa1(i);  
    progresso(m,faixa1,faixa2); 
    s1=0; s2=0; s3=0; 
    
tbinom=binopdf(0:1:N,linspace(N,N,N+1),linspace(p,p,
N+1)); 
    for D=0:N 
        minimo=min(m,D); 
        D1=0:1:minimo; 
        
thiper=tbinom(D+1)*hygepdf(D1,linspace(N,N,minimo
+1), 
        
linspace(D,D,minimo+1),linspace(m,m,minimo+1)); 
        s1=s1+sum(thiper.*(1-(1-e1).^(m-
D1).*e2.^D1).*D1); 
        s2=s2+sum(thiper.*(1-(1-e1).^(m-D1).*e2.^D1)); 
        s3=s3+sum(thiper.*(1-e1).^(m-D1).*e2.^D1); 
    end 
    Um = 1-(pi*s3+(1-e1)^m*(1-pi)); 
    custo(i) = c0*m + c0*(N-m)*Um + c1*pi*N*p - 
c1*(1-e2)*pi*s1 
     - c1*(1-e2)*pi*(N-m)*p*s2 + c2*N*e1*Um - 
c2*e1*pi*s1 - c2*e1 
     *pi*(N-m)*p*s2; 
    amostra(i)=m; 
    s4=custo(i); 
end 

if achouparou==0 
    for j=1:length(faixa2) 
        m=faixa2(j); 
        progresso(m,faixa1,faixa2); 
        s1=0; s2=0; s3=0; 
        
tbinom=binopdf(0:1:N,linspace(N,N,N+1),linspace(p,p,
N+1)); 
        for D=0:N 
            minimo=min(m,D); 
            D1=0:1:minimo; 
            
thiper=tbinom(D+1)*hygepdf(D1,linspace(N,N,minimo
+1), 
           
linspace(D,D,minimo+1),linspace(m,m,minimo+1)); 
            s1=s1+sum(thiper.*(1-(1-e1).^(m-
D1).*e2.^D1).*D1); 
            s2=s2+sum(thiper.*(1-(1-e1).^(m-
D1).*e2.^D1)); 
            s3=s3+sum(thiper.*(1-e1).^(m-D1).*e2.^D1); 
        end 
        Um = 1-(pi*s3+(1-e1)^m*(1-pi)); 
        custo(i+j) = c0*m + c0*(N-m)*Um + c1*pi*N*p - 
c1*(1-e2)*pi*s1 – 
        c1*(1-e2)*pi*(N-m)*p*s2 + c2*N*e1*Um - 
c2*e1*pi*s1 - 
        c2*e1*pi*(N-m)*p*s2; 
        amostra(i+j)=m; 
    end 
end 
amostra=[0 amostra] 
custo=[N*p*pi*c1 custo] 
[Minimo, pos]=min(custo); 
Optimum=amostra(pos); 
clc; 
fprintf('%60s\n','*******************************
*********************************************
*********'); 
fprintf('%60s\n','                                          Result'); 
fprintf('%50s\n','*******************************
*********************************************
**********'); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %10.6f\n','Expected Cost                 = 
',Minimo); 
fprintf('%40s\t %6.0f\n',' m optimum                     = 
',Optimum); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %4.6f\n',' Time (min)                    = 
',toc/60); 
fprintf('%2s\n','  '); 
fprintf('%50s\n','*******************************
*********************************************
*********'); 
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