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Abstract 
 
This paper deals with the container loading problem which involves the selection of a subset of boxes, 
each box with a given volume, such that they fit in a single container and maximize its volume 
utilization subject to orientation and stability constraints. We propose a multi-start random constructive 
heuristic with a load arrangement that is based on maximal cuboids that fit in given empty spaces. Each 
instance is adaptively evaluated by a set of criteria, and at each step of the construction process one 
maximal cuboid is chosen probabilistically from a restricted list of candidates. In order to enhance the 
flexibility in the construction of a solution, a probabilistic reduction on such cuboids is allowed. 
Computational tests on several instances from the literature show that the proposed method performs 
better than other approaches. 
 
Keywords:  container loading; cuboid arrangement; multi-start random constructive heuristic. 
 
 

Resumo 
 
Neste trabalho abordamos o problema de carregamento de contêiner que trata da seleção de um 
subconjunto de caixas, cada caixa com um dado volume, de forma a maximizar o volume ocupado de 
um único contêiner sujeito a restrições de orientação e estabilidade. Propomos uma heurística 
construtiva aleatória com múltiplos inícios que utiliza um arranjo de carga baseado em cubóides que 
maximizam a ocupação de espaços vazios. Cada instância é avaliada de forma adaptativa por um 
conjunto de critérios, e em cada passo do processo construtivo um cubóide é selecionado probabilis-
ticamente de uma lista restrita de candidatos. Para aumentar a flexibilidade na construção de uma 
solução, permite-se uma redução probabilística no tamanho dos cubóides. Resultados computacionais 
em instâncias da literatura mostram que o método proposto apresenta um desempenho superior a outros 
enfoques sugeridos na literatura. 
 
Palavras-chave:  carregamento de contêiner; arranjo com cubóides; heurística construtiva 
aleatória com múltiplos inícios. 
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1. Introduction 

This paper addresses the problem of optimizing the loading of rectangular boxes of different 
sizes into a rectangular container of given dimensions so that their edges lie parallel to the 
edges of the container and no two items overlap. This is one of the problems with numerous 
applications in the cutting and packing industry and a general classification of such problems 
is provided by Dyckhoff (1990). The problem is particularly important in companies whose 
logistic activities involve storage, distribution and/or collection of goods, for a better space 
utilization allows reduction of cost and time in loading and unloading containers. 

Three-dimensional cutting and packing problems are extensions of their one-dimensional 
counterparts, and therefore belong to the NP-hard class. This implies that most likely optimal 
methods are not able solve real problems in a reasonable time, and for this reason the 
literature on optimal methods and approximate algorithms is scarce, whereas the literature on 
heuristic methods is fairly vast. 

Chen et al. (1995) propose a mixed integer linear programming for the problem of loading 
multiple containers. In addition to constraints that avoid overlapping, constraints that control 
the weight imbalance along one of the dimensions are also modeled. The model is tested on 
one instance with one container and six boxes. Lai et al. (1998) propose a graph-based model 
for the loading problem with multiple costumers orders such that cargoes belonging to the 
same costumer are packed together in the container. An exact algorithm and a heuristic are 
proposed for solving the model. Martello et al. (2000) propose a branch-and-bound 
algorithm for loading a single container, which is then used in an exact algorithm for the 
three-dimensional bin packing. Hifi et al. (2004) suggest two optimal algorithms for solving 
unconstrained three-dimensional cutting problems, in which there is an unlimited quantity of 
pieces of each type to be cut. 

Heuristic approaches represent viable alternatives to obtain good solutions for practical 
problems in a reasonable time. Pisinger (2002) classifies heuristic approaches according to 
the loading building pattern, namely wall building, stack building, guillotine cutting, and 
cuboid arrangement. 

The wall building approach constructs vertical or horizontal layers which reduce the solution 
space and allows the use of simple data structure in the implementation of algorithms. Such 
an approach was introduced by George & Robinson (1980) who suggested a sophisticated 
constructive heuristic based on vertical layers such that spaces not occupied in a layer can be 
used in subsequent layers. The ideas proposed by George & Robinson (1980) are the base for 
heuristics developed by Bischoff & Marriot (1990), Gehring et al. (1990), Bortfeldt & 
Gehring (2001), Pisinger (2002), Cecílio & Morabito (2004) and Moura & Oliveira (2005). 
Bischoff et al. (1995) and Lim & Zhang (2005) use horizontal layers in order to build the 
loading pattern. 

The stack building approach allows the decomposition of the original problem into two 
subproblems: the three-dimensional problem of packing the boxes into suitable stacks and 
the two-dimensional problem of locating the stacks at the floor of the container. A stack is 
built from the selection of a base box that is positioned at the floor of the container. The next 
box that is placed in the stack must have its base fully supported by one or more the boxes 
that lie below it, as shown in Figure 1. This approach favors the treatment of weight 
constraints, but in general gives rise to loading patterns with poor horizontal stability, and 
when the cargo is weakly heterogeneous it results in a low utilization of the container space. 
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The use of this approach can be found in the heuristics proposed by Haessler & Talbot 
(1990), Gehring & Bortfeldt (1997). 
 

 
Figure 1 – Example of stack packing. 

 
A guillotine cut is a constraint imposed to the problem, i.e., each cut on any parallelepiped 
produces two new parallelepipeds. In the guillotine cutting approach all boxes can be 
distinguished as a sequence of guillotine cuts. Hassamontr (2003) develops a software tool 
for three-dimensional cuts in a wooden furniture industry. Morabito & Arenales (1994) 
propose a heuristic which makes use of guillotine cuts as a strategy to obtain competitive 
results compared to non-guillotine cuts. 

In the cuboid arrangement, the container is filled by homogeneous blocks made up of boxes 
of the same type and with identical orientation. Bortfeld & Gehring (1998) propose a 
heuristic that makes use of local arrangements with one or two blocks. A parallel version of 
this heuristic is suggested in (Bortfeldt et al., 2003). Eley (2002) points out that the ease of 
arrangement and lower complexity in terms of load bearing strength are some of the 
advantages of this approach. 

Ngoi et al. (1994) develop a spatial representation technique to model the loading process 
which allows the evaluation of all potential placement locations. Such a representation is 
used by Bischoff & Ratcliff (1995), Chien & Deng (2004) and an adaptation of the 
representation is utilized by Bischoff (2006). Lim et al. (2003) propose a heuristic in which 
the walls of the container are used as the ground to build up a load arrangement, called multi-
faced buildup. 

Real life container loading problems are complex and usually other constraints and/or 
objectives must be taken into account, in addition to the overlapping constraint and the 
volume maximization. For example, loading stability and weight distribution are important 
factors in some applications. Bischoff & Ratcliff (1995) list twelve factors that play an 
important role in container loading problems. Gehring et al. (1990) suggest a load 
arrangement that takes into account constraints in weight distribution. Gehring & Bortfeldt 
(1997) address the problem with several constraints, namely, orientation, load bearing, 
maximum weight, stability and weight distribution. Davies & Bischoff (1999) propose a 
heuristic that is able to produce loading arrangements which combine high space utilization 
with an even weight distribution of the cargo. Bortfeldt et al. (2003) and Mack et al. (2004) 
consider constraints of orientation and stability in terms of sections of the cargo that 
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overhang beyond the edge of the box(es) supporting it. He & Cha (2002) consider the sum of 
weighted objectives involving volume maximization, weight maximization and the 
minimization of the height of the gravity center. Bischoff (2006) develops an algorithm for 
tackling problems where the load bearing strength of the cargo is a key factor. 

In this paper we put forward a multi-start random constructive heuristic for the container 
loading problem with a load arrangement that is based on maximal cuboids that can be 
loaded in given empty spaces, such that they fit in a single container and maximize its 
volume utilization subject to orientation and stability constraints. 

At each step of the construction process one maximal cuboid is chosen probabilistically from 
a restricted list of candidates. In order to enhance the flexibility in the construction of a 
solution, we allow a probabilistic reduction on such cuboids. This approach can be viewed as 
a generalization of procedures that load one box at a time and the cuboid approach. The 
paper contains five sections. The following section defines the problem in more detailed 
terms. Section 3 of the paper describes the proposed multi-start heuristic, and in section 4 the 
heuristic performance is tested on standard benchmarks and additional instances suggested in 
the literature. Conclusions are presented in section 5. 

 

2. Problem Description 

The container loading problem involves the selection of a subset of boxes, each box with a 
given utility, such that they fit in a single container and maximize the total utility subject to a 
set of constraints. In this paper the utility of each box is its volume, and constraints of 
concern are orientation and stability. The boxes have k = 1,..., 6 orientations and are grouped 
in m types, each type t characterized by three spatial dimensions 1tkd , 2tkd , 3tkd , a volume vt 
and a number qt of boxes, t = 1, ..., m. The set of boxes is said to be homogeneous if it has a 
single type, while it is weakly heterogeneous or strongly heterogeneous if the number of 
types is small or large relative to the total number of items, respectively. Without loss of 
generality the dimensions of the container and of the boxes are positive integers. Constraints 
related to the orientation of the boxes are represented by a set of binary parameters utk , such 
that utk = 1 if the orientation a box of type t and an orientation k is allowed and utk = 0, 
otherwise. The stability constraint specifies that all loaded boxes are fully supported by the 
container floor or one or more the boxes. 

In order to locate boxes in the container, consider a coordinate system within it such that 
when the container is viewed from the front, its origin is the bottom left corner of the 
container back, and the three coordinates refer to positions along the length, width and 
height, in that order. An empty space i in the container corresponds to a parallelepiped of 
dimensions i i iX Y Z× ×  and volume vei, whose coordinates (xi, yi, zi) are associated to its 
lower left back vertex. When the container is empty, there exists a single empty space with 
the container dimensions and coordinates (0, 0, 0). 

Figure 2 shows that for each box placed in the container, three new empty spaces are created: 
the depthwise, widthwise, and heightwise spaces. The intersection space of the depthwise 
and widthwise empty spaces is not considered as an empty space since it is contained in 
these spaces. An empty space is discarded if no unloaded box fits into the space. 
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Figure 2 – Spaces generated by the loading of one box. 

 
The proposed heuristic makes use of an adaptation of the spatial representation suggested by 
Ngoi et al. (1994), in which a two-dimensional matrix represents a view from the top of the 
container and contains cells that correspond to the height of potential loading surfaces. The 
search for available loading spaces amounts to scanning this matrix for contiguous surfaces 
at the same height. The adaptation is similar to that proposed by Bischoff (2006). The spatial 
representation technique provides excellent flexibility in generating the packing sequence 
and in identifying all potential placement locations, unlike the wall approach building used in 
several heuristics. In this paper, the identification of empty spaces in the container is 
performed in a single direction, from backward to forward, and in both directions, from 
backward to forward and from forward to backward. 
Figure 3 illustrates an example of such a representation for a container with dimensions 
90 cm 120 cm 100 cm× ×  and two boxes of dimensions 50 cm 35 cm 30 cm× ×  (box 1) and 
38 cm 40 cm 23 cm× ×  (box 2), with coordinates (0,0,0)  and (0,35,0) , respectively. The 
first row and first column of the matrix contain the values of the projections of all vertical 
box/container edges onto the two horizontal axes, with the exception of cell (1, 1) that 
represents the height of the container. The figures of 35, 75 and 120 in row 1 correspond to 
the width of box 1, the sum of the widths of the two boxes, and the container width 
(projections of the edges onto the y axis). Analogously, the figures of 38, 50 and 90 represent 
the length of box 2, the length of box 1 and the container length (projections of the edges 
onto the x axis). The remaining cells correspond to the heights of the surfaces: cells (2, 2) 
and (3, 2) correspond to the height of box 1 and cell (2, 3) represents the height of box 2. 
 

 

 

 

 

 

 

 

Figure 3 – Representation of loading surfaces. 
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38 23 30
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50 0 30 0 

90 0 0 0 

Matrix of surfaces 
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3. A Multi-Start Randomized Constructive Heuristic 

In this paper we propose a multi-start constructive heuristic for the container loading 
problem. Multi-start heuristics have been used in combinatorial optimization since the 
seminal paper by Lin & Kernighan (1973) for the symmetric traveling salesman and they 
represent a strategy to achieve search diversification in the solution space. One of the most 
well known multi-start methods is the greedy random adaptive search procedure (GRASP), 
which was introduced by Feo & Resende (1995). GRASP is a meta-heuristic that has been 
applied with success to solve a variety of combinatorial problems (Festa & Resende, 2004), 
and enhancement techniques to the basic GRASP are discussed in Resende & Ribeiro 
(2003). Each GRASP iteration consists of two phases: construction and local search. The 
construction phase builds a feasible solution by probabilistically selecting the next element to 
be incorporated in a partial solution from a restricted candidate list (RCL) composed of the 
best elements, as measured by a greedy function. Local search is then applied to the 
constructed solution until a local optimum is found. This process is repeated for a number of 
iterations, and the best local optimum is selected. 

The proposed heuristic is based only on the construction phase due to the difficulty of 
devising a restricted neighborhood with promising moves that operate directly on the 
constructed solution. To the best of our knowledge, Faroe et al. (2003) is the only work that 
performs a local search directly on the loading solutions for a three-dimensional loading 
problem, which in this case is the three-dimensional bin packing problem. The neighborhood 
of a solution consists of all solutions that can be obtained by translating any single box along 
one of the coordinate axes or to the same position in another bin. In this way, solutions with 
overlapping of boxes are generated and hence the objective is to minimize the total volume 
of the pairwise overlap between boxes. An obvious drawback of this strategy is that the 
orientation of boxes of neighbor solutions does not change. The remaining papers that make 
use of local search for the container loading problem use a codification of the solution, and a 
neighbor is defined by a move applied to the coded solution (Bortfeldt & Gehring, 1998; 
Bortfeldt & Gehring, 2001; Bortfeldt et al., 2003; Moura & Oliveira, 2005). Martí (2003) 
describes the best known multi-start heuristics and also remarks that for some problems it is 
more effective to construct solutions than apply a local search procedure. 

The heuristic has some similar features with the two-step heuristic suggested by Eley (2002), 
which can be summarized as follows. In the first step, a greedy heuristic builds a solution by 
initially sorting the boxes by decreasing volume. All possible empty spaces for stowing the 
next box are examined, and this box is placed in the empty space where the sum of the 
volume of spare spaces that cannot filled by the remaining boxes is minimal. The second step 
of the heuristic consists of a tree search in which the root node represents an empty container 
and each further node that is not a leaf node constitutes a partially filled container. If all 
orientations are permitted for each box type at a given node, then each partial solution is 
branched into 6 m⋅  new partial solutions. A best search strategy is applied, which expands a 
number (a parameter) of nodes that obtained the highest ranking from the evaluation 
function, which is a lower bound derived by filling the remaining space of the corresponding 
partial solution by applying the greedy heuristic. 
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3.1 Heuristic Description 

Cuboids are homogeneous blocks composed of boxes of the same type and orientation. A 
cuboid is represented by a triple tkic = (

tki

xc ,
tki

yc ,
tki

zc ), such that its elements denote the 

number of boxes of type t with orientation k in the coordinates x, y, z, that can be loaded in 
the empty space i. The number of boxes that form a cuboid is given by tkic  = 

tki tkitki

x y zc c c⋅ ⋅ . 

Figure 4 shows a cuboid ctki = (2, 2, 3) with tkic  = 12 boxes of type t and orientation k, with 
two boxes along its length and width and three boxes along its height. A single box is a 
cuboid with representation (1, 1, 1), and the volume of the cuboid is the product of the 
volume of the box type and the number of boxes that make up the cuboid, i.e., t tkiv c⋅ . 

 

 
Figure 4 – A cuboid (2, 2, 3) composed of boxes of the same type and orientation. 

 
Let tkic = (

tki

xc ,
tki

yc ,
tki

zc ) be the largest cuboid formed by boxes of type t and orientation k 

which can be assigned to an empty space i with dimensions i i iX Y Z× ×  and volume ive . The 
number of boxes which determines each dimension of the cuboid tkic  is calculated as 
follows: 

 
3

ˆmin ,z i
tki t

tk

Z
c q

d
  

=   
  

 (1) 

 
2

ˆ
min ,y i t

tki z
tk tki

Y q
c

d c

   
=    

    
 (2) 

 
1

ˆ
min ,x i t

tki z y
tk tki tki

X q
c

d c c

   
=    

    
, (3) 

where ˆtq  denotes the number of boxes of type t that have not been loaded in the container. 

Any cuboid tkic  such that 1 x x
tki tkic c≤ ≤ , 1 y y

tki tkic c≤ ≤ , and 1 z z
tki tkic c≤ ≤  can compose the 

loading pattern. Therefore, the use of cuboids with variable size generates a constructive tree, 
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in which each node generates at most 
6

1 1

m
tkit k

c
= =∑ ∑  child nodes, which is a substantial 

increase relative to the maximum of 6 m⋅  new partial solutions in each node of the tree 
suggested by Eley (2002). In the example of Figure 4, the cuboid (2, 2, 3) generates 12 
nodes. As a result, the search is conducted in a larger solution space, thus providing a more 
flexible approach to tackle weakly and strongly heterogeneous cargoes. At each node a bias 
function is used to prioritize the building of  “good” cuboids. 

The addition of the length with lateral support to the computation of the cuboid prevents a 
large fragmentation of the front space of the container and also improves the horizontal 
stability. 

 
 

 

 

 

 

 

 

 

Figure 5 – Top view of empty spaces for a container with one box. 

 
Figure 5 shows the top view of empty spaces with and without lateral support for a container 
with one box that has a base of 25 cm 30 cm× . The empty space with coordinates  
(0, 30, 0) has the same length as the container, from which the length of 25 cm has lateral 
support. Let x

is  denote the length of an empty space i with lateral support. Then expression 
(3) is modified as follows: 

 
1 1

ˆ
min min , ,tki

x
x i i t

z y
tk tk tki tki

X s q
c

d d c c

      
=       

       
 (4) 

Note that the second term in expression (4) yields the maximum number of boxes that can be 
loaded with lateral support. 

Another strategy employed to reduce the fragmentation of the front space is to discard empty 
spaces that are considered too far from empty spaces that lie further back in the container 
(Verweij, 1996). Formally, let xi and 0x  be the coordinates along the axis x of an empty 
space i and an empty space 0 further back in the container, respectively, and let 

0 01k td  be the 

largest length of the unloaded boxes. Then any empty space that satisfies 
0 00 1i k tx x d− >  is 

considered too far, as illustrated in Figure 6. 

 

25 

30 

Length without support Length with 
support 

empty space 
(0,30,0) 
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Figure 6 – Example of a too far empty space. 

 
Similarly to the approach followed by Bischoff (2006), for each combination of box type, 
orientation and empty space, a candidate cuboid tkic  is evaluated by sets of the six criteria 
that are arranged in decreasing order of importance. 
 

C1. Largest normalized space utilization of the empty space: 

( ) ( ) ( )1 2 3
x y z

i tki kt i tki kt i tki ktad X c d ad Y c d ad Z c d− + − + −  

where 

( )
( )

1                       if  0
1      otherwise, 

D c d
ad D c d

D c d

− =− = 
 −

 

D represents one of the dimensions , ,i i iX Y Z  of the empty space, and c d  denotes the 

respective dimension of the packed boxes 1 2 3, ,x y z
tki kt tki kt tki ktc d c d c d . 

 

C2. Smallest difference between the height of the empty space and the height of the cuboid: 

3
z

i tk tkiZ d c− . 

C3. Largest volume utilization of the empty space: t tki

i

v c
ve

. 

C4. Largest base area: 1 2
x y

tk tki tk tkid c d c . 

C5. Smallest lenghtwise protrusion: x
itk tki id c x+ . 

C6. Empty space with smallest widthwise coordinate: iy . 

 

          further back empty space  

  too far empty space 

                       xi – x0  
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Table 1 – Sets of evaluation criteria. 

Set Criteria 

E1 C1, C2, C5, C6 

E2 C3, C4, C5, C6 

E3 C1, C2, C4, C6 

E4 C3, C2, C4, C6 

 

Table 1 shows four evaluation sets, each one containing four criteria, which are used to 
assess a candidate cuboid. The first criterion in each set is the most important and the 
remainders are tie-breakers. For each instance the most suitable evaluation set is determined 
probabilistically according to the mechanism proposed by Prais & Ribeiro (2000) for 
selecting the parameter that restricts the candidate list in the construction phase of GRASP. 
In the first K  iterations of the heuristic, we collect information about the container volume 
utilization associated to the choice of each evaluation set , 1,2,3,4iE i = , and the 

probabilities are made equal to pi = 1/4. Let *V  denote the best current volume utilization 
and let iV  be the average volume of all solutions found by using the evaluation set 

, 1,2,3,4iE i = . The selection probabilities are periodically revaluated every K iterations, by 

taking 
4

1

/i i j
j

p λ λ
=

= ∑  with *( / )i iV V φλ =  for i = 1, 2, 3, 4. The parameter φ  may assume a 

value greater than one in order to accentuate the difference among iλ , i = 1, 2, 3, 4. 

The τ  best cuboids, as evaluated by the above procedure are ranked from the best to the 
worst in a restricted candidate list (RLC). A cuboid in RLC is then selected with probability 
that is based on its rank ( )r σ  and a bias function that favors the selection toward some 
particular candidates, as suggested by Bresina (1996). Let ( )r σ  denote the rank of an 
element σ  in RLC and let bias( ( )r σ ) represent the bias function. The probability ( )π σ  of 
selecting element σ  is 

 ( ) ( )( )
( )( )

'

'
RLC

bias r
bias r

σ

σ
π σ

σ
∈

=
∑

 (5) 

The number of boxes of the selected cuboid is then reduced probabilistically along the three 
dimensions by means of a bias function that favors values close to zero. Let qb be the 
number of boxes along one dimension and let [ ]0, 1rd qb∈ −  be the reduction number. Then 
the probability of selecting the reduction r along this dimension is given by 

 ( ) 1

' 0

( )

( ')
qb

rd

bias rd
rd

bias rd
π −

=

=

∑
. (6) 
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Figure 7 shows a schematic representation of the steps that compose the proposed container 
loading heuristic. Initially, the empty spaces in the container are identified (a) and from the 
unloaded boxes (b), maximal cuboids are computed (c). After selecting a maximal cuboid, 
probabilistic reductions are applied to such a cuboid (d), and finally the cuboid is loaded (e). 
This procedure is repeated until no additional boxes fit in the container. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Schematic representation of the heuristic. 

 
Figure 8 presents the pseudo-code of the multi-start heuristic algorithm for the container 
loading problem. The variable *V  and the variable iter, which counts the number of 
iterations, are initialized in lines 1 and 2, respectively. The counter is updated in line 4. The 
procedure of choosing a set of evaluation criteria in line 5 is as presented above. Line 6 
invokes the procedure that constructs a solution S. The best current solution (incumbent 
solution) is updated in line 7, and the incumbent solution is returned in line 9. 

 

box types 

(b) 

maximal cuboids 

(c) 

probabilistic reduction in 
the chosen maximal cuboid 
 

(d) 

loading cuboid 

(e) 

identification of empty spaces 
(a) 
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 Procedure multi-start algorithm for container loading 

1 V*← 0 

2 iter ← 0 

3 Repeat 

4  iter ← iter + 1 

5  Criteria ← choose a set of evaluation criteria 

6  S ← Random_Construction (Criteria) 

7  If V* < VS then Sincumbent ← S  End_if 

8 Until stopping condition is  met 

9 Return(Sincumbent) 

Figure 8 – Multi-start heuristic algorithm. 

 
Figure 9 shows the pseudo-code of the random constructive heuristic. The structure that stores 
a solution S and the list of empty spaces are initialized in lines 1 and 2. The construction of a 
solution proceeds while there exist unloaded boxes and empty spaces, as indicated in line 3. 
Lines 4 to 16 correspond to the evaluation of the combination of empty spaces and box types 
with feasible orientations in order to build the RCL. Cuboids are calculated in lines 9, and in 
line 11, the elements of RCL are ordered according to the evaluation criteria. In line 17 an 
element of RCL is selected, in line 18 a reduction is applied to this element, which is then 
added to the partial solution in line 19. The lists of empty spaces and unloaded boxes are 
updated in line 20, while the complete solution in returned in line 22. 

 
 Procedure Random_Construction (Criteria) 

1 S  ← {} 

2 _ _list empty spaces  ← empty spaces of S  

3 While 
1

ˆ 0
m

t
t

q
=

>∑  AND _ _ 0list empty spaces >  do 

4  For i ← 1 to _ _list empty spaces  do 

5   For t ← 1 to m do 

6    If ˆ 0tq >  AND a box of type t fits in the empty space i then 

7     For k ← 1 to 6 do 

8      If the orientation k of Box of type t  is feasible then 

9       Compute the cuboid tkc  according to expressions (1), (2) e (4) 

10      End_if 

11      Update RLC  by using  Criteria 

12     End_for 
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14    End_if 

15   End_for 
16  End_for 

17  Select a cuboid from RLC according to the bias function (5) 

18  Apply reductions  to the selected cuboid by using the bias function (6) 

19  Include the selected cuboid in the solution S  

20  Update _ _list empty spaces  and the number of unloaded boxes 

21 End_while 

22 Return( S ) 

Figure 9 – Algorithm for the random constructive heuristic. 

 

4. Computational Experiments 

The multi-start algorithm was coded in C++ and compiled with version 3.3.3 of the gcc 
compiler with the optimization flag –O3 and computational tests for sets of instances of the 
literature were carried out, unless otherwise stated, on a PC Intel Pentium IV 2.8 GHz with 
512 Mb of RAM. 

If the identification of empty spaces in the container is performed from backward to forward, 
the heuristic version is denoted AAR1 and in case it is carried out from backward to forward 
and forward to backward simultaneously, it is denoted AAR2. Unless otherwise stated, the 
maximum number of constructed solutions is 240. 

From the bias functions suggested by Bresina (1996), we selected the same function in 
expressions (5) and (6) with the form ( ) nbias x x−=  since the best candidate elements in 

RLC have close evaluation values and best reduction values should be close to zero. Let pV  
denote the volume of a partial solution. The exponent n used in expressions (5) and (6) is 
then defined as 

*
1

2

   if  
   otherwise

pn V V
n

n
ρ < ⋅

= 


 

where, ρ = 0,8, 1 2n =  e 2 3n =  for instances with less than eight types of boxes and 1 3n =  e 

2 4n = , otherwise. The remaining parameters were set to τ = 10, K = 100 and φ = 10. 

The reported results for versions AAR1 e AAR2 correspond to the average throughout ten 
runs, with different seeds for the pseudo-random number generator. The performance of the 
multi-start heuristic is compared with that of seventeen heuristics: 
 

•  MA − heuristic AND/OR-graph (Morabito & Arenales, 1994) 
•  BJR − constructive heuristic (Bischoff et al., 1995) 
•  BR − constructive heuristic (Bischoff & Ratcliff, 1995) 
•  BG_1 − genetic algorithm (Gehring & Bortfeldt, 1997) 
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•  BG_2 − tabu search (Bortfeldt & Gehring, 1998) 
•  DB − constructive heuristic (Davies & Bichoff, 1999) 
•  BG_3 − hybrid genetic algorithm (Bortfeldt & Gehring, 2001) 
•  GB − parallel genetic algorithm (Gehring & Bortfeldt, 2002) 
•  E − constructive heuristic with tree search (Eley, 2002) 
•  BGM_1 − sequential tabu search (Bortfeldt et al., 2003) 
•  BGM_2 − parallel tabu search (Bortfeldt et al., 2003) 
•  CM − five constructive heuristics (Cecílio & Morabito, 2004) 
•  CD − constructive heuristic (Chien & Deng, 2004) 
•  MBG − hybrid tabu search/simulated annealing (Mack et al., 2004) 
•  LZ − squeaky wheel optimization (Lim & Zhang, 2005) 
•  MO − GRASP (Moura & Oliveira, 2005) 
•  B − multi-start heuristic (Bischoff, 2006) 

 
The code of Cecílio & Morabito (2004) was used in Tables 2, 3, 4 and 5 to obtain results for 
the heuristic CM. Table 2 shows the results for instances generated according to the scheme 
suggested by Cecílio & Morabito (2004), who also proposed five heuristics that correspond 
to refinements of the approach by George & Robinson (1980). The best result obtained by 
the application of such heuristics to each instance is reported. The numbers in parenthesis in 
the first column represent the number of box types. For all instances, the volume utilization 
provided by the version AAR2 outperforms AAR1, which in turn outperforms CM. 
However, AAR2 spends more computational time, followed by AAR1 and CM. The small 
computational time required by CM can be explained by the identification of a smaller 
number of empty spaces due to the use of vertical walls, and a greedy heuristic that selects 
one of the box types. Recall that algorithms AAR1 and AAR2 do not impose constraints on 
the identification of empty spaces and considers all possible combinations of empty spaces 
and box types for the selection of a cuboid that builds the load arrangement. If the number of 
solutions evaluated by AAR1 and AAR2 is reduced to 60, then the mean computational time 
is lowered to 0.13 seconds and 0.31 seconds, respectively. With this reduction, the mean 
volume utilization becomes 89.56% for AAR1 and 90.20% for AAR2, still maintaining the 
dominance ordering for all instances as mentioned above. 
 

Table 2 – Results for instances of Cecílio & Morabito (2004). 

CM AAR1 AAR2 
Instances 

Vol. (%) Time (s) Vol. (%) Time (s) Vol. (%) Time (s) 
C1 (10) 89.25 0.16 93.81 0.21 94.30 0.45 
C2 (10) 81.05 0.07 87.76 0.13 88.07 0.25 
C3 (10) 90.78 0.18 94.31 0.14 95.06 0.36 
C4 (10) 83.93 0.08 89.51 0.10 89.90 0.19 
C5 (50) 86.56 0.43 91.00 2.02 91.25 4.66 
C6 (50) 72.87 0.18 85.32 0.91 85.49 1.63 
C7 (50) 87.19 0.36 92.39 1.04 92.98 2.69 
C8 (50) 80.35 0.20 91.17 0.56 91.54 1.11 
Mean 84.00 0.21 90.66 0.64 91.07 1.42 
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Table 3 presents the volume utilization percentage for twelve real instances relative to seven 
companies as described by Cecílio & Morabito (2004). The instances are grouped by 
company, for example, instances B-1 and B-2 refer to company B. For eight instances, all 
heuristics find optimal solutions, i.e., solutions in which all boxes are loaded. The heuristics 
AAR1 and AAR2 find an optimal solution for instance G-3, while the heuristic CM finds an 
optimal solution for instance G-1. The heuristic AAR1 obtains the best solutions for 
instances B-1 and G-2, for which optimal solutions are not available. Computational times to 
solve all instances are similar, being of order of hundredths of seconds for CM and tenths of 
seconds for AAR1 and AAR2. 
 

Table 3 – Results for real instances of Cecílio & Morabito (2004). 

CM AAR1 AAR2 
Instances 

Vol. (%) Vol. (%) Vol. (%) 
A     (47) * 86.22 * 86.22 * 86.22 
B-1  (26) 85.56 89.25 88.67 
B-2  (22) * 83.67 * 83.67 * 83.67 
C     (04) * 79.99 * 79.99 * 79.99 
D     (10) * 75.02 * 75.02 * 75.02 
E     (05) * 80.73 * 80.73 * 80.73 
F-1  (05) * 94.23 * 94.23 * 94.23 
F-2  (05) * 92.59 * 92.59 * 92.59 
F-3  (05) * 93.54 * 93.54 * 93.54 

   G-1  (05) # * 99.29 96.51 97.90 
G-2  (04) 98.38 98.98 98.96 
G-3  (09) 89.02 * 89.80 * 89.80 

* Optimal solution 
# We have not been able to reproduce this result with the code of Cecílio & 

Morabito (2004) 
 
A PC Athlon 800 MHz, 512 RAM was used for the execution of computational tests of 
Tables 4 and 5. Table 4 shows the results obtained by the heuristics MA, CM, AAR1 and 
AAR2 for the 80 instances generated by Morabito & Arenales (1994). Such instances refer to 
the unconstrained container involving 5, 10, 20 and 30 types (in parentheses in the first 
column) of boxes with dimensions ranging from 5% to 85% of the container dimensions. The 
heuristic MA suggested by Morabito & Arenales (1994), which was adapted to allow 
rotations (Cecílio & Morabito, 2004), outperforms the remaining heuristics, though at a 
larger computational effort. 

Since several boxes of the 80 instances have dimensions comparable to the container 
dimensions, it is reasonable to adjust the parameters of the bias functions (4) and (5) in order 
to obtain a higher degree of randomness, so that 1 1n =  and 2 4n = . The modified heuristic is 
denoted AAR1*. The stopping criterion now is computational time, which is similar to that 
reported by Morabito & Arenales (1994). Table 5 shows that the heuristics MA and AAR1 
are very competitive and that the version AAR1* yields best solutions in six sets and a better 
mean volume utilization. 
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Table 4 – Results for instances of Morabito & Arenales (1994). 

MA CM AAR1 AAR2 
Instances 

Vol. (%) Time (s) ¥ Vol. (%) Time (s) Vol. (%) Time (s) Vol. (%) Time (s) 
s1 (05) 88.02 10.63 81.50 0.01 86.29 0.16 85.90 0.24 
s2 (05) 93.40 12.81 83.86 0.01 90.78 0.13 90.70 0.18 
s3 (05) 83.54 3.87 82.52 0.01 83.20 0.16 83.09 0.19 
s4 (10) 98.71 40.78 94.73 0.03 97.29 0.16 97.29 0.20 
s5 (05) 95.21 24.49 88.92 0.04 94.20 0.09 94.39 0.13 
s6 (10) 97.17 66.34 94.51 0.01 96.38 0.16 96.46 0.19 
s7 (20) 98.12 127.05 95.61 0.05 97.14 0.29 97.28 0.31 
s8 (30) 98.44 147.33 96.70 0.02 98.16 0.36 98.16 0.43 
Mean 94.08 54.16 89.79 0.02 92.93 0.19 92.91 0.23 

¥ Coded in the Pascal language, Borland 7.0 on a Pentium III 800 MHz with 256 Mb of RAM 

 
Table 5 – New results for instances of Morabito & Arenales (1994). 

MA AAR1 AAR1* 
Instances 

Vol. (%) Time (s) Vol. (%) Time (s) Vol. (%) Time (s) 
s1 (05) 88.02 10.63 88.24 10.00 88.44 10.00 
s2 (05) 93.40 12.81 93.32 12.00 93.59 12.00 
s3 (05) 83.54 3.87 86.05 4.00 86.86 4.00 
s4 (10) 98.71 40.78 98.34 40.00 98.50 40.00 
s5 (05) 95.21 24.49 95.50 24.00 95.48 24.00 
s6 (10) 97.17 66.34 97.36 66.00 97.41 66.00 
s7 (20) 98.12 127.05 98.34 125.00 98.41 125.00 
s8 (30) 98.44 147.33 98.86 145.00 98.89 145.00 
Mean 94.08 54.16 94.50 53.25 94.70 53.25 

 

Table 6 shows comparative results with the heuristic proposed by Chien & Deng (2004) for 
eleven real instances of shipping companies in Taiwan. The heuristic version AAR2 obtains 
best results for all instances with a computational time inferior to 0.3 seconds, and in three of 
the ten runs it yields a solution for instance 10 that fills 100% of the container volume. The 
total container filling is also obtained in one of the ten runs of the heuristic version AAR1 for 
instances 9 and 10. Chien & Deng report computational times between 9.42 and 1,384.43 
seconds. 
 

Table 6 – Results for instances of Chien & Deng (2004). 

Instances 
Heuristic 

1 2 3 4 5 6 7 8 9 10 11 
CD ¶ 83.08 95.22 83.43 87.68 80.49 81.16 91.30 90.55 95.55 93.08 92.02 

AAR1 83.94 97.26 93.29 98.66 83.04 85.25 99.56 92.40 98.09 99.57 97.57 
AAR2 83.94 97.32 94.73 98.64 83.04 85.25 99.74 92.40 99.16 99.82 97.81 

¶ Coded in the Matlab programming language version 6.1 on a Pentium II 350 MHz with 256 Mb 
of RAM 
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Table 7 lists heuristics and metaheuristics from the literature that utilize 700 instances 
generated by Bischoff & Ratcliff (1995) in order to validate their performance. These 
instances are divided into seven test cases BR1-BR7, each case with number of distinct 
boxes types (in parenthesis). Orientation and stability constraints are imposed and the box 
stability limit is set to 2. This implies that for a box of type t with orientation k, 0tku =  if 

( )3 1,2
/ min 2tk jtkj

d d
=

≥ , i.e., orientation k is not allowed if its height is greater than the double of 

one of the base dimensions. The results in this table are presented in increasing order of the 
mean volume occupation over the seven instances. The heuristic version AAR2 obtains best 
results for all test cases followed by the version AAR1. The mean computational times spent 
by AAR2 and AAR1 are 0.29 seconds and 0.14 seconds, respectively. The distinct computers 
used in the execution of the heuristics of Table 7 make it difficult to compare the 
computational time required by them in order to solve the instances. Nevertheless, it is worth 
stressing that the mean time spent by the metaheuristic MO on a Pentium IV 2.4 GHz with 
480 MB of RAM is 33.5 seconds. 

 
Table 7 – Results for instances of Bischoff & Ratcliff (1995). 

Instances 
Heuristic 

BR1(03) BR2(05) BR3(08) BR4(10) BR5(12) BR6(15) BR7(20) 
Mean 

BJR 81.76 81.70 82.98 82.60 8276 81.50 80.51 81.97 
BR 83.79 84.44 83.94 83.71 83.80 82.44 82.01 83.45 
DB 84.10 84.50 85.00 84.70 84.60 83.70 82.70 84.19 
BG_1 85.80 87.26 88.10 88.04 87.86 87.85 87.68 87.51 
CM 89.05 87.40 87.21 86.75 87.09 86.05 84.82 88.34 
E 88.05 88.44 89.23 89.24 88.99 88.91 88.36 88.75 
MO 89.07 90.43 90.86 90.42 89.57 89.71 88.05 89.07 
LZ   87.4   88.7   89.3   89.7   89.7   89.7   89.4 89.13 
AAR1 90.86 90.88 90.94 90.67 90.40 90.14 89.46 90.48 
AAR2 91.73 91.60 91.47 91.06 90.90 90.46 89.54 90.96 

 

Bischoff & Ratcliff (1995) propose a heuristic that is designed to produce patterns which 
combine high space utilization with a high degree of stability, and suggest two measures 
related the stability. Measure 1 is the average number of boxes that support boxes that do not 
lie on the floor (the higher the better), while measure 2 is the average percentage of boxes 
not surrounded on at least three sides (the lower the better). Table 8 presents comparative 
results with six heuristics and metaheuristics that reported results for such measures. With 
regards to measure 1, BJR outperforms the other methods, while AAR1 is superior relative to 
measure 2, due to the cuboid approach. As expected, the performance of AAR2 is worse than 
AAR1, since in the first version the loading is carried out from backward to forward and 
forward to backward simultaneously, which results in empty spaces at the junction of the 
backward and forward fronts. However, this difficulty can be minimized by using a 
procedure of compacting the boxes. 
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Table 8 – Load stability for instances of Bischoff & Ratcliff (1995). 

Instances 

BR1 BR2 BR3 BR4 BR5 BR6 BR7 Heuristic 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 
BJR 2.02   8.50 2.22 11.21 2.20 15.93 2.10 17.51 2.09 21.60 2.04 22.13 1.92 27.07 
BR 1.13 10.36 1.10 14.60 1.08 19.67 1.07 23.53 1.06 26.03 1.06 31.04 1.04 35.99 
BG_1 - 11.00 - 16.00 - 18.50 - 21.50 - 22.50 - 25.00 - 28.50 
CM 1.14   7.57 1.12 10.75 1.10 13.72 1.10 14.99 1.10 16.50 1.10 19.58 1.10 21.76 
E -   9.80 - 13.50 - 18.00 - 20.50 - 21.50 - 22.90 - 26.00 
MO 1.07 11.53 1.10 12.67 1.09 17.75 1.10 20.03 1.10 22.75 1.10 26.50 1.11 28.86 
AAR1 1.15   6.00 1.15   9.22 1.12 10.35 1.11 12.48 1.11 13.70 1.10 15.70 1.08 18.24 
AAR2 1.18 10.77 1.18 13.72 1.15 16.17 1.13 18.09 1.13 19.51 1.12 20.91 1.10 23.91 

 

Table 9 shows results in increasing order of the mean volume occupation obtained by 
additional metaheuristics from the literature for the 700 instances BR1-BR7. The authors of 
the metaheuristics BGM_1, BGM_2 and MBG report only the mean volume occupation for 
fully supported boxes. For this experiment we stipulated computational time as the stopping 
criterion for AAR1 and AAR2. The heuristic version AAR2 obtains best results for all test 
cases followed by the version AAR1, with the exception of test case BR7. Note that the 
proposed approach is more effective for weakly heterogeneous box sets. The time to solve all 
instances of each group is shown in the last line of the table. The mean computational time to 
solve the 700 instances is 52 seconds, and based on data available at http://www.spec.org/ 
cpu2000/results/cfp2000.html we concluded that this time corresponds to approximately 75 
seconds in an Intel Pentium 2 GHz. This computer was used by Mack et al. (2004) who 
report a mean computational time of 205 seconds to solve the 700 instances BR1-BR7. 
 

Table 9 – Additional results for instances of Bischoff & Ratcliff (1995). 

Instances 
Heuristic 

BR1(03) BR2(05) BR3(08) BR4(10) BR5(12) BR6(15) BR7(20) 
Mean 

BG_3 87.81 89.40 90.48 90.63 90.73 90.72 90.65 90.06 
GB 88.10 89.56 90.77 91.03 91.23 91.28 91.04 90.43 
BG_2 92.41 92.33 91.97 91.26 90.40 89.57 88.18 90.87 
B 90.57 90.84 91.43 91.21 91.25 91.04 90.81 91.02 
BGM_1 - - - - - - - 91.60 
BGM_2 - - - - - - - 92.20 
MBG - - - - - - - 92.41 
AAR1 92.58 92.93 92.96 92.70 92.48 92.11 91.53 92.53 
AAR2 93.38 93.25 93.11 92.77 92.51 92.16 91.34 92.64 
Time (s) 6.00 12.00 36.00 60.00 70.00 80.00 100.00 52.00 

 

We have also tested the performance of the proposed heuristic on a real life example reported 
by George & Robinson (1980), which consists of 784 boxes distributed in eight types to be 
loaded in a container with available dimensions in millimeters 5793 2236 2261× × . For the 
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stopping criterion of 240 evaluated solutions, AAR1 and AAR2 produce solutions in which 
all boxes are packed. We have extended this example by increasing one additional box of 
each type. In this case, AAR1 and AAR2 pack all boxes in 5 and 10 executions, respectively. 
When we consider two additional boxes of each type, AAR1 and AAR2 pack all boxes in 3 
executions, respectively. Finally, AAR2 packs 24 additional boxes (three additional boxes of 
each type) in one execution with a container volume utilization of 93.03%. 

 
5. Conclusions 

In this paper we proposed a multi-start random constructive heuristic for loading boxes in a 
single container, with the objective of maximizing its volume utilization subject to 
orientation and stability constraints. Several conclusions can be drawn from the design and 
experiments for the proposed heuristic. Initially, the cuboid arrangement is an effective 
approach, even when dealing with a rather strongly heterogeneous set of boxes. In addition, 
the use of the adaptation of the spatial representation is very important to identify empty 
spaces. Finally, we have learned that a constructive heuristic with a controlled degree of 
randomization coupled with a suitable bias function is competitive and simpler when 
compared with metaheuristics proposed in the literature for this problem. The proposed 
heuristic is fairly robust, has few parameters and it is able to produce high quality solutions 
in short computational time. Further research involves the use of the proposed approach to 
deal with other practical constraints, such weight distribution and limited load bearing 
strength. 
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