
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142

Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009 503

A BRANCH-AND-CUT SDP-BASED ALGORITHM FOR MINIMUM
SUM-OF-SQUARES CLUSTERING

Daniel Aloise*
GERAD and École Polytechnique de Montréal
Montréal, QC, H3C 3A7, Canada
daniel.aloise@gerad.ca

Pierre Hansen
GERAD and HEC Montréal
Montréal, QC, H3T 2A7, Canada
pierre.hansen@gerad.ca

* Corresponding author / autor para quem as correspondências devem ser encaminhadas

Recebido em 10/2008; aceito em 07/2009 após 1 revisão
Received October 2008; accepted July 2009 after one revision

Abstract

Minimum sum-of-squares clustering (MSSC) consists in partitioning a given set of n points into k
clusters in order to minimize the sum of squared distances from the points to the centroid of their
cluster. Recently, Peng & Xia (2005) established the equivalence between 0-1 semidefinite
programming (SDP) and MSSC. In this paper, we propose a branch-and-cut algorithm for the
underlying 0-1 SDP model. The algorithm obtains exact solutions for fairly large data sets with
computing times comparable with those of the best exact method found in the literature.

Keywords: clustering; sum-of-squares; semidefinite programming.

Resumo

Clusterização por soma mínima de distâncias quadráticas consiste em particionar um dado conjunto de
n pontos em k clusters a fim de minimizar a soma das distâncias quadráticas entre os pontos e o
centróide de seus respectivos clusters. Recentemente, Peng & Xia (2005) estabeleceram a equivalência
entre o problema e programação semidefinida 0-1. Neste artigo, um algoritmo branch-and-cut é
proposto para o modelo baseado em programação semidefinida 0-1. O algoritmo obtém soluções exatas
para instâncias reais de grande porte em tempos computacionais comparáveis àqueles do melhor
método exato proposto na literatura.

Palavras-chave: clusterização; soma de distâncias quadráticas; programação semidefinida.

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

504 Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009

1. Introduction

Clustering is a powerful tool for automated analysis of data. It addresses the following
general problem: given a set of entities, find subsets, or clusters, which are homogeneous
and/or well separated (cf. Hartigan, 1975; Kaufman & Rousseeuw, 1990; Mirkin, 1996).
Homogeneity means that entities in the same cluster must be similar and separation that
entities in different clusters must differ one from another.

One of the most used types of clustering is partitioning, where given a set O = {o1,o2,...,on}
of n entities, we look for a partition Pk = {C1, C2,...,Ck} of O into k clusters such that

(i) jC ≠ ∅ for j = 1,…, k ;
(ii)

1 2j jC C∩ = ∅ for j1, j2 = 1,…k and j1 ≠ j2 ;

(iii)
1

k

j
j

C O
=

=∪ .

Many different criteria are used in the literature to express homogeneity and/or separation of
the clusters to be found (see Hansen & Jaumard (1997) for a survey). For instance, one may
desire to maximize the split of a partition, i.e., the minimum dissimilarity between two
entities assigned to two different clusters (Delattre & Hansen, 1980; Florek et al., 1951), or
to minimize the diameter, i.e., the largest dissimilarity between a pair of entities in the same
cluster (Hansen & Delattre, 1978). Among these criteria, the minimum sum of squared
distances from each entity to the centroid of the cluster to which it belongs is one of the most
used. It expresses both homogeneity and separation (see Späth (1980), pages 60-61). The
resulting problem is called minimum sum-of-squares clustering (MSSC) for short. A
mathematical programming formulation of MSSC is as follows:

2

, 1 1

1

min

1, 1, ,

{0,1}, 1, ; 1, .

n k

ij i jx y i j

k

ij
j

ij

x p y

subject to

x i n

x i n j k

= =

=

−

= ∀ =

∈ ∀ = ∀ =

∑∑

∑ …

… …

 (1)

The n entities {o1,o2,…on} to be clustered are at given points pi = (pi
t, t = 1,…,s) of sℜ for

i = 1,…,n; k cluster centers must be located at unknown points s
jy ∈ℜ for j = 1,…,k; the

norm || ⋅ || denotes the Euclidean distance between the two points in its argument in the
s-dimensional space under consideration. The decision variables xij express the assignment of
the entity oi to the cluster j. We assume that the number of entities n is greater than k,
otherwise the problem is trivially solved by locating one cluster center at the position of each
entity.

The problem is also sometimes referred to in the literature as the discrete clustering problem
or the hard clustering problem. Besides, it is well-known as the problem tackled by the
classical k-means clustering heuristic (Forgy, 1965; MacQueen, 1967). From an initial set of
k points viewed as initial centroids (or from an initial partition), k-means proceeds by
(after computing initial centroids, if needed) reassigning the entities to their closest centroids

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009 505

and updating their positions until stability is reached. Although it does not provide the global
optimum solution, k-means is popular due to its simplicity and fast convergence to a local
optimum observed in practice. Moreover, it takes advantage of some mathematical properties
of the MSSC formulation.

If the centroids yj for j = 1,…, k are defined a priori, the condition xij ∈ {0,1} can be replaced
by xij ∈ [0,1], since in an optimal solution for the resulting problem each entity belongs to the
cluster with the nearest center. This is exactly what k-means does after recomputing the
centroids. Besides, for a fixed x, first order conditions on the gradient of the objective
function require that at an optimal solution

1

1

1

() 0, , , . ., , , .

n
t

ij in
t t t i

ij j i j n
i

ij
i

x p
x y p j t i e y j t

x

=

=

=

− = ∀ = ∀
∑

∑
∑

In other words, it states that the optimal cluster centers are always at the centroids of the
clusters. The k-means heuristic recomputes the centroids of the clusters whenever
reassignments are performed, thereby improving the cost of the MSSC solution according to
the optimality condition just mentioned. Because reassignments are performed only if
profitable and the number of partitions is finite, we can conclude that k-means always
converges to a local minimum.

Regarding computational complexity, MSSC is NP-hard in the plane for general values of k
(Mahajan et al., 2009). In general dimension, MSSC is NP-hard even for k = 2 (Aloise et al.,
2009). If both k and s are fixed, the problem can be solved in 1()skO n + time (Inaba et al.,
1994), which may be very time-consuming even for instances in the plane.

Not much effort was devoted to the exact resolution of the problem. To the best of our
knowledge, there are less than a dozen papers published on the topic. Diehr (1973, p. 17)
stated that “Researchers must keep in mind that in most of cases the goals of clustering do
not justify the computational time to locate or verify the optimal solution”. This statement,
however, does not take into account three facts:

• Exact methods are extensively used nowadays to tune or discover pitfalls on existing
approximate methods as well as to derive new approaches.

• Computer performance has greatly improved in the last decades.
• Mathematical programming has evolved a lot in 30 years.

Early branch-and-bound algorithms are due to Koontz et al. (1975) and Diehr (1985).
However, these methods are confined to small data sets. It is important to remark that the
hardness of a MSSC instance is not directly measured by the values of n, k, and s. It also
depends on the distribution of points. To illustrate, consider an example of MSSC with n
entities divided into k clusters, all points of which are each time within a unit ball in sℜ .
Assume these balls are pairwise at least n units apart. Then any reasonable branch-and-bound
algorithm will quickly find this partition and confirm its optimality without branching as any
misclassification more than doubles the objective function value. Note that n, k and s can be
arbitrarily large. Recently, Brusco (2006) proposed a repetitive branch-and-bound procedure
which gives bounds containing two components, i.e., an usual one corresponding to distances

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

506 Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009

between already assigned entities and a look-ahead one which corresponds to distances in an
optimal solution for the set of unassigned entities. These much improved bounds led to
efficient solution of some well-known benchmark instances, particularly when the number of
clusters is small.

We can still select from the literature a column generation method proposed by du Merle
et al. (2000) which transfers the complexity of the MSSC to the resolution of the pricing
problem: an unconstrained hyperbolic problem in 0-1 variables with a quadratic numerator
and linear denominator. It is solved approximately by Variable Neighborhood Search (VNS)
(Mladenović & Hansen, 1997; Hansen & Mladenović, 2001) up to the moment that
optimality must be checked by means of a Dinkelbach’s-like algorithm (Dinkelbach, 1967).
This algorithm clustered exactly, for the first time, several data sets, including the famous
Fisher’s 150 iris (Fisher, 1936). Xia & Peng (2005) casted the MSSC as a concave
minimization problem and adapted Tuy’s cutting plane method (Tuy, 1964) to solve it. In
their paper, good approximate results are reported for a version where the cutting plane
algorithm is halted before global convergence. Unfortunately, some further computational
experiments of ours showed that this approach can only solve exactly fairly small instances.

The hardest task while devising exact algorithms for MSSC is to compute good lower
bounds in a reasonable amount of time. Sherali & Desai (2005) proposed to obtain such
bounds by linearizing the model via the reformulation-linearization technique (Sherali &
Adams, 1999), claiming to solve instances with up to 1,000 points by means of a branch-
and-bound algorithm. However, their algorithm was investigated in further detail by Aloise
& Hansen (2008) and shown to require a very large computing time already for small real
data sets.

Recently, Peng & Xia (2005) used matrix arguments to model MSSC as a so-called 0-1
semidefinite programming (SDP) which can be further relaxed to convex SDP or to linear
programming. The branch-and-cut algorithm proposed here exploits the linear relaxation of
the underlying 0-1 SDP model in order to obtain tight lower bounds for MSSC.

The paper is organized as follows. Section 2 shows the results of Peng & Xia (2005) on the
equivalence between MSSC and 0-1 SDP as well as on proposing valid inequalities for the
problem. In Section 3, our branch-and-cut algorithm is presented. Finally, computational
results and conclusions are given in Section 4.

2. Equivalence of MSSC to 0-1 SDP

In general, SDP refers to the problem of minimizing a linear function over the intersection of
a polyhedron and the cone of symmetric and positive semidefinite matrices (Vandenberghe
& Boyd, 1996). The canonical SDP has the following form:

min ()
() . . () 1,...,

0
i i

Tr WZ
SDP s t Tr B Z b for i m

Z

⎧
⎪ = =⎨
⎪⎩

where W and Bi for i = 1,…, m are matrices of coefficients, ()Tr ⋅ denotes the trace of the
matrix, and 0Z means that Z is positive semidefinite. If the latter is replaced by the
constraint 2Z Z= , then the following problem is obtained

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009 507

2

min ()
(0 1) . . () 1,...,

,
i i

T

Tr WZ
SDP s t Tr B Z b for i m

Z Z Z Z

⎧
⎪− = =⎨
⎪ = =⎩

It is called 0-1 SDP due to the similarity of the constraint 2Z Z= to the obvious constraints
on binary integer programming variables (see e.g. Boole (1854); Fortet (1959)). Moreover,
the eigenvalues of matrix Z are equal to 0 or 1.

From Huygens’ theorem (see e.g. Edwards & Cavalli-Sforza (1965)), the MSSC objective
function aforementioned can be rewritten as

1
2

2 1 1

1 1 1

n n

ij j in k k
i i

ij i j
i j j j

x x p p
x p y

C

−

= = +

= = =

−
− =

∑ ∑
∑∑ ∑

A A
A ,

Then, by rearranging it, the MSSC cost function can be expressed by
1

2 2

121 1

1 1 1 1
1

2

1

1 1

() ,

n n
n

ij j ik n k ij iii i
in n

j i j ijiij
i

n
k ij iiT

p p n
j iji

x x p p x p
p

xx

x p
Tr W W

x

−

== = +

= = =
=

=

=

=
=

−
= −

= −

∑ ∑ ∑
∑ ∑ ∑

∑∑

∑
∑

∑

A A
A

where nxs
pW ∈ℜ is the matrix whose i-th row is the vector pi. These matrix arguments were

used by Zha et al. (2002) and Steinley (2007) in order to look for orthonormal matrices
which optimize the second term of the expression.

In Peng & Xia (2005), maximization of the second term is shown to be equivalent to
maximizing a 0-1 SDP problem. Their development is based on the definition of a matrix
Z=X (XTX)-1 XT from a feasible assignment matrix X. Thus, the following 0-1 SDP model for
MSSC is obtained

2

min (())

. . , () ,

0, , .

T
p p

T

Tr W W I Z

s t Ze e Tr Z k

Z Z Z Z Z

−

= =

≥ = =

 (2)

Peng & Xia (2005) then proved that any feasible solution Z for this 0-1 SDP model is
necessarily associated to a feasible MSSC assignment matrix X. Therefore, an equivalence
relation among the MSSC formulations (1) and (2) is established. Regarding complexity, the
0-1 SDP model is all linear except for the constraint 2Z Z= .

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

508 Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009

2.1 Valid inequalities for the 0-1 SDP formulation

Peng & Xia (2005) also derived valid inequalities for (2) from a property of semidefinite
positive matrices. Suppose Z a feasible solution for (2). Since Z is semidefinite positive,
it follows that there exists an index 1 1, ,i n∈ … such that

1 1 ,
max 0.i i iji j

Z Z= >

Since 2Z Z= ,
1 1 11

2()i j i ij
Z Z

µ∈
=∑ , where

11 { : 0}i jj Zµ = > . This implies that

1

1
1 1 1

1.i j
i j

j i i

Z
Z

Zµ∈
=∑

From the choice of i1 and the constraint
1 111

1n
i j i jj j

Z Z
µ= ∈

= =∑ ∑ , Peng & Xia (2005)

concluded that

1 1 1 1, .i j i iZ Z j µ= ∀ ∈

If the respective columns and lines associated to the index set µ1 are eliminated, the
remaining matrix is still semidefinite positive with the same aforementioned properties.
Therefore, if the process is repeated, the following valid inequalities are obtained

, , 1, , .i j i iZ Z j k
β β β βµ β= ∀ ∈ = …

3. A branch-and-cut algorithm for the 0-1 SDP formulation

Peng & Xia (2005) have proposed a LP relaxation for the MSSC 0-1 SDP formulation by
removing the constraint that 2Z Z= . Then, valid inequalities are used to strengthen the
model based on the fact that if the pairs of entities oi, oj and oi, oℓ belong to the same
cluster, then oi and oℓ also belong to the same cluster. From the definition of Z, these
relationships imply that

ij j i ii jjZ Z Z Z Z Z= = = = =A A AA .

In their paper, such inequalities are partially characterized by the following ones

, ()

, , ()
ij ii

ij i ii j

Z Z i j pair inequalities

Z Z Z Z i j triangular inequalities

≤ ∀

+ ≤ + ∀A A A

This partial polyhedron characterization was inspired by the work of Lisser & Rendl (2003)
for graph partitioning. Thus, the resulting LP relaxed model is expressed by

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009 509

min (())

. . , () ,
0,

, ,

, , .

T
p p

ij ii

ij i ii j

Tr W W I Z

s t Ze e Tr Z k
Z
Z Z i j

Z Z Z Z i j

−

= =
≥
≤ ∀

+ ≤ + ∀A A A

 (3)

The authors report some results on benchmark instances for which the lower bounds
provided by this LP relaxation are very close to the optimal values. However, they claim that
its resolution is unpractical for large-sized data due to the huge amount O(n3) of triangular
inequalities. We propose here to tackle this limitation via a cutting plane procedure which
adds triangular inequalities only if they are violated.

Although the focus of Peng & Xia (2005) is not on exact methods, the authors suggest a
simple branching scheme. Suppose that for the optimal solution Zr of the LP relaxation there
are indices i and j such that () 0r r r

ij ii ijZ Z Z− ≠ , then one can produce a branch with r r
ii ijZ Z=

and another one with 0r
ijZ = . With this branching scheme, the number of different branches

is limited to
2

(2)nO .

Regarding variable selection, we propose to choose indices i and j as the

,arg max min{ , }r r r
i j ij ii ijZ Z Z− . The reason behind this selection is to choose indices i and j

with the least tendency to assign oi and oj to the same cluster, or to different ones.
Consequently, it is expected to have, in both branches, a considerable impact on the LP
relaxation.

Algorithm 1 summarizes the whole branch-and-cut method. In line 2, the list L of unsolved
problems is initialized with the 0-1 SDP model (2). List L is implemented with a stack data
structure so that a depth-first search is performed while exploring the enumeration tree. In
line 3, the best current solution s* is initialized by VNS which is allowed to execute for one
minute of CPU time.

Lines 4–23 consist of the main loop of the branch-and-cut method which is repeated until the
tree is completely explored. In lines 5–6, a problem P is removed from L, and its relaxation
Pr as in (3) is considered for being solved without its O(n3) triangular constraints. In the loop
of lines 7–10, the relaxed problem Pr is solved via cutting planes until there are no longer
triangular inequalities which are violated. Limited computational experiments showed that
adding the 3,000 most violated cuts is a good choice for the number of cutting planes added
in line 9. Thus, the LP relaxation is kept fairly small.

If Pr is feasible for P in line 11, then due to equivalence between (1) and (2), a feasible
solution s is obtained to (1) from Zr in line 13. If cost(s) is better than cost(s*) then the latter
is updated, where function cost(⋅) returns the cost of a solution to either formulation (1)
or (2). Branching is performed whenever the lower bound Zr is smaller than the current upper
bound cost(s*) in line 18. Consequently, problem P is split into two subproblems in line 20
according to variables selected by the rule of line 19. These subproblems are added to L in
line 20. Finally, the optimal solution s* is returned in line 24 when L is empty.

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

510 Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009

Algorithm 1 – Branch-and-cut SDP-based algorithm for MSSC.

4. Computational Results

In this section we report on the computational experiences with our SDP-based branch-and-
cut algorithm for MSSC. Results were obtained using a Dual Core AMD OpteronTM 2 GHz
architecture and g++ (Option -O3) C compiler. Package CPLEX 10.0 is called to solve with
dual simplex the LP relaxations of the problems generated. In order to better evaluate the
cutting plane procedure (lines 7–10) of the proposed BC-SDP-MSSC algorithm, three
distinct versions of the program were devised:

1. BC-tri adds all pair inequalities a priori and exploits the triangular inequalities cuts as
cutting planes.

2. BC-all exploits both pair inequalities and triangular inequalities as cutting planes.
3. BC-halfp adds a half of the pair inequalities a priori and exploits the remaining ones

as well as the triangular inequalities as cutting planes.

Comparisons were made using some standard problems from the cluster analysis literature
(i. Ruspini’s 75 points in the Euclidean plane (Ruspini, 1970), ii. Späth’s 89 Bavarian postal
codes in three dimensions (Späth, 1980), iii. the synthetic HATCO data set published by
(Hair et al., 1998) consisting of 100 objects in seven dimensions, iv. Fisher’s 150 iris
problem in four dimensions (Fisher, 1936), v. Grötschel and Holland’s 202 European cities
coordinates (Grötschel & Holland, 1991)). To the best of our knowledge, problems (iii) and
(v) were never reported to be solved exactly in the literature.

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009 511

In all tables presented here, the first column gives values of k and the second column gives
optimal objective function values. The third column presents the CPU times spent on solving
the LP relaxation proposed by Peng & Xia (2005) to their 0-1 SDP formulation (recall that
their model includes all inequalities a priori). Remaining columns are associated to CPU
times of exact methods, i.e, the column generation algorithm (CGA) of du Merle et al. (2000)
and the three versions of BC-SDP-MSSC. Twenty iterations were used as stopping condition
to the VNS heuristic that obtains approximate solutions to the pricing problems arising in
column generation. Moreover, a last column is included in the tables to present gap values
between upper and lower bounds obtained at the root node, denoted UB0 and LB0
respectively, which are calculated as (UB0 − LB0)/LB0. The letter ‘c’ indicates that no initial
gap exists, i.e., the problem is already solved by our approach at the root node, without
branching. Otherwise, the number of nodes of the branch-and-cut tree is given in parenthesis.

Table 1 – Ruspini’s data set.

CPU times (seconds) k Opt. Sol.
LP relax. CGA BC-tri BC-all BC-halfp

% gap

2 89337.8 10.48 1.69 3.54 14.33 3.56 c
3 51063.4 13.75 2.62 8.79 15.10 8.34 c
4 12881.0 3.62 1.16 0.69 2.83 0.48 c
5 10126.7 4.80 1.92 0.78 2.91 0.60 c
6 8575.4 10.02 3.80 1.97 3.46 1.03 c
7 7126.2 10.92 4.26 1.20 2.22 0.98 c
8 6149.6 15.97 14.29 8.24 12.67 7.27 0.5 (7)
9 5181.6 15.29 4.87 2.90 4.54 2.87 0.3 (3)

10 4446.3 17.69 4.02 2.08 3.88 2.39 0.3 (3)
20 1721.2 21.15 4.52 0.31 0.41 0.28 c
30 741.8 27.16 3.25 0.17 0.16 0.14 c

Table 2 – Späth’s data set.

CPU times (seconds) k Opt. Sol.
LP relax. CGA BC-tri BC-all BC-halfp

% gap

2 6.02546 1011 129.65 1.44 9.96 150.36 10.78 c
3 2.94506 1011 169.38 6.33 27.33 136.50 27.58 c
4 1.04474 1011 97.81 8.36 31.81 96.61 26.31 c
5 5.97615 1010 420.91 15.00 18.23 53.28 10.07 c
6 3.59085 1010 567.97 5.26 17.88 47.00 13.13 c
7 2.19832 1010 889.99 7.44 38.85 52.35 25.06 c
8 1.33854 1010 927.22 12.52 10.11 18.41 9.04 c
9 8.42375 109 723.69 8.62 8.84 12.36 5.51 c

10 6.44647 109 996.35 8.07 8.02 10.46 4.26 c
20 7.48215 108 578.69 6.80 0.98 0.99 0.74 c
30 1.71392 108 433.77 4.99 0.31 0.34 0.26 c

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

512 Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009

Tables 1–4 suggest the following conclusions:

• The cutting plane algorithms are able to prove optimality of model (2) in less
computing time than solving its LP relaxation with all inequalities added a priori in
87.09% of the instances solved at the root node (indicated by letter ‘c’). When branch
occurs, our branch-and-cut algorithms find optimal integer solutions in less
computing time than solving only the LP relaxation with all inequalities in 8 out of 13
instances.

• Algorithm BC-all is in most of cases outperformed by one of its counterparts. Mainly
for small k, a large amount of pair inequalities are active at the LP optimal solution,
and therefore, exploiting all of them as cutting planes is not a worthwhile strategy.

Table 3 – Fisher’s data set.

CPU times (seconds) k Opt. Sol.
LP relax. CGA BC-tri BC-all BC-halfp

% gap

2 152.3479 9473.85 293.34 166.82 549.28 169.44 c
3 78.8514 2098.29 66.57 512.85 454.70 283.24 c
4 57.2284 1927.25 186.00 301.12 299.40 240.19 c
5 46.4461 2303.65 104.65 152.18 237.36 145.54 c
6 39.0399 2331.69 102.43 141.88 163.32 147.51 c
7 34.2982 2155.89 102.97 1061.16 847.93 742.83 0.0 (7)
8 29.9889 2557.59 106.10 89.92 123.18 108.73 c
9 27.7860 2568.36 122.16 92.19 88.78 70.04 c

10 25.8340 2294.35 110.00 76.47 73.07 59.66 c
20 14.2208 1791.42 137.10 155.75 104.91 87.06 0.0 (5)
30 9.5552 1641.43 91.65 175.87 145.24 155.52 0.1 (23)

Table 4 – HATCO’s data set.

CPU times (seconds) k Opt. Sol.
LP relax. CGA BC-tri BC-all BC-halfp

% gap

2 600.108 73.57 13.95 108.79 101.88 69.68 c
3 506.962 149.82 18.50 158.15 146.19 141.52 c
4 426.602 105.75 34.46 85.39 88.54 68.00 c
5 383.831 155.93 16.21 61.46 80.33 52.56 c
6 344.534 151.85 14.29 188.49 151.39 145.03 0.0 (3)
7 313.582 88.83 18.01 246.91 191.20 181.13 0.1 (5)
8 288.601 105.54 19.04 377.88 378.52 286.67 0.5 (11)
9 264.599 72.32 161.16 421.22 381.70 314.30 0.6 (13)
10 241.128 67.61 132.07 315.99 284.10 217.74 0.4 (15)
20 114.032 21.91 6.73 5.00 6.07 4.15 0.0 (3)
30 62.992 22.78 9.09 2.51 2.72 2.35 0.0 (5)

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009 513

• In 50% of the instances, the best CPU time obtained among our branch-and-cut
algorithms is smaller than that obtained by the column generation algorithm of du
Merle et al. (2000).

• Relaxation (3) provides very good bounds for MSSC since initial gap values are never
larger than 0.6%. Moreover, more than 65% of the tested instances are exactly solved
after considering only the root node of the enumeration. This may be due to the
inclusion of the triangle inequalities in the formulation of the problem. Grötschel &
Wakabayashi (1989) used triangular inequalities within a branch-and-cut algorithm
for partitioning with the sum-of-cliques criterion. Such constraints appear to suffice in
almost all of their computational tests.

• Computing times of the branch-and-cut algorithms does not increase as the number of
clusters k increases. In fact, there is no evident relationship between the complexity of
solving (2) and the value of k. However, performance seems to improve for large
values of k, as shown by the results for data sets (i), (ii) and (iv).

The tests also assessed the quality of the solutions obtained by VNS for MSSC since all
initial upper bounds proved to be optimal.

Table 5 presents results for Grötschel and Holland’s 202 European cities coordinates
(Grötschel & Holland, 1991) whose value of n is the largest among data sets (i–v). Results
show that BC-halfp is able to determine proved minimum sum-of-squares partitions when k
is large, while their performance deteriorates as the value of k decreases. In our tests, the
algorithms were not able to solve instances with k ≤ 8 in less than 12 hours.

Table 5 – Grötschel and Holland’s data set.

CPU times (seconds) k Opt. Sol
BC-halfp

% gap

9 4376.1937 48885.38 0.2 (9)
10 3794.4880 23680.84 0.0 (7)
20 1523.5086 3839.77 0.1 (13)
30 799.3109 1060.77 0.0 (13)

Finally, note that our branch-and-cut approach based on solving LP relaxations of the 0-1
SDP formulation provided by Peng & Xia (2005) can be extended to other related clustering
problems (e.g. normalized k-cut minimization, balanced clustering; see Peng & Wei (2007)
for details).

Acknowledgments

Research of the first author was supported by CAPES/Brazil grant number 2479-04-4.
Research of the second author was supported by NSERC grant number 105574-07, FQRNT
grant 2007-PR-112176 and the Data Mining Chair of HEC Montréal.

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

514 Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009

References

(1) Aloise, D.; Deshpande, A.; Hansen, P. & Popat, P. (2008). NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75, 245-249.

(2) Aloise, D. & Hansen, P. (2008). Evaluating a branch-and-bound RLT-based algorithm
for minimum sum-of-squares clustering. Les Cahiers du GERAD, G-2008-26.

(3) Boole, G. (1854). An Investigation of the Laws of Thought, on Which are Founded the
Mathematical Theories of Logic and Probabilities. Walton and Maberley, London.

(4) Brusco, M. (2006). A repetitive branch-and-bound procedure for minimum within-
cluster sum of squares partitioning. Psychometrika, 71, 347-363.

(5) Delattre, M. & Hansen, P. (1980). Bicriterion cluster analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-2(4), 277-291.

(6) Diehr, G. (April 1973). Minimum variance partitions and mathematical programming.
Paper presented at the National Meetings of the Classification Society, Atlanta, Georgia.

(7) Diehr, G. (1985). Evaluation of a branch and bound algorithm for clustering. SIAM
Journal on Scientific and Statistical Computing, 6, 268-284.

(8) Dinkelbach, W (1967). On nonlinear fractional programming. Management Science, 13,
492-498.

(9) du Merle, O.; Hansen, P.; Jaumard, B. & Mladenović, N. (2000). An interior point
algorithm for minimum sum-of-squares clustering. SIAM Journal on Scientific
Computing, 21, 1485-1505.

(10) Edwards, A. & Cavalli-Sforza, L. (1965). A method for cluster analysis. Biometrics, 21,
362-375.

(11) Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of
Eugenics, VII, 179-188.

(12) Florek, K.; Lukaszewicz, J.; Perkal, H.; Steinhaus, H. & Zubrzycki, S. (1951). Sur la
liaison et la division des points d’un emsemble fini. Colloquium Mathematicum, 2,
282-285.

(13) Forgy, E.W. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability
of classifications. Biometrics, 21, 768.

(14) Fortet, R. (1959). L’algèbre de boole et ses applications en recherche opérationnelle.
Cahiers du Centre d’Études de Recherche Opérationnelle, 1, 5-36.

(15) Grötschel, M. & Holland, O. (1991). Solution of large-scale symmetric traveling
salesman problems. Mathematical Programming, 51, 141-202.

(16) Grötschel, M. & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering
problem. Mathematical Programming, 45, 59-96.

(17) Hair, J.; Anderson, R.; Tatham, R. & Black, W. (1998). Multivariate Data Analysis.
Prentice-Hall, New York.

(18) Hansen, P. & Delattre, M. (1978). Complete-link cluster analysis by graph coloring.
Journal of the American Statistical Association, 73, 397-403.

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009 515

(19) Hansen, P. & Jaumard, B. (1997). Cluster analysis and mathematical programming.
Mathematical Programming, 79, 191-215.

(20) Hansen, P. & Mladenović, N. (2001). J-means: a new local search heuristic for
minimum sum of squares clustering. Pattern Recognition, 34, 405-413.

(21) Hartigan, J. (1975). Clustering Algorithms. Wiley, New York.

(22) Inaba, M.; Katoh, N. & Imai H. (1994). Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering. In: Proceedings of the 10th ACM
Symposium on Computational Geometry, 332-339.

(23) Kaufman, L. & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley, New York.

(24) Koontz, W.; Narendra, P. & Fukunaga, K. (1975). A branch and bound clustering
algorithm. IEEE Transactions on Computers, C-24, 908-915.

(25) Lisser, A. & Rendl, F. (2003). Graph partitioning using linear and semidefinite
programming. Mathematical Programming, Series B 95, 91-101.

(26) MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In: Prooceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability, 2, 281-297, Berkeley, California.

(27) Mahajan, M.; Nimbhorkar, P. & Varadarajan, K. (2009). The planar k-means problem is
NP-hard. Lecture Notes in Computer Science, 5431, 274-285.

(28) Mirkin, B. (1996). Mathematical Classification and Clustering. Kluwer, Dordrecht,
The Netherlands.

(29) Mladenović, N. & Hansen, P. (1997). Variable neighborhood search. Computers and
Operations Research, 24, 1097-1100.

(30) Peng, J. & Wei, Y. (2007). Approximating k-means-type clustering via semidefinite
programming. SIAM Journal on Optimization, 18, 186-205.

(31) Peng, J. & Xia, Y. (2005). A new theoretical framework for k-means-type clustering.
Studies in Fuzziness and Soft Computing, 180, 79-96.

(32) Ruspini, E. (1970). Numerical method for fuzzy clustering. Information Sciences, 2,
319-350.

(33) Sherali, H.D. & Adams, W. (1999). Reformulation-linearization techniques for discrete
optimization problems. In: Handbook of combinatorial optimization [edited by D. Du
and P. Pardalos], Kluwer, 479-532.

(34) Sherali, H. & Desai, J. (2005). A global optimization RLT-based approach for solving
the hard clustering problem. Journal of Global Optimization, 32, 281-306.

(35) Späth, H. (1980). Cluster analysis algorithm for data reduction and classification of
objects. John Wiley & sons, New York.

(36) Steinley, D. (2007). Validating clusters with the lower bound for sum-of-squares error.
Psychometrika, 72, 93-106.

Aloise & Hansen – A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering

516 Pesquisa Operacional, v.29, n.3, p.503-516, Setembro a Dezembro de 2009

(37) Tuy, H. (1964). Concave programming under linear constraints. Soviet Mathematics, 5,
1437-1440.

(38) Vandenberghe, L. & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38,
49-95.

(39) Xia, Y. & Peng, J. (2005). A cutting algorithm for the minimum sum-of-squared error
clustering. In: Proceedings of the SIAM International Data Mining Conference.

(40) Zha, H.; Ding, C.; Gu, M.; He, X. & Simon, H. (2002). Spectral relaxation for k-means
clustering. In: Advances in Neural Information Processing Systems 14 [edited by
T. Dietterich, S. Becker and Z. Ghahramani], MIT Press, 1057-1064.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

