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Abstract 
 
Minimum sum-of-squares clustering (MSSC) consists in partitioning a given set of n points into k 
clusters in order to minimize the sum of squared distances from the points to the centroid of their 
cluster. Recently, Peng & Xia (2005) established the equivalence between 0-1 semidefinite 
programming (SDP) and MSSC. In this paper, we propose a branch-and-cut algorithm for the 
underlying 0-1 SDP model. The algorithm obtains exact solutions for fairly large data sets with 
computing times comparable with those of the best exact method found in the literature. 
 
Keywords:  clustering; sum-of-squares; semidefinite programming. 
 
 

Resumo 
 
Clusterização por soma mínima de distâncias quadráticas consiste em particionar um dado conjunto de 
n pontos em k clusters a fim de minimizar a soma das distâncias quadráticas entre os pontos e o 
centróide de seus respectivos clusters. Recentemente, Peng & Xia (2005) estabeleceram a equivalência 
entre o problema e programação semidefinida 0-1. Neste artigo, um algoritmo branch-and-cut é 
proposto para o modelo baseado em programação semidefinida 0-1. O algoritmo obtém soluções exatas 
para instâncias reais de grande porte em tempos computacionais comparáveis àqueles do melhor 
método exato proposto na literatura. 
 
Palavras-chave:  clusterização; soma de distâncias quadráticas; programação semidefinida. 
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1. Introduction 

Clustering is a powerful tool for automated analysis of data. It addresses the following 
general problem: given a set of entities, find subsets, or clusters, which are homogeneous 
and/or well separated (cf. Hartigan, 1975; Kaufman & Rousseeuw, 1990; Mirkin, 1996). 
Homogeneity means that entities in the same cluster must be similar and separation that 
entities in different clusters must differ one from another. 

One of the most used types of clustering is partitioning, where given a set O = {o1,o2,...,on} 
of n entities, we look for a partition Pk = {C1, C2,...,Ck} of O into k clusters such that 

(i)   jC ≠ ∅   for  j = 1,…, k ; 
(ii)  

1 2j jC C∩ = ∅   for  j1, j2 = 1,…k  and  j1 ≠ j2 ; 

(iii) 
1

k

j
j

C O
=

=∪ . 

Many different criteria are used in the literature to express homogeneity and/or separation of 
the clusters to be found (see Hansen & Jaumard (1997) for a survey). For instance, one may 
desire to maximize the split of a partition, i.e., the minimum dissimilarity between two 
entities assigned to two different clusters (Delattre & Hansen, 1980; Florek et al., 1951), or 
to minimize the diameter, i.e., the largest dissimilarity between a pair of entities in the same 
cluster (Hansen & Delattre, 1978). Among these criteria, the minimum sum of squared 
distances from each entity to the centroid of the cluster to which it belongs is one of the most 
used. It expresses both homogeneity and separation (see Späth (1980), pages 60-61). The 
resulting problem is called minimum sum-of-squares clustering (MSSC) for short. A 
mathematical programming formulation of MSSC is as follows: 

2
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  (1) 

The n entities {o1,o2,…on} to be clustered are at given points pi = (pi
t, t = 1,…,s) of sℜ  for 

i = 1,…,n;  k cluster centers must be located at unknown points s
jy ∈ℜ  for j = 1,…,k; the 

norm || ⋅ || denotes the Euclidean distance between the two points in its argument in the 
s-dimensional space under consideration. The decision variables xij express the assignment of 
the entity oi to the cluster j. We assume that the number of entities n is greater than k, 
otherwise the problem is trivially solved by locating one cluster center at the position of each 
entity. 

The problem is also sometimes referred to in the literature as the discrete clustering problem 
or the hard clustering problem. Besides, it is well-known as the problem tackled by the 
classical k-means clustering heuristic (Forgy, 1965; MacQueen, 1967). From an initial set of 
k points viewed as initial centroids (or from an initial partition), k-means proceeds by 
(after computing initial centroids, if needed) reassigning the entities to their closest centroids 
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and updating their positions until stability is reached. Although it does not provide the global 
optimum solution, k-means is popular due to its simplicity and fast convergence to a local 
optimum observed in practice. Moreover, it takes advantage of some mathematical properties 
of the MSSC formulation. 

If the centroids yj for j = 1,…, k are defined a priori, the condition xij ∈ {0,1} can be replaced 
by xij ∈ [0,1], since in an optimal solution for the resulting problem each entity belongs to the 
cluster with the nearest center. This is exactly what k-means does after recomputing the 
centroids. Besides, for a fixed x, first order conditions on the gradient of the objective 
function require that at an optimal solution 

1

1

1

( ) 0, , , . ., , , .

n
t

ij in
t t t i

ij j i j n
i

ij
i

x p
x y p j t i e y j t

x

=

=

=

− = ∀ = ∀
∑

∑
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In other words, it states that the optimal cluster centers are always at the centroids of the 
clusters. The k-means heuristic recomputes the centroids of the clusters whenever 
reassignments are performed, thereby improving the cost of the MSSC solution according to 
the optimality condition just mentioned. Because reassignments are performed only if 
profitable and the number of partitions is finite, we can conclude that k-means always 
converges to a local minimum. 

Regarding computational complexity, MSSC is NP-hard in the plane for general values of k 
(Mahajan et al., 2009). In general dimension, MSSC is NP-hard even for k = 2 (Aloise et al., 
2009). If both k and s are fixed, the problem can be solved in 1( )skO n +  time (Inaba et al., 
1994), which may be very time-consuming even for instances in the plane. 

Not much effort was devoted to the exact resolution of the problem. To the best of our 
knowledge, there are less than a dozen papers published on the topic. Diehr (1973, p. 17) 
stated that “Researchers must keep in mind that in most of cases the goals of clustering do 
not justify the computational time to locate or verify the optimal solution”. This statement, 
however, does not take into account three facts: 

• Exact methods are extensively used nowadays to tune or discover pitfalls on existing 
approximate methods as well as to derive new approaches. 

• Computer performance has greatly improved in the last decades. 
• Mathematical programming has evolved a lot in 30 years. 

Early branch-and-bound algorithms are due to Koontz et al. (1975) and Diehr (1985). 
However, these methods are confined to small data sets. It is important to remark that the 
hardness of a MSSC instance is not directly measured by the values of n, k, and s. It also 
depends on the distribution of points. To illustrate, consider an example of MSSC with n 
entities divided into k clusters, all points of which are each time within a unit ball in sℜ . 
Assume these balls are pairwise at least n units apart. Then any reasonable branch-and-bound 
algorithm will quickly find this partition and confirm its optimality without branching as any 
misclassification more than doubles the objective function value. Note that n, k and s can be 
arbitrarily large. Recently, Brusco (2006) proposed a repetitive branch-and-bound procedure 
which gives bounds containing two components, i.e., an usual one corresponding to distances 
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between already assigned entities and a look-ahead one which corresponds to distances in an 
optimal solution for the set of unassigned entities. These much improved bounds led to 
efficient solution of some well-known benchmark instances, particularly when the number of 
clusters is small. 

We can still select from the literature a column generation method proposed by du Merle 
et al. (2000) which transfers the complexity of the MSSC to the resolution of the pricing 
problem: an unconstrained hyperbolic problem in 0-1 variables with a quadratic numerator 
and linear denominator. It is solved approximately by Variable Neighborhood Search (VNS) 
(Mladenović & Hansen, 1997; Hansen & Mladenović, 2001) up to the moment that 
optimality must be checked by means of a Dinkelbach’s-like algorithm (Dinkelbach, 1967). 
This algorithm clustered exactly, for the first time, several data sets, including the famous 
Fisher’s 150 iris (Fisher, 1936). Xia & Peng (2005) casted the MSSC as a concave 
minimization problem and adapted Tuy’s cutting plane method (Tuy, 1964) to solve it. In 
their paper, good approximate results are reported for a version where the cutting plane 
algorithm is halted before global convergence. Unfortunately, some further computational 
experiments of ours showed that this approach can only solve exactly fairly small instances. 

The hardest task while devising exact algorithms for MSSC is to compute good lower 
bounds in a reasonable amount of time. Sherali & Desai (2005) proposed to obtain such 
bounds by linearizing the model via the reformulation-linearization technique (Sherali & 
Adams, 1999), claiming to solve instances with up to 1,000 points by means of a branch-
and-bound algorithm. However, their algorithm was investigated in further detail by Aloise 
& Hansen (2008) and shown to require a very large computing time already for small real 
data sets. 

Recently, Peng & Xia (2005) used matrix arguments to model MSSC as a so-called 0-1 
semidefinite programming (SDP) which can be further relaxed to convex SDP or to linear 
programming. The branch-and-cut algorithm proposed here exploits the linear relaxation of 
the underlying 0-1 SDP model in order to obtain tight lower bounds for MSSC. 

The paper is organized as follows. Section 2 shows the results of Peng & Xia (2005) on the 
equivalence between MSSC and 0-1 SDP as well as on proposing valid inequalities for the 
problem. In Section 3, our branch-and-cut algorithm is presented. Finally, computational 
results and conclusions are given in Section 4. 

 

2. Equivalence of MSSC to 0-1 SDP 

In general, SDP refers to the problem of minimizing a linear function over the intersection of 
a polyhedron and the cone of symmetric and positive semidefinite matrices (Vandenberghe 
& Boyd, 1996). The canonical SDP has the following form: 

min ( )
( ) . . ( ) 1,...,

0
i i

Tr WZ
SDP s t Tr B Z b for i m

Z

⎧
⎪ = =⎨
⎪⎩

 

where W and Bi for i = 1,…, m are matrices of coefficients, ( )Tr ⋅  denotes the trace of the 
matrix, and 0Z  means that Z is positive semidefinite. If the latter is replaced by the 
constraint 2Z Z= , then the following problem is obtained 
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2

min ( )
(0 1 ) . . ( ) 1,...,

,
i i

T

Tr WZ
SDP s t Tr B Z b for i m

Z Z Z Z

⎧
⎪− = =⎨
⎪ = =⎩

 

It is called 0-1 SDP due to the similarity of the constraint 2Z Z=  to the obvious constraints 
on binary integer programming variables (see e.g. Boole (1854); Fortet (1959)). Moreover, 
the eigenvalues of matrix Z are equal to 0 or 1. 

From Huygens’ theorem (see e.g. Edwards & Cavalli-Sforza (1965)), the MSSC objective 
function aforementioned can be rewritten as 

1
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Then, by rearranging it, the MSSC cost function can be expressed by 
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where nxs
pW ∈ℜ  is the matrix whose i-th row is the vector pi. These matrix arguments were 

used by Zha et al. (2002) and Steinley (2007) in order to look for orthonormal matrices 
which optimize the second term of the expression. 

In Peng & Xia (2005), maximization of the second term is shown to be equivalent to 
maximizing a 0-1 SDP problem. Their development is based on the definition of a matrix 
Z=X (XTX)-1 XT from a feasible assignment matrix X. Thus, the following 0-1 SDP model for 
MSSC is obtained 

 
2

min ( ( ))

. . , ( ) ,

0, , .

T
p p

T

Tr W W I Z

s t Ze e Tr Z k

Z Z Z Z Z

−

= =

≥ = =

 (2) 

Peng & Xia (2005) then proved that any feasible solution Z for this 0-1 SDP model is 
necessarily associated to a feasible MSSC assignment matrix X. Therefore, an equivalence 
relation among the MSSC formulations (1) and (2) is established. Regarding complexity, the 
0-1 SDP model is all linear except for the constraint 2Z Z= . 
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2.1 Valid inequalities for the 0-1 SDP formulation 

Peng & Xia (2005) also derived valid inequalities for (2) from a property of semidefinite 
positive matrices. Suppose Z a feasible solution for (2). Since Z is semidefinite positive, 
it follows that there exists an index 1 1, ,i n∈ …  such that 

1 1 ,
max 0.i i iji j

Z Z= >  

Since 2Z Z= , 
1 1 11

2( )i j i ij
Z Z

µ∈
=∑ , where 

11 { : 0}i jj Zµ = > . This implies that 

1

1
1 1 1

1.i j
i j

j i i

Z
Z

Zµ∈
=∑  

From the choice of i1 and the constraint 
1 111

1n
i j i jj j

Z Z
µ= ∈

= =∑ ∑ , Peng & Xia (2005) 

concluded that 

1 1 1 1, .i j i iZ Z j µ= ∀ ∈  

If the respective columns and lines associated to the index set µ1 are eliminated, the 
remaining matrix is still semidefinite positive with the same aforementioned properties. 
Therefore, if the process is repeated, the following valid inequalities are obtained 

, , 1, , .i j i iZ Z j k
β β β βµ β= ∀ ∈ = …  

 

3. A branch-and-cut algorithm for the 0-1 SDP formulation 

Peng & Xia (2005) have proposed a LP relaxation for the MSSC 0-1 SDP formulation by 
removing the constraint that 2Z Z= . Then, valid inequalities are used to strengthen the 
model based on the fact that if the pairs of entities  oi, oj  and  oi, oℓ  belong to the same 
cluster, then oi and oℓ also belong to the same cluster. From the definition of Z, these 
relationships imply that 

ij j i ii jjZ Z Z Z Z Z= = = = =A A AA . 

In their paper, such inequalities are partially characterized by the following ones 

, ( )

, , ( )
ij ii

ij i ii j

Z Z i j pair inequalities

Z Z Z Z i j triangular inequalities

≤ ∀

+ ≤ + ∀A A A
 

This partial polyhedron characterization was inspired by the work of Lisser & Rendl (2003) 
for graph partitioning. Thus, the resulting LP relaxed model is expressed by 
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min ( ( ))
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ij ii
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Tr W W I Z

s t Ze e Tr Z k
Z
Z Z i j

Z Z Z Z i j

−
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≤ ∀

+ ≤ + ∀A A A

 (3) 

The authors report some results on benchmark instances for which the lower bounds 
provided by this LP relaxation are very close to the optimal values. However, they claim that 
its resolution is unpractical for large-sized data due to the huge amount O(n3) of triangular 
inequalities. We propose here to tackle this limitation via a cutting plane procedure which 
adds triangular inequalities only if they are violated. 

Although the focus of Peng & Xia (2005) is not on exact methods, the authors suggest a 
simple branching scheme. Suppose that for the optimal solution Zr of the LP relaxation there 
are indices i and j such that ( ) 0r r r

ij ii ijZ Z Z− ≠ , then one can produce a branch with r r
ii ijZ Z=  

and another one with 0r
ijZ = . With this branching scheme, the number of different branches 

is limited to 
2

(2 )nO . 

Regarding variable selection, we propose to choose indices i and j as the 

,arg max min{ , }r r r
i j ij ii ijZ Z Z− . The reason behind this selection is to choose indices i and j 

with the least tendency to assign oi and oj to the same cluster, or to different ones. 
Consequently, it is expected to have, in both branches, a considerable impact on the LP 
relaxation. 

Algorithm 1 summarizes the whole branch-and-cut method. In line 2, the list L of unsolved 
problems is initialized with the 0-1 SDP model (2). List L is implemented with a stack data 
structure so that a depth-first search is performed while exploring the enumeration tree. In 
line 3, the best current solution s* is initialized by VNS which is allowed to execute for one 
minute of CPU time. 

Lines 4–23 consist of the main loop of the branch-and-cut method which is repeated until the 
tree is completely explored. In lines 5–6, a problem P is removed from L, and its relaxation 
Pr as in (3) is considered for being solved without its O(n3) triangular constraints. In the loop 
of lines 7–10, the relaxed problem Pr is solved via cutting planes until there are no longer 
triangular inequalities which are violated. Limited computational experiments showed that 
adding the 3,000 most violated cuts is a good choice for the number of cutting planes added 
in line 9. Thus, the LP relaxation is kept fairly small. 

If Pr is feasible for P in line 11, then due to equivalence between (1) and (2), a feasible 
solution s is obtained to (1) from Zr in line 13. If cost(s) is better than cost(s*) then the latter 
is updated, where function cost(⋅) returns the cost of a solution to either formulation (1) 
or (2). Branching is performed whenever the lower bound Zr is smaller than the current upper 
bound cost(s*) in line 18. Consequently, problem P is split into two subproblems in line 20 
according to variables selected by the rule of line 19. These subproblems are added to L in 
line 20. Finally, the optimal solution s* is returned in line 24 when L is empty. 
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Algorithm 1 – Branch-and-cut SDP-based algorithm for MSSC. 

 

4. Computational Results 

In this section we report on the computational experiences with our SDP-based branch-and-
cut algorithm for MSSC. Results were obtained using a Dual Core AMD OpteronTM 2 GHz 
architecture and g++ (Option -O3) C compiler. Package CPLEX 10.0 is called to solve with 
dual simplex the LP relaxations of the problems generated. In order to better evaluate the 
cutting plane procedure (lines 7–10) of the proposed BC-SDP-MSSC algorithm, three 
distinct versions of the program were devised: 

1. BC-tri adds all pair inequalities a priori and exploits the triangular inequalities cuts as 
cutting planes. 

2. BC-all exploits both pair inequalities and triangular inequalities as cutting planes. 
3. BC-halfp adds a half of the pair inequalities a priori and exploits the remaining ones 

as well as the triangular inequalities as cutting planes. 

Comparisons were made using some standard problems from the cluster analysis literature 
(i. Ruspini’s 75 points in the Euclidean plane (Ruspini, 1970), ii. Späth’s 89 Bavarian postal 
codes in three dimensions (Späth, 1980), iii. the synthetic HATCO data set published by 
(Hair et al., 1998) consisting of 100 objects in seven dimensions, iv. Fisher’s 150 iris 
problem in four dimensions (Fisher, 1936), v. Grötschel and Holland’s 202 European cities 
coordinates (Grötschel & Holland, 1991)). To the best of our knowledge, problems (iii) and 
(v) were never reported to be solved exactly in the literature. 
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In all tables presented here, the first column gives values of k and the second column gives 
optimal objective function values. The third column presents the CPU times spent on solving 
the LP relaxation proposed by Peng & Xia (2005) to their 0-1 SDP formulation (recall that 
their model includes all inequalities a priori). Remaining columns are associated to CPU 
times of exact methods, i.e, the column generation algorithm (CGA) of du Merle et al. (2000) 
and the three versions of BC-SDP-MSSC. Twenty iterations were used as stopping condition 
to the VNS heuristic that obtains approximate solutions to the pricing problems arising in 
column generation. Moreover, a last column is included in the tables to present gap values 
between upper and lower bounds obtained at the root node, denoted UB0 and LB0 
respectively, which are calculated as (UB0 − LB0)/LB0. The letter ‘c’ indicates that no initial 
gap exists, i.e., the problem is already solved by our approach at the root node, without 
branching. Otherwise, the number of nodes of the branch-and-cut tree is given in parenthesis. 

 
Table 1 – Ruspini’s data set. 

CPU times (seconds) k Opt. Sol. 
LP relax. CGA BC-tri BC-all BC-halfp 

% gap 

2 89337.8 10.48 1.69 3.54 14.33 3.56 c 
3 51063.4 13.75 2.62 8.79 15.10 8.34 c 
4 12881.0 3.62 1.16 0.69 2.83 0.48 c 
5 10126.7 4.80 1.92 0.78 2.91 0.60 c 
6 8575.4 10.02 3.80 1.97 3.46 1.03 c 
7 7126.2 10.92 4.26 1.20 2.22 0.98 c 
8 6149.6 15.97 14.29 8.24 12.67 7.27 0.5 (7) 
9 5181.6 15.29 4.87 2.90 4.54 2.87 0.3 (3) 

10 4446.3 17.69 4.02 2.08 3.88 2.39 0.3 (3) 
20 1721.2 21.15 4.52 0.31 0.41 0.28 c 
30 741.8 27.16 3.25 0.17 0.16 0.14 c 

 

Table 2 – Späth’s data set. 

CPU times (seconds) k Opt. Sol. 
LP relax. CGA BC-tri BC-all BC-halfp 

% gap 

2 6.02546 1011 129.65 1.44 9.96 150.36 10.78 c 
3 2.94506 1011 169.38 6.33 27.33 136.50 27.58 c 
4 1.04474 1011 97.81 8.36 31.81 96.61 26.31 c 
5 5.97615 1010 420.91 15.00 18.23 53.28 10.07 c 
6 3.59085 1010 567.97 5.26 17.88 47.00 13.13 c 
7 2.19832 1010 889.99 7.44 38.85 52.35 25.06 c 
8 1.33854 1010 927.22 12.52 10.11 18.41 9.04 c 
9 8.42375 109 723.69 8.62 8.84 12.36 5.51 c 

10 6.44647 109 996.35 8.07 8.02 10.46 4.26 c 
20 7.48215 108 578.69 6.80 0.98 0.99 0.74 c 
30 1.71392 108 433.77 4.99 0.31 0.34 0.26 c 
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Tables 1–4 suggest the following conclusions: 

• The cutting plane algorithms are able to prove optimality of model (2) in less 
computing time than solving its LP relaxation with all inequalities added a priori in 
87.09% of the instances solved at the root node (indicated by letter ‘c’). When branch 
occurs, our branch-and-cut algorithms find optimal integer solutions in less 
computing time than solving only the LP relaxation with all inequalities in 8 out of 13 
instances. 

• Algorithm BC-all is in most of cases outperformed by one of its counterparts. Mainly 
for small k, a large amount of pair inequalities are active at the LP optimal solution, 
and therefore, exploiting all of them as cutting planes is not a worthwhile strategy. 

 
Table 3 – Fisher’s data set. 

CPU times (seconds) k Opt. Sol. 
LP relax. CGA BC-tri BC-all BC-halfp 

% gap 

2 152.3479 9473.85 293.34 166.82 549.28 169.44 c 
3 78.8514 2098.29 66.57 512.85 454.70 283.24 c 
4 57.2284 1927.25 186.00 301.12 299.40 240.19 c 
5 46.4461 2303.65 104.65 152.18 237.36 145.54 c 
6 39.0399 2331.69 102.43 141.88 163.32 147.51 c 
7 34.2982 2155.89 102.97 1061.16 847.93 742.83 0.0 (7) 
8 29.9889 2557.59 106.10 89.92 123.18 108.73 c 
9 27.7860 2568.36 122.16 92.19 88.78 70.04 c 

10 25.8340 2294.35 110.00 76.47 73.07 59.66 c 
20 14.2208 1791.42 137.10 155.75 104.91 87.06 0.0 (5) 
30 9.5552 1641.43 91.65 175.87 145.24 155.52 0.1 (23) 

 

Table 4 – HATCO’s data set. 

CPU times (seconds) k Opt. Sol. 
LP relax. CGA BC-tri BC-all BC-halfp 

% gap 

2 600.108 73.57 13.95 108.79 101.88 69.68 c 
3 506.962 149.82 18.50 158.15 146.19 141.52 c 
4 426.602 105.75 34.46 85.39 88.54 68.00 c 
5 383.831 155.93 16.21 61.46 80.33 52.56 c 
6 344.534 151.85 14.29 188.49 151.39 145.03 0.0 (3) 
7 313.582 88.83 18.01 246.91 191.20 181.13 0.1 (5) 
8 288.601 105.54 19.04 377.88 378.52 286.67 0.5 (11) 
9 264.599 72.32 161.16 421.22 381.70 314.30 0.6 (13) 
10 241.128 67.61 132.07 315.99 284.10 217.74 0.4 (15) 
20 114.032 21.91 6.73 5.00 6.07 4.15 0.0 (3) 
30 62.992 22.78 9.09 2.51 2.72 2.35 0.0 (5) 
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• In 50% of the instances, the best CPU time obtained among our branch-and-cut 
algorithms is smaller than that obtained by the column generation algorithm of du 
Merle et al. (2000). 

• Relaxation (3) provides very good bounds for MSSC since initial gap values are never 
larger than 0.6%. Moreover, more than 65% of the tested instances are exactly solved 
after considering only the root node of the enumeration. This may be due to the 
inclusion of the triangle inequalities in the formulation of the problem. Grötschel & 
Wakabayashi (1989) used triangular inequalities within a branch-and-cut algorithm 
for partitioning with the sum-of-cliques criterion. Such constraints appear to suffice in 
almost all of their computational tests. 

• Computing times of the branch-and-cut algorithms does not increase as the number of 
clusters k increases. In fact, there is no evident relationship between the complexity of 
solving (2) and the value of k. However, performance seems to improve for large 
values of k, as shown by the results for data sets (i), (ii) and (iv). 

 
The tests also assessed the quality of the solutions obtained by VNS for MSSC since all 
initial upper bounds proved to be optimal. 

Table 5 presents results for Grötschel and Holland’s 202 European cities coordinates 
(Grötschel & Holland, 1991) whose value of n is the largest among data sets (i–v). Results 
show that BC-halfp is able to determine proved minimum sum-of-squares partitions when k 
is large, while their performance deteriorates as the value of k decreases. In our tests, the 
algorithms were not able to solve instances with k ≤ 8 in less than 12 hours. 

 
Table 5 – Grötschel and Holland’s data set. 

CPU times (seconds) k Opt. Sol 
BC-halfp 

% gap 

9 4376.1937 48885.38 0.2 (9) 
10 3794.4880 23680.84 0.0 (7) 
20 1523.5086 3839.77 0.1 (13) 
30 799.3109 1060.77 0.0 (13) 

 

Finally, note that our branch-and-cut approach based on solving LP relaxations of the 0-1 
SDP formulation provided by Peng & Xia (2005) can be extended to other related clustering 
problems (e.g. normalized k-cut minimization, balanced clustering; see Peng & Wei (2007) 
for details). 
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