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Abstract 
 
The DEA (Data Envelopment Analysis) smoothed frontier was introduced to solve the problem of 
multiple optimal solutions in the extreme efficient DMUs (Decision Making Units), which hinders the 
knowledge of the substitution rates (tradeoffs). It consists of changing the original frontier (piecewise 
linear) for a smoothed one, being as close as possible to the original one, and having continuous partial 
derivates at every point. First, a solution was developed only for the BCC (Banker, Charnes and 
Cooper) model with either a single input or a single output. Then, it was generalized for the 
N-dimensional BCC model with simultaneous multiplicity of inputs and outputs, but limited by the fact 
that the polynomial of the output needs to be a linear one. The present article presents a general model, 
which not only expunges the limitations of the previous models but also includes them. 
 

Keywords:  DEA; smoothing; polynomial approaching. 
 
 

Resumo 
 
A suavização da fronteira DEA (Data Envelopment Analysis – Análise Envoltória de Dados) surgiu 
como uma solução do problema das múltiplas soluções ótimas nas DMUs (Decision Making Units – 
Unidades Tomadoras de Decisão) extremo-eficientes, o que impossibilita o conhecimento das razões de 
substituição (tradeoffs). Ela consiste na substituição da fronteira original (linear por partes) por outra 
suavizada, de modo que esta fronteira suavizada seja próxima da original, e que tenha derivadas contí-
nuas em todos os pontos. Inicialmente foi desenvolvida solução apenas para o caso do modelo BCC 
(Banker, Charnes e Cooper) com apenas um input, ou apenas um output. Em seguida obteve-se uma 
generalização da solução para o caso BCC N-dimensional com multiplicidade simultânea dos inputs e 
dos outputs, porém com a limitação da linearidade do polinômio dos outputs. O presente artigo vem 
apresentar um modelo geral, que elimina as limitações dos modelos anteriores, e também os engloba. 
 

Palavras-chave:  DEA; suavização; aproximações polinomiais. 
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1. Introduction 

Data Envelopment Analysis – DEA was developed by Charnes, Cooper & Rhodes (1978) to 
compute the efficiency of productive units (Decision Making Units – DMUs), whenever the 
financial viewpoint is not the dominant consideration. DEA methodology evaluates the 
efficiency of each DMU taking into account its resources (inputs) and the results it obtains 
(outputs). 

Classic DEA models always present dual formulations as any mathematical programming 
model. There are, thus, two equivalent DEA formulations (Cooper et al., 2000). To put it 
simply, one of the formulations (the Envelope model) defines a feasible production area and 
works with the distance of each DMU to the frontier of that area. The other formulation 
(the Multipliers model) works with the ratio of weighted sums of products and resources. 
The weighing factors are the most favourable that can be chosen for each DMU under certain 
circumstances. 

Being dual problems, the two formulations will obviously provide the same efficiency for 
each DMU. Furthermore, other information beyond efficiency can be obtained from the two 
models. The envelope model provides weight coefficients for each efficient DMU 
(designated as λi) to create a virtual DMU that will be used as benchmark for each inefficient 
DMU. For any given orientation, these coefficients are computed in single given way for 
each DMU. It is of particular interest to see what happens in the efficient DMUs: they are 
their own benchmark and, so, the envelope LPP (Linear Programming Problem) returns 1 for 
λ referring to that DMU and nought for all others. A highly degenerated LPP obtains thus. 

The multipliers model provides the weighing coefficients that each DMU will allocate to 
each input or output. The fact that each DMU provides different values for these multipliers 
is the very essence of DEA. Each DMU is free to value better whatever it is best at, and to 
ignore the variables in which it does not perform well. All and every DEA model should 
preserve this freedom in greater or smaller measure. 

Beside this freedom for each DMU to choose its own weights, certain DMUs may choose 
more than a unique set of weights. This can cause problems and the aim of this paper is to 
propose a way of choosing a unique set of multipliers for all DMUs. 

This paper is organised thus: Section 2 presents a justification for this study. A bibliographic 
review is presented in Section 3. The general theory of smoothing the DEA frontier is 
presented in Section 4. The generalisation of the BCC smoothing model and the original 
contribution of this study are presented in section 5. A numerical example is given in section 
6 and, finally, section 7 presents the conclusions of this paper. 

 
2. Reasons for this study 

The need to know the value of the multipliers (also known as weights) stems from the 
economical interpretations associated to them. The commonest of these interpretations is that 
each weight is an indicator of the importance each DMU gives to its value to determine its 
efficiency. The validity of this interpretation, without further calculations, requires the 
variables to be previously standardised. 

From an economic viewpoint, multipliers may have two interpretations. The first is as 
components of the weight ratio between variables (tradeoffs), meaning how much should a 
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DMU increase a given input when another decreases by one unit or how much does the 
increase in a given input increase an output. A second and more important interpretation is 
that weights are standardised shadow prices (Coelli et al., 1998). This is useful to determine 
the prices of quantities that have no market value; one only needs to know the effective cost 
of some of the variables. Knowing this, shadow prices cease to be standardised. Reinhard 
et al. (2000), for instance, have used this approach to calculate the price of pollution in a 
study on environmental efficiency. One ought to emphasise once more that there is for each 
DMU a different set of prices, which means that prices calculated for each DMU are valid 
only for that DMU. 

The practical use of the multipliers interpretation hits a serious snag that is inherent to the 
multipliers model LPP. The complementary slack theorem may also mean that multipliers 
are the coefficients of an equation that defines a hyperplane tangent to the frontier on the 
DMU projection point (Cooper et al., 2000). As efficient DMUs (more exactly, the extreme 
efficient DMUs) are vertices, where there are neither derivatives nor tangent hyperplanes but 
an infinity of support hyperplanes, there is then an infinity of multiplier sets for each extreme 
efficient hyperplane all of them leading to efficiency 1 for those DMUs. Therefore, besides 
each DMU having the freedom to choose its own weights, which is desirable, it is impossible 
for the benchmark DMUs, performers of good management practices, to know the weights 
they have really allocated to each variable. To determine the importance of each input or 
output or even to calculate the shadow weights becomes compromised when dealing with 
extreme efficient DMUs. 

The lack of unique values for extreme efficient DMUs’ weights has further different 
consequences. From a theoretical point of view, it prevents the calculation of directional 
derivatives along the whole frontier. From the practical point of view, it is an obstacle 
against the use of DEA as an auxiliary tool in multicriteria problems. Some circumstances in 
multicriteria problems may render it desirable that weights be allocated independently of the 
decision maker’s judgement as, for instance, when several decision makers do not agree on 
them. DEA would be an excellent tool for that if it were not that the weights allocated by 
some DMUs are not known. 

 
3. Bibliographic review 

With greater or lesser sophistication, available literature includes several approaches to deal 
with the problem of more than one set of multipliers. If the numbers of extreme efficient 
DMUs is small when compared with its total number, it is obvious the weights allocated by 
the extreme efficient DMUs can be ignored and work can proceed with the weights allocated 
by the remaining DMUs alone (as done by Lins et al., 2003; Soares de Mello et al., 2008). 
The problem of more than one set of multipliers for the extreme efficient DMUs has been 
approached on several occasions, but their solutions have been unsatisfactory. Charnes et al. 
(1985) had already accepted the problem existed when they proposed the arbitrary use of a 
single value for derivatives obtained from the computation of an average weight based on the 
barycentres of the concurring hyper-surfaces. This method has several disadvantages. One is 
the need to know the equations for all the faces, which requires an intense load of computer 
work (Dulá, 2002). Another is the sudden variation owing to derivative discontinuities. 
Finally, it is not applicable to either the DMUs at the start of a Pareto inefficient region or 
those that are adjacent to an incomplete dimension face (Olesen & Petersen, 1996). Cooper 
et al. (2007) have proposed to refine the method put forward by Charnes et al. (1985). 
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Some of these drawbacks may have caused the method not to be commonly used. Several 
authors simply ignore the problem. Occasionally, they mention it and then proceed with the 
solutions found for the first optimal solution by the algorithm they have used (Thanassoulis, 
1993; Chilingerian, 1995). 

In some specific circumstances, partial solutions are possible for the problem of more than 
one set of multipliers. Doyle & Green (1994), for instance, needed to calculate a unique 
value for each DMU’s multipliers vector in their crossed evaluation model. They did that by 
solving lexicographically the traditional DEA model and one of two other models, which the 
authors named “aggressive” or “benevolent”. These auxiliary models determine the multipliers 
to be used in the cross evaluation model. There are other ways to calculate these multipliers 
for the cross evaluation model as proposed by Liang et al. (2008). An alternative way to 
calculate multipliers can be found in a practical application by Soares de Mello et al. (2009). 

On the other hand, the super efficiency model (Andersen & Petersen, 1993) does not suffer 
from having more than one set of multipliers because of its formulation. However, it has 
other disadvantages. To start with, it does not limit efficiencies to the interval [0,1]. 
Furthermore, it eliminates a different constraint for each DMU LPP, which means that the 
efficiency frontier has a different shape depending on which DMU is being studied. 

According to Rosen et al. (1998), the multipliers values can vary between the value based on 
the derivative at left and that on the right. These authors state that it is impossible to get 
round this multiplicity of values and propose a modified SIMPLEX table to calculate the 
multipliers variation limits. 

The impossibility referred to by Rosen et al. (1998) arises from the linear nature of some 
segments of the DEA frontier. Soares de Mello et al. (2002, 2004) have shown that it is 
possible to get around this impossibility by substituting a new frontier with similar properties, 
but with derivatives at all points, for the original DEA frontier. Among the identical 
properties, the allocation of unitary efficiencies to the original DEA model extreme efficient 
DMUs is included. This technique is described here in general terms and exemplified for 
two-dimensional cases. It consists of smoothing the original DEA frontier while respecting 
the DEA Basic properties: convexity, throughput monotonicity (outputs growing together 
with inputs), the same efficient DMUs and allocation of different weights by each DMU. 
An application of this technique can be found in Gomes et al. (2004). 

Another type of smoothed frontier appears in the Hyperbolic and Spherical DEA models 
(Kozyreff Filho & Millioni, 2004; Avellar et al., 2004; Gomes & Avellar, 2005; Avellar 
et al., 2005; Avellar et al., 2007). These models have a different objective to that studied 
herein. In those articles, the authors deal simultaneously with uniformity and smoothing of 
the frontier. The results obtained by them can be classed as a smoothed variant of the Zero 
Sum Gains DEA model (Lins et al., 2003; Gomes & Lins, 2008). 

 
4. Smoothing the DEA frontier 

A pseudo-metric topology was used in Soares de Mello et al. (2002, 2004) to smooth the two 
and three-dimensional DEA frontiers. The pseudo-metric used here measures both how close 
the smoothened function is to the original frontier and that of their derivatives where they exist. 

In the two-dimensional case, it was proposed that the difference in the arc length of the 
function’s curve between two points was taken as the measure of proximity of the two 
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functions as well as of their derivatives. The frontier between two consecutive efficient 
DMUs is a straight line. This is the shortest length between two points and, therefore, any 
other curve that connects those two points will have a greater arc length. The arc length will 
be an increasing function of the divergences from that curve to the straight line. Therefore, 
this arc length is able to measure the proximity of the smoothened and the original frontiers. 
It may also measure the proximity between the frontier derivatives as shown in Soares de 
Mello et al. (2002). It is well known that for any given curve y = f(x), the length (lL) of an 
arc is given by (1). 

2

1

x 2

x

dyL 1 dx
dx

⎛ ⎞= + ⎜ ⎟
⎝ ⎠∫  (1) 

where x1 and x2 are the minimum and maximal input values. 

The same arguments can be generalised for higher dimension problems if a hyper-plane is 
substituted for the straight line and a multiple integral for the simple one. 

 
4.1 General Formulation of the Smoothing Model 

For a single input DEA models, smoothing is but looking for a function that minimises the 
curve’s arc length (or its n-dimension generalization), that contains the Pareto efficient 
DMUs and that have partial derivatives in every point. For computational ease, the square of 
the curve’s arc length can be minimized with no change of the result. Then, after finding the 
extreme efficient DMUs in the DEA classic model, smoothing can be obtained through the 
variational problem (2). 
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In this model, F is a function of the inputs in the output and xi is the input vector. 

This is a BCC model (Banker et al., 1984) and, so, it requires the frontier to be convex, i. e., 
2

2
i

F 0
x

∂
≤

∂
. With this additional constraint, the No Optimal Solution Theorem is obtained. Its 

proof is in Soares de Mello et al. (2002). It guarantees there is no “closest solution” although 
there are close enough solutions that can be used. This calculation needs a similar approach 
to that of the Finite Elements method (Reddy, 1993). 

At the beginning, when the two-dimensional case was first dealt with, Soares de Mello et al. 
(2002) did use an approximation for each frontier area. Owing to the two-dimension 
geometry, it was possible to calculate a single optimal approximate function for each side. 
However, for a larger number of dimensions, this becomes a computationally intensive 
problem (Dulá, 2002). 
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Later, Soares de Mello et al. (2004) dealt with the frontier-smoothing problem for a larger 
number of dimensions and one single input or output. As opposed to the two dimensions 
model, a single approximate polynomial was used for the whole frontier. Higher degree 
polynomial functions were used for that purpose. 

The authors have shown that in the particular case of two inputs and one output the lowest 
polynomial degree can be obtained as a function of the number of extreme efficient DMUs. 
This function is described in table 1. This table was arrived at so the number of decision 
variables is larger than the number of equality constraints. As these variables are the 
coefficients of the approximate polynomial, its degree will depend on the number of decision 
variables. 
 

Table 1 – Finding the polynomial degree. 

Number of extreme efficient DMUs Polynomial degree 
3 – 5 2 
6 – 9  3 

10 – 14  4 
15 – 20  5 
21 – 27  6 

... ... 
 

The approximate polynomial for a BCC DEA problem with two inputs, a single output and 
three efficient DMUs, for instance, can be: 

2 2 3 2 2 3 4 3 2 2 3 4= + + + + + + + + + + + + + +Z a bx cy dx exy fy gx hx y ixy jy kx lx y mx y nxy oy
 (3) 

In this model, Z stands for the output and x and y for the inputs. 

The DEA BCC smoothing model with two inputs and one output is shown in (4). 
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In this model, the variables are the same as before. 
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The objective function ensures that the smoothed frontier and its derivatives are close to the 
original frontier. The first constraint ensures that the smoothed frontier includes the same 
efficient DMUs of the original frontier. The constraints that include first derivatives ensure 
that the output is an increasing function of the inputs. Finally, the constraints that include 
second-degree derivatives ensure the frontier is convex. 

Model (4) becomes model (5) if it is taken into account that Z is a polynomial function of 
x and y. 

( )
( )
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max max
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=

∂
≥

∂
∂

≥
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 (5) 

In this model, the variables Z, x and y stand for respectively the output and the inputs. 
Besides, xefin, yefin represent the inputs of any extreme efficient DMU, Zefin represents the 
output of the same extreme efficient DMU n. Variables d, f, g, h, and i are decision variables. 

Once again, it should be noted that the function Z is polynomial; the result of the double 
integral in the objective function is a quadratic function of the polynomial coefficients. As 
the constraints are linear, the smoothing problem becomes a quadratic programming problem. 

Figure 1 shows the smoothed frontier obtained by Soares de Mello et al. (2004) for two 
inputs and one single output. 

 

 
Figure 1 – Smoothed Tridimensional BCC Frontier. 
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For the case of a single output and n inputs model (6) obtains. 
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There was a change of notation for this model caused by the larger number of variables 
involved. For the next models, with at least more than two inputs, the notation will be the 
same. So, x1,...xn are the DMU’s inputs; Z will be the DMU’s output. 

For the inverse case of a single input and m outputs, model (7) obtains. 
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 (7) 

The second derivative is now positive. In this case, the input is a function of the outputs so 
the theorem of the inverse function ensures that this constraint makes the frontier to be 
convex. 

 

5. Generalization of the BCC smoothing model 

To deal simultaneously with both output and input multiplicity in the smoothing problem, 
a U function is defined as follows: 

( ) ( ) ( )1 1 1 1... , ... ... ...n m n mU x x z z F x x H z z= −  (8) 

When function U equals a constant, equation (8) represents a level. Its multidimensional 
generalization of the arc length ought to be minimised. As opposed to the model previously 
shown the new solution will obtain taking into account the differentiation of all inputs 
relative to all outputs and vice-versa. 
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Formulation (9) represents the general DEA model smoothed for any number of input and 
output variables. The objective function is given by the (n+m)-uple in which xi min and xi max 
indicate the minimum and maximum value for each input, whereas zi min and zi max do the 
same for each output. Constraint (9.1) ensures that DMUs extreme efficient be contained in 
the smoothed frontier. Constraint (9.2) ensures the frontier’s increasing monotonicity 
where inputs hit their maxima, whereas constraint (9.3) does the same for decreasing 
monotonicity when outputs hit their minima. Convexity obtains from (9.4) and (9.5) 
respectively for inputs and outputs. Note should be taken that, as in (7), it should always be 

2

2
i

H 0
z

∂
≥

∂
. As U = F – H, the minus sign of this equation leads to constraint (9.5). 

Attention is drawn for a fact relative to the convexity of the smoothed frontier (9.4) and 
(9.5). Similarly to the single input or output model (Soares de Mello, 2002), it will not be 
possible to keep the signal constraint of the second derivatives at all points. The truth is that 
this will be only possible for polynomials up to the second degree. In this case, the second 
derivative for any input or output will be a constant as it represents a parabola with a 
constant convexity throughout. Therefore, for the remaining cases, a stronger constraint must 
be imposed: the coefficient of the polynomial term for which the second derivative is not nil, 
should be: 

• Lesser or equal to zero if it’s a coefficient of the input polynomial; 
• Greater or equal to zero if it’s a coefficient of the output polynomial. 

Finally, the equation of the smoothed frontier will be as follows: 
( )1 n 1 mU x ...x ,z ...z 0=  (10) 

 
5.1 Model Properties 

A demonstration will now follow that the proposed model has all required conditions to be a 
smoothed BCC frontier: it must contain all the extreme efficient DMUs, be convex and 
outputs must be increasing functions of the inputs. 
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Constraint (9.1) ensures that the frontier contains all the extreme efficient DMUs because it 
is equivalent to “the equality of functions F and H calculated at each of the extreme efficient 
DMUs values. 

Next, it will be shown that in this model, outputs are increasing functions of the inputs, i.e., 
the model (9) constraints lead to (11). 

0 1 1i

j

z
, i ..m, j ..n

x
∂

≥ ∀ = =
∂

 (11) 

For that purpose, the Implicit Function Theorem will be used. It allows the expression i

j

z
x
∂
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to be calculated from the partial derivatives of function U (8): 
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From constraints (9.2) and (9.3) the numerator of expression (12) must be non-negative, 
its denominator non-positive. This leads to expression (13), valid for the whole frontier with 
the possible exception of a finite number of points where the derivative may not exist. 

i

j

z
0

x
∂

≥
∂

 (13) 

As these isolated points do not affect monotonicity, it is demonstrated that in the smoothed 
frontier, outputs are increasing functions of the inputs. 

Lastly, to prove that the BCC frontier is convex the Convexity expression in (14) must be 
checked: 

2

2 0 1 1i

j

z
, i ..m, j ..n

x
∂

≤ ∀ = =
∂

 (14) 

Having recourse to the Implicit Function Theorem, the Chain Rule, and the Product 
Derivation, expression (15) obtains: 

2 2

22
i j j iji

2 2
j

i

U U U U
z x x zxz

x U
z

⎛ ⎞∂ ∂ ∂ ∂
× − ×⎜ ⎟
∂ ∂ ∂ ∂∂∂ ⎜ ⎟= −⎜ ⎟∂ ⎛ ⎞∂⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

 (15) 

As the polynomials are independent, i.e., there is no term in U that multiplies x and z, 
function (16) is valid. 

2

i j

U 0
z x
∂

=
∂ ∂

 (16) 



Nacif, Soares de Mello & Angulo Meza – Choosing weights in optimal solutions for DEA-BCC models by means of a n-dimensional smooth frontier 

Pesquisa Operacional, v.29, n.3, p.623-642, Setembro a Dezembro de 2009 633 

So, equation (15) can be simplified becoming equation (17). 
2

22
iji

2 2
j

i

U U
zxz

x U
z

⎛ ⎞∂ ∂
×⎜ ⎟
∂∂∂ ⎜ ⎟= − ⎜ ⎟∂ ⎛ ⎞∂⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

 (17) 

From model constraints (9.1) to (9.5), the two numerator factors are always non-positive 
while the denominator is non-negative. This leads to expression (18), valid for the whole 
frontier with the possible exception of a finite number of points where the derivative may not 
exist. 

2
i
2

j

z
0

x
∂

≤
∂

 (18) 

As these isolated points do not affect convexity, it is demonstrated that the smoothed BCC 
frontier has all the desired properties. 

It is also easy to show through similar calculations that the one output/several inputs and vice 
versa cases dealt with in Soares de Mello et al. (2004) are but particular cases of this general 
model. 

 
5.2 Finding the polynomial degree 

As there is a polynomial for inputs and another for outputs, degrees must be found for both. 
To find those values it should taken into account that: 

• Both the input and output polynomials must have the same degree (called g) so 
symmetry is maintained when smoothing. 

• One of the coefficients can be deleted because the smoothing model equality constraint 
will remain true if it is divided by the coefficient’s value. This property allows us to 
establish the convention, with no loss of generalization, that the polynomial 
independent term will be 1. With this in mind, function U is defined by (19). 

1 2 1 2
, , 1 2 1 21 ... ...k k k kn mci ci co coci co

g n g m k n k m
k k

U F H a x x x b z z z= − = + −∑ ∑  , intik ikci co∀  (19) 

such as it satisfies (20) 

1

n

ik
i

ci g
=

≤∑ , 
1

m

ik
i

co g
=

≤∑  (20) 

• The total number of coefficients, or decision variables, is the sum of the number of 
coefficients in output and input polynomials. 

• The number of output and input variables, respectively m and n, are provided by the 
real problem. 

Table 2 can now be built. From the number of variables and the number of polynomial terms, 
the polynomial degree is determined for both inputs and outputs. The table should be used 
twice: for inputs and outputs. 
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Table 2 – Polynomial degrees in function of number of variables and their terms. 

Nvar 
(number of variables) 

 1 2 3 4 5 
1 1 2 3 4 5 
2 2 5 9 14 20 
3 3 9 19 34 55 
4 4 14 34 69 125 

g 
(p

ol
yn

om
ia

l 
de

gr
ee

 

5 5 20 55 125 251 
 
This is a symmetrical matrix, meaning the number of polynomial coefficients is the same for 
either degree g and m variables or vice-versa. 

If no and ni are respectively, the number of outputs and inputs, condition (21) has to apply. 

N° of extreme-efficient DMUs < N° of coefficients = no + ni (21) 

This expression ensures that the number of decision variables is greater than the number of 
equality constraints in the smoothing problem. 

Degree g will be found on the line where the minimum sum for no + ni that satisfies the 
above inequality is found. 

Take an example: with two inputs, three outputs and sixteen extreme efficient DMUs, there 
must be at least sixteen model decision variables. For two inputs and three outputs, columns 
2 and 3 of table 2 must be checked. Then, the corresponding lines in table 2 determine the 
polynomial degree. Line 1 corresponds to a polynomial of one degree and shows five model 
decision variables, which is insufficient. Line 2 gives a different reading: two inputs 
correspond to five coefficients and three outputs nine coefficients. Their sum of fourteen is 
still insufficient. If polynomials are of third degree, the corresponding line 3 will show nine 
coefficients for two inputs and nineteen for three outputs. Their sum of twenty-eight is more 
than enough to avoid equality constraints to generate unfeasibility. Therefore, this example 
requires degree 3 for both input and output polynomials. 

 
5.3 Finding multipliers 

From the smoothed frontier equation: 
( ) ( )... ...1 n 1 mF x x H z z 0− =  (22) 

multipliers for each input and output can be obtained. 

To start with, the hyperplane tangent to the smoothed frontier on a point correspondent to an 
extreme efficient DMU must be determined. Let ( ),..., , ,...,1 n 1 mx x z z  be a generic point of 
that hyperplane. 

Take 
( ) ( ) ( ),..., , ,..., ,..., ,...,1o no 1o mo 1o no 1o moG x x z z F x x H z z= −  (23) 

where DMU o is an extreme efficient DMU. 
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The tangent hyperplane equation is the internal product 

( ) ( )1 1 1 1 2 2 1 1 2 2 ,..., , ,..., . - , - ,..., - , - ,... 0o no o mo o o o oG x x z z x x x x z z z z⎡ ⎤∇ =⎣ ⎦  (24) 

On the other hand, from the DEA theory the support plane equation on DMU o is (Lins & 
Angulo-Meza, 2000): 

* *
*jo j io iu z v x u− =∑ ∑  (25) 

Should it exist, the support plane is also a tangent plane. As the smoothed curve is designed 
to ensure that tangent hyperplanes do exist, the multipliers values are obtained from the 
equivalence of equations (24) and (25) from the constraint that the inputs weighted sum must 
be one. 

For notation’s simplicity sake, further development will follow a two input, two output case 
that can be easily generalised. 

The equations to be taken into account are: 
* * * *
1 1 2 2 1 1 2 2 *o o o ou z u z v x v x u+ − − =  (26) 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2
1 2 1 2

0o o o o
H H F Fx x x x z z z z
x x z z
∂ ∂ ∂ ∂

− + − − − − − =
∂ ∂ ∂ ∂

 (27) 

1 1 2 2 1o o o ox v x v+ =  (28) 

If expressions (26) and (27) are compared term-to-term, multipliers values that do not obey 
equation (28) are obtained. For that term-to-term comparison, please note that equation (27) 
is equivalent to equation (29): 

1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2

o o o o
H H F F H H F Fx x z z x x z z
x x z z x x z z
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ − − = + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (29) 

To solve the compatibility problem with equation (28) it should be noted that equation (29) is 
equivalent to equation (30) for any value of α that is not nil. 

1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2

o o o o
H H F F H H F Fx x z z x x z z
x x z z x x z z

α α α α α α α α∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − − = + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (30) 

Term-to-term comparison between equations (30) and (26) constrained by equation (28) 
leads to: 

1 2
1 2

1

o o
H Hx x
x x

α = −
∂ ∂

+
∂ ∂

 (31) 

and to multipliers: 

1
1

1 2
1 2

o

o o

H
x

v
H Hx x
x x

∂
∂

=
∂ ∂

+
∂ ∂

 (32) 



Nacif, Soares de Mello & Angulo Meza – Choosing weights in optimal solutions for DEA-BCC models by means of a n-dimensional smooth frontier 

636 Pesquisa Operacional, v.29, n.3, p.623-642, Setembro a Dezembro de 2009 

2
2

1 2
1 2

o

o o

H
x

v
H Hx x
x x

∂
∂

=
∂ ∂

+
∂ ∂

 (33) 

1
1

1 2
1 2

o

o o

F
z

u
H Hx x
x x

∂
∂

=
∂ ∂

+
∂ ∂

 (34) 

2
2

1 2
1 2

o

o o

F
z

u
H Hx x
x x

∂
∂

=
∂ ∂

+
∂ ∂

 (35) 

1 2 1 2
1 2 1 2

*

1 2
1 2

o o o o

o o

H H F Fx x z z
x x z z

u
H Hx x
x x

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
= −

∂ ∂
+

∂ ∂

 (36) 

 
5.4 Calculation of the relative importance of each variable 

The multipliers calculated hereabove might not have any meaning for the decision maker as 
they simultaneously incorporate scale effects and subjective importance. A more meaningful 
quantity is the relative importance of each input (output) to establish the virtual input 
(output). This can be used to increase discrimination in DEA (Angulo-Meza & Lins, 2002; 
Adler et al., 2002). 

The importance of any input i is given by (37). 

io i
i

io i
i

v x
Im p( x )

v x
=
∑

 (37) 

Therefore, entering the multipliers’ values in expression (37), the importance of input i is 
given by expression (38). 

i
i

i

i
i i

Hx
x

Im p( x )
Hx
x

∂
∂

=
∂
∂∑

 (38) 

Similar calculations lead to the importance of output j being given by expression (39) 

j
j

j

i
i i

Fz
z

Im p( z )
Hx
x

∂
∂

= −
∂
∂∑

 (39) 
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6. Numerical example 

The theoretical concepts hereabove will be now exemplified. The data are found on Table 3. 

X1 and X2 are inputs; Z1 and Z2 are outputs. These data were obtained from Nacif (2005). 
 

Table 3 – Data for the numerical example. 

DMUs X1 X2 Z1 Z2 
A 680 1 50 120 
B 1500 1 50 240 
C 610 2 50 130 
D 860 2 90 250 
E 1400 2 90 500 
F 220 6 75 220 
G 290 6 75 1,5 
H 1800 0 100 130 
I 2800 0 100 260 
J 4000 0 100 510 

 

Using the SIAD software (Angulo-Meza et al., 2005), the extreme efficient DMUs are found 
to be A, D, E, F, H and J. Only the data for these DMUs are needed to calculate the 
smoothed frontier. 

To determine the input and output polynomial degree account must be taken that there are six 
extreme efficient DMUs, two inputs, and two outputs. From table 2, only the column 
corresponding to two variables for both input and output polynomials should be taken into 
account. Table 4 is then built from the second column of Table 2. 
 

Table 4 – Number of coefficients for each degree g for two inputs and two outputs. 

  Number of 
coefficients for the 
input polynomial 

Number of 
coefficients for the 
output polynomial 

Number of 
coefficients for the 
joint polynomial 

1 2 2 4 
2 5 5 10 
3 9 9 18 
4 14 14 28 

g (input and 
output 

polynomials 
degree) 

5 20 20 40 
 

The number of extreme efficient DMUs should be lower than the total number of polynomial 
coefficients to avoid unfeasibility. Thus, Table 5, that relates the number of extreme efficient 
DMUs with the polynomial degree, is built. To do it, it must be noted that the number of 
extreme efficient DMUs must be lower than that shown on the last column of Table 4. 
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Table 5 – Polynomials degrees versus extreme efficient DMUs. 

Nº of extreme 
efficient DMUs 

Degree of each 
polynomial 

1-3 1 
4-9 2 

10-17 3 
18-27 4 
28-39 5 

 

Both the input and output polynomials should be second degree, for the proposed problem. 

Function U shall be thus of the following type: 

( ) 2 2 2 2
1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2U x ,x ,z ,z 1 ax bx cx x dx ex fz gz hz z iz jz= + + + + + − − − − −  (40) 

whereas the smoothing equation will be: 

( )1 2 1 2U x ,x ,z ,z 0=  (41) 

After calculating the input and output values as well as function U, the above smoothing 
equation (40) becomes model (42). 

( ) ( ) ( )
( )

2 2 24000 6 100 510
1 2 1 2 1 2

2 1 2 22
220 0 50 1,5 1 2

2 2 2 2

2

1 2ax b cx cx d 2ex 2 fz g hz
Min dz dz dx dx

hz i 2 jz
subject  to

1+680 .a 680.b 680.1.c 1.d 1 .e 50 . f 50.g 50.120.h 120.i 120 . j 0

1+860 .a 860.b 8

⎧ ⎫⎡ ⎤+ + + + + + + − − −⎪ ⎪⎢ ⎥⎨ ⎬
⎢ ⎥+ − − −⎪ ⎪⎣ ⎦⎩ ⎭

+ + + + − − − − − =

+ +

∫ ∫ ∫ ∫

2 2 2

2 2 2 2

2 2 2 2

2

60.2.c 2.d 2 .e 90 . f 90.g 90.250.h 250.i 250 . j 0

1+1400 .a 1400.b 1400.2.c 2.d 2 .e 90 . f 90.g 90.500.h 500.i 500 . j 0

1+220 .a 220.b 220.6.c 6.d 6 .e 75 . f 75.g 75.220.h 220.i 220 . j 0

1+1800 .a 1800.

+ + − − − − − =

+ + + + − − − − − =

+ + + + − − − − − =

+ 2 2 2

2 2 2 2

b 1800.0.c 0.d 0 .e 100 . f 100.g 100.130.h 130.i 130 . j 0

1+4000 .a 4000.b 4000.0.c 0.d 0 .e 100 . f 100.g 100.510.h 510.i 510 . j 0
2.4000.a b 6.c 0
4000.c d 2.6.c 0

2.100. f g 510.h 0
100.h i 2.510. j 0

2.a

+ + + − − − − − =

+ + + + − − − − − =
+ + ≥

+ + ≥
− − − ≤
− − − ≤

0
2.c 0

2. f 0
2. j 0

≤
≤

− ≤
− ≤
 (42) 
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Calculating the decision variable values and placing them on the smoothing equation, 
equation (43) obtains. 

2
1 1 1 2 2 1

1 2 2

1000 0,00008x 0,39109x 0,04183x x 79,71422x 14,99935z
0,10645z z 10,21461z

− + + + −
+ −

 (43) 

This is the smoothing equation for the given problem. It represents a hyper-surface in 4  
with derivatives on all points that replaces the original DEA frontier, which was piecewise 
linear. It should be noted that some quadratic terms have disappeared because their 
coefficients were nil. 

 
7. Conclusions 

A methodology to solve the unique weights calculation problem for DEA BCC models with 
simultaneous multiplicity of inputs and outputs has been proposed. The methodology is an 
extension of the one developed by Soares de Mello et al. (2004) based on the replacement of 
the original DEA frontier (piecewise linear) by another smoothed frontier (with continuous 
derivatives). The smoothed frontier will be represented by a polynomial equation bringing 
together the input and output polynomials. 

A model was initially developed by Nacif et al. (2004) that dealt with the n-dimensional but 
restrained the output polynomial to be linear. Together with the model, the algorithm to 
determine the polynomial degree was generalised was generalised so it could be calculated 
for all cases. 

To generalise smoothing even further, a new model, called General n-Dimensional 
Smoothing Model (model 9) was proposed. This model was gathered all those previously 
proposed as shown in section 3.1. For shortness sake, calculation details have been omitted; 
they can be seen in Nacif (2005). This new generalisation is needed to avoid asymmetric 
handling of inputs and outputs. In the previous model, either the input or the output 
polynomial had to be arbitrarily made linear. Either option would change completely the 
problem and, therefore, would not lead to a unique value for each multiplier, the main target 
of this paper. 

The smoothing model proposed here has more algebraic calculi than the n-dimensional 
model by Soares de Mello et al. (2004). It will be recalled that the latter model had no 
simultaneous input and output multiplicity. The number of algebraic calculi increases, in the 
model presented here, as the number of inputs, outputs, and extreme efficient DMUs 
increases. This becomes apparent when tables 1 and 2 are compared and makes for the model 
high complexity when a large number of variables and extreme efficient DMUs are involved. 
The calculations need several steps, some of which use different programmes. The longest 
operation is the transposition of data among them; the slow whole procedure brings to the 
fore the need for a specific software for the smoothing problem. This will allow cases that 
are more complex to be studied. 

It is emphasised that this study has satisfied the need for development for multiple inputs and 
outputs cases mentioned by Soares de Mello et al. (2004). However, models with constant 
scale returns (CCR) have yet to be looked into. 

Finally, it should be mentioned that this smoothing model eliminates two of the worst DEA 
problems: inefficient Pareto regions on the efficient frontier and non-complete dimension 
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facets. The first because of a monotonicity constraint: they do not exist because output partial 
derivatives with respect to inputs are never nil. Non-complete dimension facets are 
eliminated, as the frontier will be defined by a single polynomial equation. This avoids the 
problems raised by Gonzalez-Araya (2003). 
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