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Abstract 
 
Traditionally, reliability assessment of devices has been based on (accelerated) life tests. However, for 
highly reliable products, little information about reliability is provided by life tests in which few or no 
failures are typically observed. Since most failures arise from a degradation mechanism at work for which 
there are characteristics that degrade over time, one alternative is monitor the device for a period of time 
and assess its reliability from the changes in performance (degradation) observed during that period. The 
goal of this article is to illustrate how degradation data can be modeled and analyzed by using “classical” 
and Bayesian approaches. Four methods of data analysis based on classical inference are presented. 
Next we show how Bayesian methods can also be used to provide a natural approach to analyzing 
degradation data. The approaches are applied to a real data set regarding train wheels degradation. 
 

Keywords:  Bayesian approach; classical approach; degradation data analysis; reliability. 
 
 

Resumo 
 
Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados). 
Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é 
fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte 
das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um 
período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação) 
observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser 
modelados e analisados utilizando-se abordagens “clássicas” e Bayesiana. Quatro métodos de análise de 
dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos 
podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. 
As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens. 
 

Palavras-chave: abordagem Bayesiana; abordagem clássica; análise de dados de degradação; 
confiabilidade. 
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1. Introduction 

1.1 Background and literature 

Much of the literature focuses on the use of lifetime to make reliability assessments. For 
products that are highly reliable, assessing reliability with life time data is problematic, 
however. For a practical test duration (or a fixed observation period of the performance on 
the field), few or perhaps no failures may occur so that most of the observations are 
censored. Such data provide little information about the proportion of products, surviving a 
warranty period that is orders of magnitude longer than the test duration. 

Recently, degradation data have shown to be a superior alternative to lifetime data in such 
situations because they are more informative (Chiao & Hamada, 1996, 2001; Lu & Meeker, 
1993; Lu, Meeker & Escobar, 1996; Tseng, Hamada & Chiao, 1995). Most failures arise 
from a degradation mechanism at work, such as the progression of a chemical reaction, for 
which there are characteristics that degrade (or grow) over time. We consider the situation in 
which failure is defined in terms of an observable characteristic. For example, a crack grows 
over time, and failure is defined to occur when the crack reaches a specified length. Another 
example is the brightness of fluorescent lights that decreases over time. Its failure is defined 
to occur when the light’s luminosity degrades to 60% or less of its luminosity at 100 hours of 
use. Such failures are referred to as “soft” failures because the units are still working, but 
their performance has become unacceptable. 

To conduct a degradation test, one has to prespecify a threshold level of degradation, obtain 
measurements of degradation at different fixed times, and define that failure occurs when the 
amount of degradation of a experimental unit exceeds that level. Thus, these degradation 
measurements may provide some useful information to assess reliability even when failures 
do not occur during the test period. 

There are important references that have used degradation data to assess reliability. Nelson 
(1981) discussed a special situation in which the degradation measurement is destructive 
(only one measurement could be made on each item). Nelson (1990, chap. 11) reviewed the 
degradation literature, surveyed applications, described basic ideas and using a specific 
example, showed how to analyze a type of degradation data. In the literature, there are two 
major aspects of modeling for degradation data. One approach is to assume that the 
degradation is a random process in time. Doksum (1991) used a Wiener process model to 
analyze degradation data. Tang & Chang (1995) modeled nondestructive accelerated 
degradation data from power supply units as a collection of stochastic processes. Whitmore 
& Schenkelberg (1997) considered that the degradation process in the model is taken to be a 
Wiener diffusion process with a time scale transformation. Their model and inference 
methods were illustrated with a case application involving self-regulating heating cables. 

An alternative approach is to consider more general statistical models. Degradation in these 
models is modeled by a function of time and some possibly multidimensional random 
variables. These models are called general degradation path models. Lu & Meeker (1993) 
developed statistical methods using degradation measures to estimate a time-to-failure 
distribution for a broad class of degradation models. They considered a nonlinear mixed-
effects model and used a two-stage method to obtain point estimates and confidence intervals 
of percentiles of the failure time distribution. Tseng, Hamada & Chiao (1995) presented a 
case study which used degradation data and a fractional factorial design to improve the 
reliability of fluorescent lamps. Yacout, Salvatores & Orechwa (1996), used degradation data 
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to estimate the time-to-failure distribution of metallic Integral Fast reactor fuel pins 
irradiated in Experimental Breeder Reactor II. The time-to-failure distribution for the fuel 
pins was estimated based on a fixed threshold failure model and the two-stage estimation 
approach proposed by Lu & Meeker (1993). Lu et al. (1997) proposed a model with random 
regression coefficients and standard-deviation function for analyzing linear degradation data 
from semiconductors. Su et al. (1999) considered a random coefficient degradation model 
with random sample size and used maximum likelihood for parameter estimation. A data set 
from a semiconductor application was used to illustrate their methods. Wu & Shao (1999) 
established the asymptotic properties of the (weighted) least square estimators under the 
nonlinear mixed-effect model. They used these properties to obtain point estimates and 
approximate confidence intervals for percentiles of the failure time distribution. They applied 
the proposed methods to metal film resistor and metal fatigue crack length data sets. 

A good reference on degradation path models is Meeker & Escobar (1998, chap. 13). Wu & 
Tsai (2000) presented a fuzzy-weighted estimation method to modify the two-stage 
procedure proposed by Lu & Meeker (1993). The proposed method and the two-stage one 
were both studied on the example of the metal film resistor of Wu & Shao (1999). The 
former seemed to reduce the affection of different patterns of degradation paths and improve 
the estimation results of time-to-failure distribution providing much tighter confidence 
intervals. Crk (2000) proposed a methodology that encompasses many of the known and 
published ones and went a step further by considering a component or a system performance 
degradation function whose parameters may be random, correlated and stress dependent 
(in the case of accelerated degradation tests). Jiang & Zhang (2002) presented a dynamic 
model of degradation data. Random fatigue crack growth was illustrated in detail as an 
example of degradation data problem. 

 
1.2 The problem 

In a degradation test, measurements of performance are obtained as it degrades over time for 
a random sample of test units. Thus, the general approach is to model the degradations of the 
individual units using the same functional form and differences between individual units 
using random effects. The model is: 

 ( ; ; ) ,ij ij ij i ijy D D t ε= = +α β  (1) 

where ( ; ; )ij iD t α β  is the is the actual degradation path of unit i  at a prespecified time ijt ; 

1 2( ; ; )t
pα α α=α …  is a vector of fixed effects that describes population characteristics (they 

remain constant for all units); 1 2( ; ; ; )t
i i i ikβ β β=β …  is a random vector associated to the thi  

unit that represents an individual unit’s characteristics (variations in the properties of the raw 
material, in the production process, in the component dimensions, etc.) and ijε  is the 

associated random error of the thi  unit at time ijt . 

The deterministic form of ( ; ; )ij iD t α β  might be based on empirical analysis of the 
degradation process under study, but whenever possible it should be based on the physical-
chemical phenomenon associated with it. The ´ij sε  ( 1, , ; 1, , )ii n j m= =… …  are assumed to 

be independently and identically distributed (iid) with zero mean and unknown variance 2
εσ . 
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The ´ ( 1,2, , )i s i n=β …  are independently distributed as ( )Λβ θ , where ( )Λβ θ  is a 
multivariate distribution function, which may depend on an unknown parameter vector 

1( , , )t
qθ θ=θ …  that must be estimated from the degradation data, and { }ijε  and { }iβ  are 

assumed to be independent. It is also assumed that y  and t  are in appropriately transformed 
scales, if needed. For example, y  might be in log-degradation and t  in log-time. 

The proportion of failures at time t  is equivalent to the proportion of degradation paths that 
exceed the critical level fD  by time t . Thus, it is possible to define the distribution of the 
time-to-failure T  for model (1) as follows: 

( ) ( ; ; (.); ; ) ( ) [ ( ; ; ) ]T T f fF t F t D D P T t P D t D= Λ = ≤ = ≥βα α β  

when the degradation measurements are increasing with time or 

( ) ( ; ; (.);; ) ( ) [ ( ; ; ) ]T T fF t F t D P T t P D t D= Λ = ≤ = ≤βα α β  

when the degradation measurements are decreasing with time. 

Under this degradation model, one has to get the estimates of α  (the vector of fixed effects) 
and 1( , , )t

qθ θ=θ …  the parameter vector of the random effects distribution ( )Λβ θ  in order 
to estimate the percentiles of failure time distribution. 

For simple path models the distribution function ( )TF t  can be expressed in a closed form. 
For many path models, however, this is not possible. When the functional form of ( ; ; )D t α β  
is nonlinear and the model has more than one random parameter (in other words, the 
parameter vector β  has dimension k 1> ), the specification of ( )TF t  becomes quite 
complicated. Usually, one will have to evaluate the resulting forms numerically. More 
generally, one can obtain, numerically the distribution of T  for any specified , ( ), fDΛβα θ  
and D  (i.e, the model parameters, the critical degradation level, and the degradation path 
model respectively), by using Monte Carlo simulation. However, this can only be done if the 
fixed parameters α  and the parameter vector θ  of the random effects distribution ( )Λβ θ  
could be somehow estimated. So, the problem remains on the parameter estimation. 

Lu & Meeker (1993) proposed a two-stage method of estimation for the case where the 
vector of random effects β , or some appropriate reparametrization follows a Multivariate 
Normal Distribution (MVN) with mean βµ  and variance-covariance matrix ∑β . In other 
words, in this case, ( )Λβ θ = ( , ) ( , )MVNΛ ∑ = ∑β β β β βµ µ . Since full maximum likelihood 
estimation of random-effect parameters βµ  and ∑β  is, in general, algebraically intractable 
and computationally intensive when they appear nonlinearly in the path model, the authors 
proposed this two-stage method as an alternative to the computationally intensive ones. 
Simulation studies showed that the method compared well with the more computationally 
intensive methods. 

Pinheiro & Bates (1995) used Lindstrom and Bate’s method (Lindstrom & Bates, 1990) to 
obtain an approximated maximum likelihood estimate of the parameters βµ , ∑β  and 2

εσ . 
The LME (linear mixed effects models) and NLME (nonlinear mixed effects models) 
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functions, written in the S-PLUS language, were developed to attain this goal (Pinheiro & 
Bates, 2000). In other words, these functions were developed for the specific case where the 
random effects follow a Multivariate Normal Distribution. 

Meeker & Escobar (1998) used the numerical method with the NLME function developed by 
Pinheiro & Bates (1995, 2000) in a number of examples. In all of them, the failure time 
distribution ( )TF t  was estimated numerically using Monte Carlo simulation. In addition, the 
authors presented two other methods of degradation data analysis, namely the approximate 
and the analytical method. Both of them are difficult to apply when the degradation path 
model is nonlinear and has more than one random parameter. 

The methods described so far rely on maximum likelihood or least squares estimation of the 
model parameters (the so called “classical inference” procedures) and Monte Carlo 
simulation. An alternative approach to degradation data analysis is to use Bayesian methods. 
In particular, because reliability is a function of the parameters of the degradation model, the 
posterior distribution for reliability at a specified time is straightforward to obtain from the 
posterior distribution of the model parameters. Hamada (2005) used a Bayesian approach for 
analyzing a laser degradation data but the author did not compare the results with the non 
Bayesian approaches available. 

The goal of this article is to illustrate how degradation data can be modeled and analyzed by 
using “classical” and Bayesian approaches. We use the general degradation path model to 
model degradation data and the mixed-effect model proposed by Lu & Meeker (1993). Four 
methods of data analysis are implemented: the approximate, the analytical, the numerical 
(as presented by Meeker & Escobar, 1998) and the two-stage method (Lu & Meeker, 1993). 
Next we show how Bayesian methods can also be used to provide a natural approach to 
analyzing degradation data. The approaches are applied to a real data set regarding train 
wheels degradation. 

The outline of the article is as follows. Section 2 presents the real motivating situation 
(“the train wheel degradation data”). Three methods based on “classical” inference as well as 
the Bayesian approach are briefly presented in Section 3. The “Train Wheel degradation 
data” is analyzed in Section 4. Conclusions and final comments end the paper in Section 5. 

 

2. Practical Motivating Situation: Train Wheel Degradation Data 

Wheel failures, which account for half of the train derailments, cost billions of dollars to the 
global rail industry. Wheel failures also accelerate rail deterioration. To minimize rail breaks 
and help avoid catastrophic events such as derailments, railways are now closely monitoring 
the performance of wheels and trying to remove them before they start badly affecting the 
rails. 

Most railways keep in a database detailed descriptions of all maintenance actions performed 
on their trains. The data used in this article is just a small subset of such database. It refers to 
a larger study being conducted by a Brazilian railway company. The complete database 
includes, among other information, the diameter measurements of the wheels, taken at 
thirteen (13) equally spaced inspection times: 

0 1 2 130 , 50,000 , 100,000 , , 600,000t Km t Km t Km t Km= = = =… . 
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These measurements were recorded for fourteen (14) trains, each one composed of four cars 
(CA1, CA2, CA3, CA4). A wheel’s location in a particular car within a given train is 
specified by an axle number (1, 2, 3, 4 – number of axles on the car) and the side of the 
wheel on the axle (right or left). 

In this preliminary study, special attention was given to the CA1 cars because these are the 
ones responsible for pushing the other three cars in a given train. It is known that the 
operating mode of such cars accelerates the degradation process of its wheels. Therefore, the 
data used in this paper refers to the diameter measurements of the wheels located on the left 
size of axle number 1 of each one of the CA1 cars. 

The diameter of a new wheel is 966 mm. When the diameter reaches 889 mm the wheel is 
replaced by a new one. Figure 1 presents the degradation profiles of the 14 wheels under 
study. Instead of plotting the diameters itself, the curves were constructed using the 
degradation observed at each evaluation time t (i.e., 966-[observed diameter measure at 
time t]). “Failure” of the wheel is then defined to occur when the degradation reaches the 
threshold level 77fD mm= . Note that three out of fourteen units studied achieved the 
threshold level during the observation time. 

The main purpose here is to use the degradation measurements to estimate the lifetime 
distribution ( )TF t  of those train wheels. Once this distribution is obtained, one can get 
estimates of other important characteristics such as the MTTF (mean-time-to-failure, or, 
specifically, mean covered distance), quantiles of the lifetime distribution, among others. The 
profiles are shown in Figure 1. 
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Figure 1 – Plot of the wheel degradation data. 
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3. Statistical Methods for Degradation Data Analysis 

In this section, “classical” and Bayesian methods are presented. First, the four methods based 
on “classical” inference are briefly presented (Section 3.1). Next, in Section 3.2 the Bayesian 
approach is described. 

 
3.1 Methods based on “classical” inference 

The main purpose of a statistical analysis of degradation data is to get an estimate of the 
failure time distribution ( )TF t . Therefore, for a given degradation path model, two main 
steps are involved in such analysis: (1) the estimation of model parameters and (2) the 
evaluation of ( )TF t . 

For some particularly simple path models, ( )TF t  can be expressed as a simple function, and 
simple methods, such as the approximate and the analytical, can be used to estimate ( )TF t . 
These methods are described in Sections 3.1.1 and 3.1.2 respectively. The two-stage and the 
numerical methods are more complete and make the estimation of ( )TF t  possible in any 
situation. These methods are described in Sections 3.1.3 and 3.1.4 respectively. 

 
3.1.1 The approximate method 

Consider the general degradation model (1), given in Section 1.2. The approximate method 
comprises two steps. The first one consists of a separate analysis for each unit to predict the 
time at which the unit will reach the critical degradation level ( fD ) corresponding to failure. 
These times are called “pseudo” failure times. In the second step, the n  “pseudo” failure 
times are analyzed as a complete sample of failure times to estimate ( )TF t . Formally the 
method is as follows. 

• For the unit i , use the path model ,ij ij ijy D ε= +  and the sample path data 

1 1( , ), , ( , )
i ii i im imt y t y…  to find the (conditional) maximum likelihood estimate of 

1 2( ; ; )t
i i i ipα α α=α …  and 1 2( ; ; ; )t

i i i ikβ β β=β … , say ˆ iα  and ˆ
iβ . This can be done by 

using least squares (linear or nonlinear, depending on the functional form of the 
degradation path). 

• Solve the equation ˆˆ( ; ; )i i fD t D=α β  for t  and call the solution 1̂ ˆ, , nt t… . 

• Repeat the procedure for each sample path to obtain the pseudo failure times 1̂ ˆ, , nt t… . 

• Do a single distribution time-to-failure analysis (Nelson, 1990) of the data 1̂ ˆ, , nt t…  to 
estimate ( )TF t . 

The approximate method is simple and intuitively appealing. However, it is only adequate in 
cases where the degradation path ( )D t  is relatively simple, the degradation model 
considered is sufficiently appropriate, there is enough degradation data to accurately estimate 

iα  and iβ , the magnitude of the errors is small and finally, the magnitude of the 
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extrapolation needed to predict the failure times is small (Meeker & Escobar, 1998). Note 
that this method considers the model parameters as fixed. 

Moreover, the approximate method presents the following problems: it ignores the errors in 
the prediction of the “pseudo” failure times ît  and does not consider the errors involved in 
the observed degradation values, the distribution of the “pseudo” failure times does not 
generally correspond to the one that would be indicated by the degradation model and, in 
some cases, the volume of degradation data collected can be insufficient for estimating all 
the model parameters. In these scenarios, it might be necessary to fit different models for 
different units to predict the “pseudo” failure times. 

 
3.1.2 The analytical method 

For some simple path models, ( )TF t  can be expressed in a closed form. The following 
example provides an illustration of such a case. 

Suppose that the actual degradation path of a particular unit is given by ( )D t tα β= + , 
where α is fixed and represents the common initial amount of degradation of all the test units 
at the beginning of the test ( (0)D α= ), and therefore corresponds to a fixed effect; β  is the 
degradation rate that varies from unit to unit and corresponds to a random effect. 

Assuming that β  varies from unit to unit according to a log-normal distribution with 
parameters βµ  and βσ , it is possible to define the distribution function of T , by 

log( ) log
( ) 1f

T nor
D Df tDfF t P t P

t
β

β

α α µα β
β σ

− − − −⎛ ⎞⎛ ⎞−⎛ ⎞= ≤ = ≥ = −Φ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 = 

                   = 
log [log( ) ]

1 , 0nor
t Df

tβ

β

α µ
σ

− − −⎛ ⎞
−Φ >⎜ ⎟⎜ ⎟

⎝ ⎠
 

where norΦ (.) is the cumulative distribution function of a standard normal distribution. In 
this case, T  is also log-normal with location and scale parameters given by 

[log( ) ]T fD βµ α µ= − −  and T βσ σ= . Other probability density functions can be used 
along with the same procedures in order to obtain the failure time distribution ( )TF t . This 
method can be used for a simple nonlinear degradation model, assuming, for example, 

1 2( ) exp( )D t tα β α= +  for 0β > , where 1 2,α α  are fixed and β  is a random effect. Results 
with other distributions like the Weibull, Normal (Gaussian) and the Bernstein distribution 
can be found in Lu & Meeker (1993). 

 
3.1.3 The two-stage method 

To carry out the two-stage method of parameter estimation, the following steps should be 
implemented. 
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Stage 1 

1. In the first stage, for each sampled unit ( 1, 2,..., )i i n= , fit the degradation model (1) 
(using least squares) and obtain the Stage 1 estimates of the model parameters ( ; )iα β . 

In other words, for each unit i, (i=1,2,…,n) ˆˆ( , )i iα β  are the least squares estimators of 
the fixed and random model parameters. In addition, an estimator of the error 
variance 2

εσ , obtained from the thi  unit is the mean square error 

{ }22

1

ˆˆˆ ( ; ; ) ( )
i

i

m

ij ij i i i
i

y D t m qεσ
=

⎡ ⎤
= − −⎢ ⎥
⎣ ⎦
∑ α β  where, q p k= + . 

2. Assume that, by some appropriate reparameterization (e.g., using a Box-Cox 
transformation) ˆˆ ( )i i=φ H β  is approximately multivariate normally distributed with 
the asymptotic mean φµ  and variance covariance matrix φΣ . 

 
Stage 2 

In the second stage, the unconditional estimators, from the preceding discussion, 
( )ˆ ˆ, iiα φ ( 1, 2,..., )i n=  are combined to construct the two-stage estimators of the path-model 
parameters. The two-stage estimators of the path-model parameters , φα µ  and φΣ  are, 
respectively: 

1

ˆ ˆ
n

î
i

n
=

= ∑α α  ;   
1

ˆˆ
n

i
i

n
=

= ∑φµ φ     and 

( )( ) ( )
1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ 1 var ( )
n nt

i i i
i i

n nε
= =

⎛ ⎞ ⎛ ⎞
Σ = − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑φ φ φφ µ φ µ φ . 

 
Point estimation of ( )TF t  

The estimate ˆ ( )TF t  of ( )TF t  can be evaluated to any desired degree of precision by using 
Monte Carlo simulation. This is done by generating a sufficiently large number of random 
sample paths from the assumed path model with the estimated parameters and using the 
proportion failing as a function of time as an estimate of ( )TF t . The basic steps are: 

1. Estimate the path-model parameters , φα µ  and φΣ  from the n sample paths by using 

the two-stage method, giving ˆ ˆ, φα µ  and ˆ
φΣ . 

2. Generate N simulated realizations φ�  of φ  from ˆˆ( , )N φ φµ Σ  and obtain the 

corresponding N simulated realizations *β  of β  from ˆ( )-1H φ , where N is a large 

number (e.g., N=100,000) and -1H  is the inverse transformation of H . Note that in 
the cases where the distribution of (.)Fβ  of β  is known, N simulated realizations *β  
of β  can be generated directly from this distribution. These values can then be used 
in the steps 3 and 4 described below. 
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3. Compute the corresponding N simulated failure times *t  by substituting *β  into 
ˆ( ; ; )fD D t= β α . 

4. Estimate ( )TF t  from the simulated empirical distribution  
*ˆ ( )TF t Number of simulated first crossing times t t N⎡ ⎤= ≤⎣ ⎦ , 

 for any desired values of t. 

The Monte Carlo approximation error is easy to evaluate by using the binomial distribution. 
This error can be made arbitrarily small by choosing the Monte Carlo sample size N to be 
large enough. Pointwise confidence intervals can be constructed by the bootstrap procedures 
(Efron, 1985). 

 
3.1.4 The numerical method 

Many practical situations are described by nonlinear models which include more than one 
random effect. In these cases, it is very difficult to get a closed-form expression for ( )TF t . 
In such cases, estimation of the model parameters needs to be done by maximization of the 
likelihood function numerically. 

Suppose that in the general degradation path model (1), the parameter vector 

1 1( ) ( , , , , , )t
p kα α β β= =Θ α;β " "  follows a Multivariate Normal Distribution (MVN), with 

mean vector µΘ  and variance-covariance matrix ΘΣ . In addition, suppose that the random 

errors { }ijε  follow a normal distribution with mean zero and constant variance 2
εσ . The 

assumption of MVN distribution for Θ  allows the information of the unit path ( )D t  to be 
concentrated only on the parameters Θµ  and ΘΣ  without loss of information. For the fixed 
effects components of Θ , the values are set equal to the proper effects and the respective 
variance and covariance terms involving the fixed effects are set equal to zero. 

The estimation of Θµ , ΘΣ  and 2
εσ  is carried out from the following likelihood function: 

 
1 1

1( , , ) ( ) ( ; ; )
imn

ij
i j

l Data f dε
ε

σ ζ
σ

+∞ +∞

= =−∞ −∞

⎡ ⎤
= Φ⎢ ⎥

⎣ ⎦
∏ ∏∫ ∫Θ Θ Θ Θ Θµ Σ Θ µ Σ Θ… , (2) 

where 1 1( , ) ( , , , , , , ; , )ij ij ij i ij ij i ip i iky D t y D tεζ σ α α β β σ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦Θ Θ εΘ µ Σ… …  and 

1 1( ; ; ) ( , , , , , ; ; )i ip i ikf f α α β β=Θ Θ Θ Θ Θ ΘΘ µ Σ µ Σ… …  is the multivariate normal density 
function. 

Pinheiro & Bates (1995) used the results developed by Lindstrom & Bates (1990) to obtain 
the approximation maximum likelihood estimate of the parameters ,Θ Θµ Σ  and 2

εσ . The 
LME (linear mixed effects models) and NLME (nonlinear mixed effects models) functions, 
written in the S-PLUS language, were developed to attain this goal (Pinheiro & Bates, 2000). 

After the estimation of ,Θ Θµ Σ  and 2
εσ , ( )TF t  can be obtained numerically by direct 

integration. The amount of computational time needed to evaluate the multidimensional 
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integral will, however increase exponentially with the dimension of the integral. An 
alternative procedure is to evaluate ( )TF t  numerically using Monte Carlo Simulation. 

This simulation is carried out using the estimates of the parameters ,Θ Θµ Σ  and 2
εσ , that are 

supplied by the LME or NLME functions. N possible degradation paths ( )D t  are generated 
and for each one of them the “failure time” (crossing time or equivalently, the time when the 
degradation path first crosses the line fy D= ) is obtained to calculate the values of ˆ ( )TF t  
using the expression 

 [ ]ˆ ( )TF t Number of simulated first crossing times t N= ≤ , (3) 

where t is a fixed instant of time and N must be a large number (usually, 510N ≥ ). 

To simulate the N paths of ( )D t  it is necessary to generate N possible realizations of the 

vector 1 1( ) ( , , , , , )t
p kα α β β= =Θ α;β " "  from a MVN distribution with mean ˆΘµ  and 

variance-covariance matrix ˆ
ΘΣ . The last step consists of applying (3). An algorithm 

showing the whole sequence of estimations steps for the numerical method was presented by 
Yacout et al. (1996). Confidence intervals can be obtained using a resample method, as the 
Bootstrap (Efron, 1985). 
 
3.2 Bayesian Inference 

Consider the general degradation path model given by expression (1). For that model the 
´ ( 1,2, , )i s i n=β …  are assumed to be independently distributed as ( )Λβ θ , where ( )Λβ θ  is a 

multivariate distribution function, which may depend on an unknown parameter vector 

1( , , )t
qθ θ=θ …  that must be estimated from the data. In addition, { }ijε  and { }iβ  are 

assumed independent and the random errors ´ij sε  ( 1, , ; 1, , )ii n j m= =… …  are assumed to be 

independently and identically distributed (iid) with mean zero and unknown variance 2
εσ . 

Under this degradation model, one has to get the estimates of the unknown model parameters 
2( ; ; )εσ=η α θ  in order to estimate the failure time distribution. 

Bayesian inference provides a way to estimate the unknown model parameters and to assess 
their uncertainty through the resulting parameter posterior distribution. It does so by 
combining prior information about 2( ; ; )εσ=η α θ  with the information about 2( ; ; )εσ=η α θ  
contained in the data. The prior information is described by a probability density function 

( )π η  known as the prior, and the information provided by the data is captured by the data 
sampling model 

111 1 1( ) ( ) ( , , . , , , )
nm n nml Data l l y y y y= =η y η η… … … , known as the 

likelihood. The combined information is then described by another probability density 
function ( )π η y  called the posterior. Bayes theorem provides the way to calculate the 
posterior, namely, 

 ( ) ( ) ( ) ( ) ( ) ,l l dπ π π= ∫η y y η η y ω ω ω  (4) 

where ( ) ( )l dπ∫ y ω ω ω  is the marginal density of y. 
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The problem here is usually to calculate the integral in equation (4) as well as those 
necessary to get marginal posteriors from ( )π η y . However recent advances in Bayesian 
computing make it easy to sample from the posterior of the model parameters (Geman & 
Geman, 1984; Gelfand & Smith, 1990; Casella & George, 1992; Chib & Greenberg, 1995). 
The sampling is accomplished through Markov Chain Monte Carlo (MCMC) simulation 
(Lopes & Gamerman, 2006). It also turns out that it is more convenient to work with samples 
to provide inference for the reliability function. For the wheel degradation data, the Bayesian 
software WinBugs (Spiegelhalter et al., 2000) was used to carry out Bayesian inference. 
WinBugs is freely available from the Web at http://www.mrc-bsu.cam.ac.uk/bugs/ and can 
easily implement MCMC. 

 
3.2.1 Point Estimates 

Although the posterior distribution ( )π η y  summarizes all the information about η  once 
the data y is observed, in some cases it is convenient to summarize this information in a 
single quantity. In a Bayesian framework it is necessary to first specify the losses consequent 
on making a decision d  when various values of the parameter η  pertain. 

For a real valued parameter η  and a loss function ( , )L dη , the Bayes estimator is the value d 
which minimizes the posterior expected loss. In other words, 

 ˆ min ( ( , ) ) min ( , ) ( )B d d
E L d y L d y dη η η π η η= = ∫  (5) 

Different loss functions lead to different Bayes estimators. If the quadratic loss function 
2( , ) ( )L d dη η= −  is used then ˆ ( )Bd E yη η= =  (the posterior mean). It can be shown that 

the choices ( , )L d dη η= −  and the “0-1” loss generate respectively the posterior median 
and the posterior mode as Bayesian estimators (Migon & Gamerman, 1999). More general 
results are available. For instance, if the quadratic loss ( , ) ( ) ( )tL = − −η d η d M η d  ( η  and d 
are now vectors and M  is a positive definite matrix) is chosen, it can be shown that the 
Bayes estimator is still the posterior mean. 

In addition to point summaries, it is always important to report posterior uncertainty. The 
usual approach it to present quantiles of the posterior distribution of the quantities of interest. 
A slightly different method of summarizing posterior uncertainty is to compute a region of 
highest posterior density (HPD): the region of values that contains 100(1-α) % of the 
posterior probability and also has the characteristic that the density within the region is never 
lower than that outside. 

High Posterior Density regions (HPD) were calculated using the package Coda (Plummer 
et al., 2005) implemented in the software R (2006). 

 

4. The Wheel Degradation Data revisited 

The statistical model for the data displayed in Figure 1 can be succinctly stated as 

( )1ij i ij ijy tβ ε= + , 1,...,14 ( ); 1, 2,...,12 ( ),i wheels j measurement times= =  (6) 
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where the reciprocal slope iβ  is the thi  unit random effect and represents an individual 
unit’s characteristics (variations in the properties of the raw material, in the production 
process, in the component dimensions, etc.) and ijε  is the associated random error of the thi  
unit at time ijt . It is assumed that 1) iβ ´s and the ijε ´s are independent and 2) ijε  are 

independently and identically distributed 2(0, )N εσ . 

In this section, the wheel degradation data is analyzed. Sections 4.1 to 4.4 describe de data 
analysis based on each one of the “classical” methods. All the results are summarized in 
Table 2. Figures 4 to 6 summarize them graphically, including the confidence intervals that 
have been constructed in each case. Comments regarding the comparison of these results are 
left to Section 4.5. The Bayesian approach to this practical situation is described in Section 4.6. 

 
4.1 Estimation of ( )TF t  using the approximate method. 

A separate degradation model given by the expression (6) was fitted to each sample unit i 
and least squares estimators ˆ

iβ  of iβ  ( 1, 2, ,14)i = …  where calculated. Note that, by doing 
this, the model parameter iβ  is assumed to be fixed. The calculation of the “pseudo” failure 

distance for each wheel unit was carried out from the values of ˆ
iβ , using the expression 

ˆ ˆˆ 77i f i it D β β= = . The results of this step are displayed in Table 1. 
 

Table 1 – Pseudo failure distances. 

wheel ˆ
iβ  

Pseudo failure distance 
3( 10 )Km×  

1 29.82 2296.14 
2 24.84 1912.68 
3 17.48 1345.96 
4 13.04 1004.08 
5 8.69 669.13 
6 12.58 968.66 
7 13.59 1046.43 
8 22.50 1732.50 
9 9.27 713.79 

10 14.71 1132.67 
11 4.63 356.51 
12 3.58 275.66 
13 10.40 800.08 
14 7.01 546.70 

 

Probability plots and residual analysis were used to investigate the adequacy of several 
distributions to the data displayed in Table 1 (pseudo failure distances). Figure 2 shows 
probability plots for the Weibull and log-normal distributions. Figure 3 compares the Kaplan 
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Meier nonparametric point estimates ( ˆ ( )KMR t ) of the reliability function ( )TR t  (Meeker & 

Escobar, 1998) and the maximum likelihood (ML) estimates ˆ ( )WR t  and ˆ ( )LNR t  obtained 
from the Weibull and log-normal models respectively, all evaluated at the pseudo failure 
times (pseudo failure distances) shown in Table 1. 

Some observations from Figures 2 and 3 are: 
• Figure 2 shows that either the log-normal or Weibull distribution can be used to fit the 

data displayed in Table 1 
• Comparing Figures 3(a) and 3(b) shows that the points on Figures 3 (b) (log-normal) 

lie closer to the line “y=x” than the points on the Weibull plot. This pattern indicates 
that the parametric point estimates provided by the log-normal model are closer to the 
empirical estimates than the ones provided by the Weibull model, indicating a slightly 
better performance of the former. However, due to sample size restrictions (only 14 
wheels), it was decided to go on the analysis considering both distributions. 

 

 
Figure 2 – Weibull and log-normal Probability plots for the pseudo failure distances. 
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Figure 3 – Comparison of the parametric and nonparametric (Kaplan Meier – KM) estimates of 
( )TR t  evaluated at each pseudo failure time: (a) Weibull model; (b) log-normal model. 
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Table 2 shows the results obtained from the Weibull and log-normal models. The estimated 
values of the average distance covered by the wheel (MTTF) are 1,060,880 Km (Weibull 
model) and 1,071,870 Km (log-normal model). Other quantities of interest are the median 
distance ( 0.50t ), the 0.1010 ( )th percentile t  and the reliability at 300,000 Km. Table 2 displays 
these estimates as well as the 95% asymptotic confidence intervals. We note that the widths 
of the confidence intervals provided by the log-normal model are smaller than the respective 
ones calculated by the Weibull model, indicating a higher precision of the estimated values 
provided by the former. 
 

Table 2 – Interval and point estimates obtained by each method and distribution. 

Weibull Log-normal 

Method Method  

Approximate (2)  Analytical (3) Two-stages (4) Approximate (2) Analytical (3)  Two-stages (4)

(1)MTTF  1060.9 1060.2 1061.8 1071.9 1071.9 1109.2 

 [803.9; 1400.1] [784.3; 1370.4] [785.5; 1374.4] [769.0; 1494.0] [773.2; 1401.6] [792.4; 1422.8]

0.10
(1)t  383.3 383.7 365.8 426.3 426.3 395.3 

 [207.9; 706.8] [240.7; 648.4] [223.3; 627.5] [281.8; 644.9] [287.5; 713.9] [264.8; 687.9]

0.50
(1)t  994.2 994.9 983.9 902.6 903.0 899.9 

 [727.4; 1359.1] [730.0; 1329.4] [732.5; 1322.9] [664.4; 1227.1] [657.8; 1228.1] [648.8; 1217.2]

 R(300,000) 0.937 0.937 0.930 0.970 0.970 0.956 

 [0.771; 0.984] [0.860; 0.989] [0.858; 0.983] [0.844; 0.997] [0.889; 1.00] [0.876; 0.985]
(5)AIC index  219.062 97.448 97.448 219.30 97.686 97.686 

(1) values should be multiplied by 310 Km ; (2) point estimates and asymptotic 95% confidence 
intervals; (3) point estimates and (nonparametric) bootstrap 95% confidence intervals; (4) point 
estimates and bootstrap 95% confidence intervals; (5) Akaike’s Information Criterion. 
 
4.2 Estimation of ( )TF t  using the analytical method 

1. For each sampled unit, the degradation model (6) was fitted to the sample paths and 
the estimates of the model parameters were obtained using the least squares 
estimation method. These estimated values ( ˆ

iβ ) are exactly the ones that have already 
been shown in Table 1 (Section 4.1). 

2. The degradation model (6) postulated for the wheel profiles is very simple since it is a 
straight line with one random parameter only. In addition, the analysis of probability 
plots constructed to the ˆ

iβ  (they are not shown here) indicated that either the log-
normal or Weibull distribution could be used to fit those values. Therefore, the failure 
time distribution ( )TF t  can be obtained directly, using the following relationships: 

( ) ( )~ , ~ log ,flog normal T log normal Dβ β β ββ µ σ µ σ− ⇔ − +  (7) 

( ) ( )~ , ~ ,T TWeibull T Weibullβ ββ δ λ δ λ⇔ , (8) 
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where  ;T T fDβ βδ δ λ λ= =   and  ( ) ( )1( ) exp TT T
T T T Tf x x x δδ δδ λ λ− ⎡ ⎤= −⎣ ⎦  

Consequently, the data analysis was carried on according to the following steps: 

1. Log-normal and Weibull models were fitted to the ˆ
iβ  values and the maximum 

likelihood estimates ˆ ˆ,β βµ σ  (log-normal case) and ˆ
βδ , ˆ

βλ  (Weibull case) were 
calculated. 

2. Next, the parameters of the failure time distribution were obtained by using the 
expressions (7) and (8) above. The results are summarized below. 

• Log-normal case: 
( )

[ ]( )
( )

~ 2.46192;0.644248
~ log 77 2.46192 ;0.644248
~ 6.805725;0.644248

log normal
T log normal
T log normal

β −

⇔ − +

⇔ −

 

• Weibull case: 
( )

( )
( )

~ 1.976719;15.54349
~ 1.976719;77 15.54349
~ 1.976719;1196.84873

Weibull
T Weibull
T Weibull

β
⇔ ×

⇔

 

Table 2 summarizes the results based on the two distributions. 95% bootstrap confidence 
intervals were obtained for each one of the quantities of interest. For almost all of them it 
would have been possible to calculate asymptotic confidence intervals using the delta 
method (Mood, Graybill & Boes, 1974; chapt. 5, p. 181). One exception is the MTTF for 
which the calculations are not straightforward. Therefore, it was decided to calculate all the 
confidence intervals using the bootstrap (nonparametric) re-sampling method. 

 
4.3 Estimation of ( )TF t  using the two-stage 

The steps of the analysis are given bellow. 

1. As it was done in the approximate and the analytical method, for each sampled unit, 
the degradation model (6) was fitted to the sample paths and the estimates of the 
model parameters were obtained using the least squares estimation method 
(the estimated values ˆ

iβ  are shown in Table 1). 

2. Next, in order to use the two-stage estimation method, one would have to find an 
appropriate transformation ˆ ˆ( )i iHφ β= , with îφ  approximately normally distributed 

with asymptotic mean φµ  and asymptotic variance covariance 2
φσ . However as it was 

mentioned before, the analysis of probability plots constructed to the ˆ
iβ ´s indicated 

that either log-normal or a Weibull distribution could be used to fit those values, in 
particular, a (2.46192;0.644248)log normal−  or a ( )1.976719;15.54349Weibull  
(see results of the analytical method). Therefore, it was possible to move on to step 3, 
using these two distributions. 
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3. N=100,000 simulated realizations *β  of β  were generated from each one of the two 
distributions mentioned in step 2. 

4. For each distribution, the corresponding N simulated failure times *t  were calculated 
by substituting each *β  into fD tβ= . 

5. ( )TF t  was estimated from the simulated empirical distribution 
*ˆ ( )TF t Number of simulated first crossing times t t N⎡ ⎤= ≤⎣ ⎦ , 

 for any desired values of t. 

Bootstrap 95% confidence intervals were calculated. The results are shown in Table 2. 

 
4.4 Estimation of ( )TF t  using the numerical method 

The numerical method was not applied to this problem since there were evidences against the 
basic assumption regarding normality of the random parameter. Toledo (2007) showed that 
the results of the numerical method are strongly affected by the violation of that assumption. 

 
4.5 Comparison of the results generated by the methods based on “classical” inference 

Some observations from Table 2 and Figures 4 to 6 are: 

1. The point estimates obtained by the Approximate and the Analytical methods are very 
similar. This result was already expected since there is a relationship between the random 
parameter distribution ( Fβ ) and the pseudo failure time distribution ( TF ). 

2. The precision of the methods may be evaluated by the confidence intervals widths. These 
values are essentially the same for the central measures (MTTF and 0,50t ) for both 
distributions. Some differences can be detected for 0,10t  and R (300,000). For 0,10t , 
it seems that the two-stages method is slightly better than the other two, for the Weibull 
distribution. On the other hand, the Approximate method is the best one in the log-normal 
case. In terms of the R(300,000), the Approximate is the worst method for the two 
distributions considered. 

3. Table 2 shows also the Akaike’s Information Criterion – AIC (Akaike, 1974) calculated 
for the models based on the Weibull and log-normal distributions. Lower values of this 
index indicate the preferred model. For the approximate method for example, the values 
of this criterion are 219.062 and 219.30 for the Weibull and log-normal respectively. The 
same situation is observed for the analytical and the two-stages method, in other words, 
the AIC values for the Weibull-based model is slightly lower than the one for the log-
normal. Note that the AIC values are the same for the analytical and the two-stages 
methods since in either case, the two distributions considered (Weibull and log-normal) 
are fitted to the same least squares estimates β̂ . Although the AIC values for Weibull-
based models turned out to be smaller than the ones for the log-normal models, the 
observed difference is too small in order to be used as a model selection. Therefore, it is 
fair to say that for the situation studied, either the Weibull or the log-normal-based 
models can be used. 
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Figure 4 – Point estimates (MTTF, 0.10t , 0.50t ) and confidence intervals obtained by each method 

of degradation data analysis (“classical” inference).  
Weibull distribution. 

 

 
Figure 5 – Point estimates (MTTF, 0.10t , 0.50t ) and confidence intervals obtained by each method 

of degradation data analysis based on “classical” inference.  
Log-normal distribution. 
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Figure 6 – Point estimates of R(300,000) and confidence intervals obtained by each method of 

degradation data analysis (“classical” inference).  
Weibull and Log-normal distributions. 

 

4.6 Bayesian Inference 

In Section 4.1, pseudo lifetimes (obtained by fitting lines to each degradation curve and 
calculating the times when the fitted lines reach the failure threshold) were used to identify 
an appropriate lifetime distribution. The analysis showed that the pseudo lifetimes for the 
wheel degradation data are well described either by a Weibull or a log-normal distribution. 
In addition, the expressions (7) and (8) established the relationships between the reciprocal 
slopes { }iβ  and lifetimes distributions. 

Consequently, in order to analyze the wheel degradation data, the following two models were 
considered. 
 

 Model 1: ( ) (1/ )ij i ij ij i ij ijy D t tε β ε= + = + ; ~ ( , )i Weibull β ββ δ λ , therefore, 
2| ~ ((1/ ) , )ij i i ijy N t εβ β β σ=  for 1, ,14i = …  e 1, ,12j = … . In this case, the 

following flat priors were used: 

2

~ Gamma(0.01;0.01),

~ Gamma(0.01;0.01)

~ Inverse Gamma(0.01;0.01).

and
β

β

ε

δ

λ

σ

 

Gamma priors were chosen for βδ  and βλ  because they are positive quantities. The 

measurement error variance 2
εσ  is also a positive quantity, but there has been a tradition in 

the Bayesian literature to use an inverse gamma prior for this parameter (Migon & 
Gamerman, 1999). Consequently, the prior of the reciprocal of 2

εσ  is also a gamma 

distribution. The parameters βδ , βλ  and 2
εσ  are assumed independent. 
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 Model 2: ( ) (1/ )ij i ij ij i ij ijy D t tε β ε= + = +  where 2~ log ( , )i normal β ββ µ σ  and the 
following priors: 

2

2

~ Normal(0;100),

~ Inverse Gamma(0.02;0.02),

~ Inverse Gamma(0.01;0.01).

β

β

ε

µ

σ

σ

 

These parameters are also assumed independent. 

The priors adopted for models 1 and 2 are noninformative vagues (Migon & Gamerman, 
1999) since they all have very large variances (flat densities). For instance, for model 1, the 
Gamma priors both have mean 1 and variance 100 and the Inverse Gamma has variance 
1/0.01 = 100. Similarly, for model 2, the Inverse Gammas have both mean 1 and variances 
200 and 100, for 2

βσ  and 2
εσ  respectively. The Normal distribution adopted as prior is also 

very flat, with variance 100. These flat priors have been used in many practical situations 
found in the literature (Gelman, Carlin, Stern & Rubin, 2004). 

The posterior of βδ  (shape parameter), βλ  (scale parameter), 2
εσ , ( 1,...,14)i iβ =  (Weibull 

case) and of βµ  (location), 2
βσ  (scale), 2

εσ , ( 1,...,14)i iβ =  (log-normal case), were 
obtained by MCMC. A sample of size 102,000 was considered with a burn-in period of 
2,000 draws and no thinning. The burn-in period was achieved by discarding the first 2,000 
samples and because there was no thinning, the next 100,000 samples were kept. 
Convergence was assessed by graphical methods (Gamerman & Lopes, 2006). The results 
for the Weibull and log-normal cases are shown in Tables 3 and 4 respectively. 

 
Table 3 – Bayesian estimates of the quantities of interest and 95% HPD regions.  

(prior: Weibull distribution) 

 Mean Median Standard 
deviation 

(1)Q   
2,5% 

(3)HPD  
LB 

(2)Q  
97,5% 

(4)HPD  
UB 

βλ  0.01 0.01 0.01 0.00 0.00 0.04 0.03 

βδ  1.95 1.93 0.41 1.22 1.18 2.80 2.75 

εσ  0.99 0.99 0.06 0.88 0.88 1.11 1.11 

MTTF (5)  1097.00 1083.00 172.13 800.84 772.21 1473.13 1433.46 
(5)

0,10t  382.80 378.90 118.79 163.65 151.86 624.66 611.34 

(5)
0,50t  1011.00 1006.00 170.75 688.85 679.88 1361.00 1349.66 

R(300,000) 0.92 0.93 0.05 0.80 0.82 0.98 0.99 

(1) 2.5% quantile of the posterior distribution.; (2) 97.5% quantile of the posterior distribution;  
(3) HPD region lower bound; (4) HPD region upper bound; (5) 310 Km×  
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Table 4 – Bayesian estimates of the quantities of interest and 95% HPD regions. 
(prior: log-normal distribution) 

 Mean Median Standard 
deviation 

(1)Q  
2,5% 

(3)HPD
LB 

(2)Q  
97,5% 

(4)HPD
UB 

θµ  2.46 2.46 0.18 2.10 2.08 2.81 2.81 

θσ  0.65 0.62 0.14 0.44 0.41 0.98 0.92 

εσ  0.99 0.99 0.06 0.88 0.88 1.11 1.11 

MTTF (5)  1147.00 1101.00 264.13 796.86 741.67 1776.64 1647.80 
(5)

0,10t  405.60 405.90 94.01 220.39 216.15 589.28 584.85 
(5)

0,50t  916.10 901.30 163.98 636.39 606.56 1264.10 1242.41 

R(300,000) (5)  0.95 0.96 0.05 0.82 0.86 0.99 1.00 

(1) 2.5% quantile of the posterior distribution; (2) 97.5% quantile of the posterior distribution;  
(3) HPD region lower bound; (4) HPD region upper bound; (5) 310 Km×  

 

Note that for the Weibull case and the quadratic loss function, the reliability of the wheels 
at 300,000 Km is 0.92 (95% HPD region is [0.82;0.99]). In addition, 10% of the wheels 
will need replacement by 382.80 310×  Km of usage (95% HPD: [151.86 310×  Km; 
611.34 310×  Km]). The Bayesian estimates for the other quantities are given in Table 3 along 
with 95% HPD regions and selected quartiles of the posterior distribution. 
 
In the log-normal case, the reliability of the wheels at 300,000 Km is 0.95 (95% HPD region: 
[0,86;1.00]). In addition, 10% of the wheels will need replacement by 405.60 310×  Km of 
usage (95% HPD: [216.15 310×  Km; 584.85 310×  Km]). The Bayesian estimates for the 
other quantities are given in Table 4 along with 95% HPD regions and selected quantiles of 
the posterior distribution. The DIC value (Deviance Information Criterion; Spiegelhalter 
et al., 2002) for the Weibull and the log-normal models were 6309.27 and 6309.50, 
respectively indicating a similar performance of the two selected models. 
 
Figures 7 and 8 show histograms of the posterior distributions of the MTTF (mean time to 
failure or mean covered distance); R(300,000) and 0,1t  for the Weibull and lognormal models 
respectively. Note that R(300,000) has an asymmetrical distribution in both cases. 
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Figure 7 – Histograms of the posterior distributions for R(300,000), 0,10t  and for the mean 

covered distance, respectively. Weibull model. 
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Figure 8 – Histograms of the posterior distributions for R(300,000), 0,10t  and for the mean 

covered distance, respectively. Log-normal model. 
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5. Conclusions and Final Comments 

In this paper, five methods of degradation data analysis were presented. Four of them are 
based on the so called “classical” inference. The numerical method was not applied to the 
real data set since a basic model assumption was not valid in that situation. The point 
estimates obtained by each one of the “classical” methods were very similar. In particular, 
due to the relationship between the random parameter distribution and the failure time 
distribution, it was found that the Approximate and the Analytical methods lead to the same 
results. For more complicated models (nonlinear, more than one random parameter or even a 
mixed parameter model), the application of those methods might be difficult and may lead to 
different results. In these cases, researches will have to use the numerical method, assuming 
that the vector of random parameters has a multivariate normal distribution. 

On the other hand Bayesian approach seems to be a reasonable choice especially if one needs 
to handle more complicated degradation models. Because reliability and lifetime distribution 
quantiles are functions of the model parameters, posteriors for these quantities are easily 
obtained from draws from the model parameter posteriors; for each such draw, simply 
evaluate the quantity of interest to obtain draws from that quantity’s posterior. 

One should be careful to compare the results of Bayesian and “classical” approaches since 
the concepts behind them are quite different. The former leads to a posterior distribution of the 
(random) quantity of interest while the latter produces a point estimate (of a fixed quantity). 
In “classical” approaches, confidence intervals are constructed while credible intervals are 
obtained in the Bayesian methods. But in practical situations like the one described in this 
paper, it is necessary to report some kind of “point estimate” in order to support future 
technical decisions. In that case, it is fair to say that by using flat priors and the quadratic loss 
function, Bayesian and classical approaches leaded roughly to the same results. 
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