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ABSTRACT. The hub-and-spoke network design problem, also known as the hub location problem, aims

to find the concentration points in a given network flow so that the sum of the distances of the linkages is

minimized. In this work, we compare discrete solutions of this problem, given by the branch-and-cut method

applied to the p-hub median model, with continuous solutions, given by the hyperbolic smoothing technique

applied to a min-sum-min model. Computational experiments for particular instances of the Brazilian air

transportation system, with the number of hubs varying from 2 to 8, are conducted with the support of a

discretization heuristic and the Voronoi diagram.

Keywords: hub location problem, p-median, hyperbolic smoothing technique.

1 INTRODUCTION

Air freight has grown faster in the past few decades (Bowen, 2004). Particularly in Brazil, about

179 million trips were processed in 2011, 15% more than in the previous year (INFRAERO,

2011). This growth calls for a rationalization of the air transport system. In this context, there are

challenges to be faced in serving this growing demand. The most important challenge appears

to be the poor airport infrastructure that prevails in Brazil, where the busiest airports face huge

problems of congestion and most do not have physical space available for expansion. A useful

strategy to improve the configuration of air transportation systems is the hub-and-spoke net-

work design.

According to Alumur & Kara (2008), hubs are special facilities that serve as switching, trans-

shipment and sorting points in many-to-many distribution systems. Then, the word hub can be
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described as a center of importance or interest and the word spoke can be defined as a link or arc.

Therefore, the hub-and-spoke system can be interpreted as relevant centers connected to many

nodes through links. This strategy aims to optimize the number/distances of linkages in the net-

work, diminishing the overall costs. In this sense, the hub-and-spoke network design problem,

also known as the hub location problem, aims to find the centers that are linked to each other,

which in turn concentrate regional interconnected nodes that enable minimization of the flow

costs (Fulco, 2006).

Just as for the most facility location problems, the generic hub location problem is also known as

the network design problem (Campbell & O’Kelly, 2012). Contreras & Fernandez (2011) show

a review of combined network design and location problems, in which can be observed that the

corresponding mathematical models are in general variations of the classic p-median model. In

particular, the Steiner tree problem can be viewed as a hub location problem where the Steiner

points that should be determined are hubs to be located. In this way, the Steiner problem is

traditionally and quite logically viewed as a network design problem, but not a location problem

(Campbell & O’Kelly, 2012).

As in Pizzolato et al. (2012), the formal study of hub locations was introduced by O’Kelly (1987)

who provided a quadratic programming model for the hub location problem, and proposed two

enumeration-based heuristics to solve it. The modeling design considered as assumption that:

the number of hubs p was known a priori, no limit on the number of spokes assigned to a hub,

each spoke was assigned to a single hub, and all hubs were interconnected.

Indeed, the hub location problem has attracted the attention of researchers from a wide variety

of science fields, such as Geography, Operations Research, Transportation (of passengers and

of cargo), Telecommunications, among others. An overview of the academic research on hub

location problems can be found in Alumur & Kara (2008), Hekmatfar & Pishvaee (2009) and

Campbell et al. (2009), where can be verified that many sophisticated models have been pro-

posed. Also, some reflections on the origins of the hub location research, comments about its the

present status and suggestions for some promising directions for the next 25 years can be found

in (Campbell & O’Kelly, 2012).

In this study, we deal with the hub-and-spoke design of the Brazilian air transportation system,

aiming to compare a discrete and a continuous solution method. To this end, the bi-dimensional

hub location problem is treated in a simplest way, that is: the only considered parameters of

the original problem are the geographical coordinates (latitude and longitude) of the Brazilian

airports. No costs are considered in this study.

First, we solve the hub location problem by formulating it as the p-hub median model, us-

ing the same analogy made by Campbell (1996), where a demand point in a p-median model

is analogous to an origin-destination pair in the hub-and-spoke problem. The resulting model

is an integer linear programming problem whose instances are solved by the branch-and-cut

method.

Pesquisa Operacional, Vol. 33(3), 2013
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Then, we consider the application of the hyperbolic smoothing technique, introduced by Xavier

(1996), to solve the minimization of the sum of minimal spoke distances, a continuous formula-

tion that models the hub location problem. In general terms, this technique solves a sequence of

low dimensional differentiable unconstrained continuous optimization subproblems whose so-

lutions gradually approach a solution of the original problem. This method has been applied

to solve other optimization problems such as the determination of spatial molecular structure

(Souza et al., 2011) and the determination of radio telecommunication bases (Brito & Xavier,

2006), for example.

We observe that the discrete method chooses as hub locations the points (nodes) over the net-

work, whereas the solutions of the continuous method can be points out of the network (not

nodes), but in between the given network points. So, in other to compare both methods in respect

to the minimization of the spoke-distances, we apply a discretization procedure to approximate a

point outside the network, given by the continuous method, to the nearest point over the network

that results in lower spoke-distances, whenever it is needed.

Computational experiments are conducted with a network of 41 airports of the Brazilian air

transportation system, extract from the network of 135 airports built by Figueiredo et al. (2012).

The solutions of both methods are compared, varying from 2 to 8 the number of hubs, with the

support of the Voronoi diagrams. As suggested by Costa et al. (2010), the number of hubs in the

Brazilian air transportation network should not be greater than 10, due to the adequate degree of

clustering in the network.

The paper is organized as follows. As the hub location problem has been already introduced, in

Section 2 we briefly describe the p-hub median model. Section 3 presents the hyperbolic smooth-

ing technique which is applied to solve a min-sum-min continuous model. Section 4 presents the

proposed discretization procedure and the numerical experiments with both methods and with

the auxiliary of the Voronoi diagram, while Section 5 outlines the conclusions.

2 THE p-HUB MEDIAN APPROACH

Likewise Campbell (1996), we formulate the hub location problem as the p-median model,

where a demand point is interpreted as an origin-destination pair of the hub-and-spoke network,

in such a way that the model is now called the p-hub median. So, in this approach, the loca-

tion problem seeks p-medians or p concentration points to locate hubs in order to minimize the

system impedance, that is, the sum of the spoke-distances.

In the following, we briefly describe the p-hub median model. Let S be the set of n distinct

points of a given network in the bi-dimensional space; i ∈ S a given point; j ∈ S a potential

hub median; p the given number of hubs to be located; [di j ]n×n the known symmetric distance

matrix, where di j is the distance from point i to potential hub j , with dii = 0, ∀i; [xi j ]n×n the

allocation matrix, where xi j = 1 if point i is connected to hub j and xi j = 0 otherwise; and

x j j = 1 if j is a hub median, and x j j = 0, otherwise.

Pesquisa Operacional, Vol. 33(3), 2013
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Assuming by hypothesis that any point can be chosen as hub, the p-hub median model is formu-

lated as follows:

minimize
∑
i∈S

∑
j∈S

di j xi j (1)

subject to
∑
j∈S

xi j = 1, i ∈ S (2)

∑
j∈S

x j j = p (3)

xi j − x j j ≤ 0, i, j ∈ S (4)

xi j ∈ {0, 1}, i, j ∈ S, (5)

where the objective function (1) indicates the minimization of the total distances between the

given points and the points selected to be hubs; the constraint set (2) indicates that each point i
is connected to only one hub j ; the constraint (3) guarantees that there exist exactly p located
hubs; the constraints (4) state that a given point must be connected to a hub, if it is not a hub

itself, and finally the constraint set (5) imposes binary decision variables.

Notice that instead of formulating the hub location problem the model (1)-(5) can be used to
formulate the clustering problem, where the p clustering points cover/concentrate the remaining
n − p points.

3 THE HYPERBOLIC SMOOTHING APPROACH

Let S = {s1, . . . , sn} denote the set of n given distinct points in the bi-dimensional space to
be clustered into a given number p of unknown distinct points. Let xi , i = 1, . . . , p, be bi-

dimensional space position of the p potential hubs. In this approach, the hub location problem
is formulated as a continuous min-sum-min model as follows:

minimize
n∑

j=1

z j

subject to z j = min
i=1,...,p

‖s j − xi‖2, j = 1, . . . , n,

(6)

where the objective function is the sum of each minimum distance between a given point and
a potential hub.

So, in order to obtain a convex and differentiable version of the above model, we proceed with
the hyperbolic smoothing technique, proposed by Xavier (1996), which applies a sequence of

transformations to the above model. Let us first consider the relaxation of the constraints in (6),
getting:

minimize
n∑

j=1

z j

subject to z j − ‖s j − xi‖2 ≤ 0 j = 1, . . . , n, i = 1, . . . , p.

(7)

Pesquisa Operacional, Vol. 33(3), 2013
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Now, in order to obtain the desired equivalence between (6) and (7), the function ψ : R → R,

defined as ψ(y) = max{0, y}, is introduced into the inequalities, obtaining the new formulation:

q∑
i=1

ψ(z j − ‖s j − xi‖2) = 0, j = 1, . . . , n. (8)

With (8) instead of the constraint set in (7), we still have an undesirable formulation, since the
problem has no lower bound. To overcome this shortcoming, a given perturbation parameter
ε > 0 is introduced, resulting in the bounded but not differentiable optimization problem:

minimize
n∑

j=1

z j

subject to
p∑

i=1

ψ(z j − ‖s j − xi‖2) ≥ ε, j = 1, . . . , n.

(9)

Now, given the parameter τ > 0, let us consider the hyperbolic function φ : R → R, defined

as φ(y, τ ) =
(

y + √
y2 + τ 2

)
/2. Thus, the smoothness of model (9) is obtained by replacing

ψ(y) by φ(y, τ ), and also by replacing the norm function by the function θ : Rn ×Rp ×R+ →
R+, defined as θ(s j , xi , γ ) =

√(
s1

j − x1
i

)2 + (
s2

j − x2
i

)2 + γ 2 for a given parameter γ > 0,

which completes the smoothness procedure, and generates the following problem:

minimize
n∑

j=1

z j

subject to
p∑

i=1

φ(z j − θ(s j , xi , γ ), τ ) ≥ ε, j = 1, . . . , n.

(10)

As the functions of the constraints of problem (10) are monotonically increasing in the variable

z j , j = 1, . . . , n, (Xavier, 2011), they will be active at the optimal solution, and thus problem
(10) is equivalent to the following problem:

minimize
n∑

j=1

z j

subject to h j (x, z j ) =
p∑

i=1

φ(z j − θ(s j , xi , γ ), τ ) − ε = 0, j = 1, . . . , n.

(11)

Observe that model (11) has a separable structure, since each auxiliary variable z j appears

only in one equality constraint. Therefore, as the partial derivative of h(x, z j ) with respect to
z j , j = 1, . . . , n, is not equal to zero, it is possible to apply the results of the Implicit Func-
tion Theorem to compute each component z j , j = 1, . . . , n, as a function of the hub location

Pesquisa Operacional, Vol. 33(3), 2013
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variables xi , i = 1, . . . , p. In this way, problem (11) is rewritten as the unconstrained optimiza-

tion problem

minimize f (x) =
n∑

j=1

z j (x) (12)

where each z j (x) results from the computation of the single zero of each constraint equation
in (11), because in each sum term φ is strictly increasing with respect to variable z j . From the
Implicit Function Theorem, the function z j (x), j = 1, . . . , n, has derivative with respect to the
variable xi , i = 1, . . . , p, and so it is possible to compute the gradient of the objective function

of problem (12) as

∇ f (x) =
n∑

j=1

∇z j (x)

where

∇z j (x) = − ∇ h j (x, z j ) /

(
∂ h j (x, z j )

∂ z j

)
.

Summing up, the solution of the hub location problem can be obtained by using an algorithm
which solves an infinite sequence of continuous optimization subproblems formulated as (12),
where the positive parameters ε, τ , and γ are gradually reduced to zero, just as a smoothing

method. Notice that when the algorithm causes τ and γ to approach 0, the constraints of the
subproblems given in (10) tend to those of (9). Also, when the algorithm causes ε to approach 0
simultaneously, the solution of problem (9) gradually approaches the solution of the original hub

location problem (6). Additionally, each unconstrained subproblem (12) can be solved by any
method based on first order derivative information.

4 VORONOI DIAGRAM TECHNIQUE

Proposed originally by Voronoi, in the middle of the nineteenth century, the Voronoi diagram is

a special type of metric space partition determined by Euclidean distances from a set of specified
seed points in the bi-dimensional space. This partition with at least 2 seed points results in convex
bi-dimensional polygons such that each polygon contains exactly one of these seed points, as well

as it contains interior points that are closer to this seed point than any other seed point.

Resembling Boots & South (1997), the ordinary Voronoi diagram can be defined as follows.
Let {x1, x2, . . . , x p} be the set of p known distinct seed points in R2. Let x denote an arbitrary
point in R2. As the Euclidean distance between x and x j , j = 1, . . . , p, is given by

‖x − x j‖ =
√(

x1 − x1
j

)2 + (
x2 − x2

j

)2
,

the region V (x j ) = {x ∈ R
2 : ‖x − x j‖ ≤ ‖x − xi‖, j 	= i, i, j = 1, . . . , p} is called the

ordinary Voronoi polygon of the seed point x j . Indeed, V (x j ) contains all the points that are

closer to the seed point x j than any other. Moreover, the set 	(P) = {V (x1), . . . , V (x p)} is a
partition of R2, called the ordinary Voronoi diagram associated with the set of seed points.

Pesquisa Operacional, Vol. 33(3), 2013
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5 COMPUTATIONAL EXPERIMENTS

In this section, we compare the continuous and the discrete solution approaches that address
the hub location problem applied to the Brazilian air transportation system. We then present the

computational results obtained by the application of the branch-and-cut algorithm to solve the
p-hub median model (1)-(5) and by the application of the hyperbolic smoothing technique to
solve the min-sum-min model (6). From solver CPLEX 11.2 we get the results of the branch-

and-cut algorithm. The unconstrained minimization subproblems that are generated by the hy-
perbolic smoothing technique were coded with Compact Visual FORTRAN, version 6.1, and
solved by the BFGS algorithm, a quasi-Newton method from the Harwell Library, available at

http://www.cse.scitech.ac.uk/nag/hsl/. The Voronoi diagram algorithm was coded with Visual
C++, version 9.0, using Qt and CGAL tools. In addition, the numerical experiments have been
carried out on a PC Intel Celeron with 2.7 GHz CPU and 512MB RAM. The compiler was G++

under Windows operational system.

The test instances have been extracted from a hub location study involving 135 airports in the
Brazilian air transportation system, built by Figueiredo et al. (2012). Here, we considered a total
of 41 airports (nodes) in the air transportation network. The geographic coordinates (latitude

and longitude) of each airport were given, and the distances between each pair of airports were
computed.

Moreover, the test instances considered the number of hubs varying from 2 to 8. As suggested
by Costa et al. (2010), the number of hubs in the Brazilian air transportation network should

not be greater than 10, due to the adequate degree of clustering in the network. In the cited
work, the authors stated that only 4 hubs are necessary for the Brazilian air transportation system.

Regarding the solutions obtained by the smoothing hyperbolic approach, which might be outside
the network, we applied a heuristic procedure, called Nearest Allocation (NA), implemented in

C++ language, to assign the outsider solution point to the nearest point over the network with
lower spoke distances. Figure 1-(a) shows an example of two solution points (hub locations)
given by the hyperbolic smoothing technique in light-gray color and four points over the network

in dark-gray color. As we can see, there are two hub location points outside the network. Thus,
the NA heuristic procedure first locates the hubs at the corresponding nearest points over the
network, as we can see in Figure 1-(b). A new allocation of the links to the nearest hub is done
by the NA procedure, if the current spoke-distances are greater than the new spoke-distances

associated to the nearest hub, as we can see in Figure 1-(c).

Table 1 shows the hub location problem solutions for p = 2, . . . , 8 hubs out of the 41 main
Brazilian airports, which are candidates to locate hubs, for the plain hyperbolic smoothing
approach (HS) and for the hyperbolic smoothing approach combined with the NA heuristic

procedure (HSNA), as well as for the p-hub median approach.

For the fixed number of hubs p = 4, Table 2 compares the results of the plain hyperbolic smooth-
ing (HS), the hyperbolic smoothing combined with the NA procedure (HSNA) and the p-hub
median approaches. These results show that HS has located hubs at points that are not airports.

Pesquisa Operacional, Vol. 33(3), 2013
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We notice that the airports set to locate hubs coincide for the HSNA approach and for the p-hub

median approach.

Figure 1 – Nearest allocation procedure: (a) initial solution, (b) nearest

assignment, and (c) nearest assignment with lower spoke-distances.

Table 1 – Results of the hyperbolic smoothing and the p-hub

median for p = 2, . . . , 8.

number of hubs
Optimal value

HS HSNA p-hub median

2 300.130 302.413 300.413

3 220.605 223.94 223.940

4 184.992 185.897 185.897

5 158.028 159.592 159.252

6 139.437 140.663 140.663

7 126.723 128.434 127.624

8 114.353 115.396 115.064

Table 2 – Results for the 4-hubs network design.

Approach Optimal value Hubs

HS 184.992 not airports

HSNA 185.897 IMP, MAO, MCZ, VCP

p-hub median 185.897 IMP, MAO, MCZ, VCP

In Figure 2, the Voronoi diagram refers to the seeds of the 4-hub median approach. In the
diagram, the four resulting points given by the plain hyperbolic smoothing technique are showed

in light-gray color with their corresponding spokes. As we can see, there are only two points
with light-gray color, because the other two (the MAO and the VCP airports) coincide with the
medians already found.

Pesquisa Operacional, Vol. 33(3), 2013
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Figure 2 – Brazilian map for 4 hubs as seeds of the Voronoi diagram.

For the fixed number of hubs p = 6, Table 3 shows the results for the plain hyperbolic smoothing

(HS), the hyperbolic smoothing combined with the NA procedure (HSNA) and the p-hub median
approaches. We notice that the airports set to locate the hubs coincide for the HSNA approach
and for the p-hub median approach. Here, there is an example of the benefit of applying the NA

discretization procedure. From HS, the VCP airport is linked to a hub point that is not an airport.
With the application of the NA procedure, VCP is linked first to GIG hub, but the lower total
distances is achieved when VCP is linked to JOI hub.

Table 3 – Results for the 6-hubs network design.

Approach Optimal Value Hubs Differences

HS 139.437 not airports VCP not linked to JOI

HSNA 140.663 IMP, MAO, JOI, MCZ, GYN, GIG VCP linked to JOI

p-median 140.663 IMP, MAO, JOI, MCZ, GYN, GIG VCP linked to JOI

Pesquisa Operacional, Vol. 33(3), 2013
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In Figure 3, the Voronoi diagram refers to the seeds of the 6-hub median approach. In the

diagram, the six resulting points found by the plain hyperbolic smoothing technique are showed
with light-gray color with their corresponding spokes. As we can see, there are only four points
with light-gray color, because the other two (the GYN and the MAO airports) coincide with the

medians already found.

Figure 3 – Brazilian map for 6 hubs as seeds of the Voronoi diagram.

Table 4 – Results for the 8-hubs network design.

Approach Optimal Value Hubs Differences

HS 114.353 not airports MCP not linked to STM

HSNA 115.396 MAO, IMP, GYN, GIG, JOI, SSA, JPA, PVH MCP linked to IMP

p-median 115.064 STM, IMP, GYN, GIG, JOI, SSA, JPA, PVH MCP linked to STM

For the fixed number of hubs p = 8, Table 4 shows the results for the plain hyperbolic smooth-
ing (HS), the hyperbolic smoothing combined with the NA procedure (HSNA) and the p-hub
median approaches. We notice that the airports set to locate the hubs does not coincide for the

Pesquisa Operacional, Vol. 33(3), 2013
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HSNA approach and for the p-hub median approach. While the p-hub median approach chooses

STM as median, the HSNA approach chooses MAO, which causes the differences in the covered
regions of the hubs, that is, MCP is linked to IMP for HSNA, whereas MCP is linked for STM
for the p-hub median approach.

In Figure 4, the Voronoi diagram refers to the seeds of the 8-hub median approach. In the

diagram, the eight resulting points found by the plain hyperbolic smoothing technique are showed
with light-gray color with their corresponding spokes. As we can see, there are only six points
with light-gray color, because the other two (the GYN and the SSA airports) coincide with the

medians already found.

Figure 4 – Brazilian map for 8 hubs as seeds of the Voronoi diagram.

6 CONCLUSIONS

Here, we compared the results of two distinct solution methods with the support of a proposed

discretization heuristic and the Voronoi diagram to design an extract of the Brazilian air trans-
portation system by introducing hubs.

Pesquisa Operacional, Vol. 33(3), 2013
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Considering instance tests with 41 Brazilian airports and fixed number of hubs varying from 2

to 8, the solutions of the discrete p-hub median approach and the continuous hyperbolic smooth-
ing approach combined with the proposed discretization heuristic were compared in terms of the
total spoke-distances. The Voronoi diagram helped to identify the scope of the hubs found by

these approaches.

From the computational results, we verified that, with the application of the proposed discretiza-
tion heuristic, the locations of the hubs are identical when the number of hubs are equal to
4 and 6.

We notice that when the existing airport’s infrastructure should be considered, it is more adequate

to use a discrete method to determine the locations of the hubs that minimize the total flow
distances. With this knowledge, investments to improve the infrastructure of the hubs can then
be target. On the other hand, when the infrastructure should be developed, it is more adequate to

use a continuous method, because, from the obtained computational results, we verified that the
respective optimal total distances is smaller for all instances.

In future work, we plan to consider costs related to the hub locations.
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