
�

�

“main” — 2015/6/29 — 22:20 — page 213 — #1
�

�

�

�

�

�

Pesquisa Operacional (2015) 35(2): 213-250
© 2015 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2015.035.02.0213

GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS
AND A NEW INTEGER PROGRAMMING MODEL*

Isabel Cristina Lopes1 and J.M. Valério de Carvalho2**

Received May 22, 2015 / Accepted June 18, 2015

ABSTRACT. The Minimization of Open Stacks Problem (MOSP) is a Pattern Sequencing Problem that

often arises in industry. Besides the MOSP, there are also other related Pattern Sequencing Problems of

similar relevance. In this paper, we show that each feasible solution to the MOSP results from an order-

ing of the vertices of a graph that defines the instance to solve, and that the MOSP can be seen as an

edge completion problem that renders that graph an interval graph. We review concepts from graph the-

ory, in particular related to interval graphs, comparability graphs and chordal graphs, to provide insight to

the structural properties of the admissible solutions of Pattern Sequencing Problems. Then, using Olariu’s

characterization and other structural properties of interval graphs, we derive an integer programming model

for the MOSP. Some computational results for the model are presented.

Keywords: integer programming, graph layout problems, Minimization of Open Stacks Problem.

1 INTRODUCTION

Industrial cutting operations involve taking large objects of standard sizes (stock material such as

wooden panels, paper rolls, aluminium profiles, flat glass) and cutting them into smaller pieces
of different sizes to meet customers’ demands. A specification of how many small items of each
size will be cut from each large panel and where the cuts will be made defines a cutting pattern.

Each cutting pattern can produce different items or just several copies of one same item.

Cutting stock problems deal with the generation of a set of cutting patterns that minimizes waste.
But, beyond pattern generation, there are often additional aspects to deal with in the process
of planning industrial cutting operations. An important issue is to define the sequence in which

the patterns are cut. Most probably the first researcher raising awareness to these aspects was
Dyson [12]. The Pattern Sequencing Problems (PSP), also referred to as the Pattern Allocation

*Invited paper.
**Corresponding author.
1LEMA/CIEFGEI/ESEIG-IPP – Escola Superior de Estudos Industriais e de Gestão, Instituto Politécnico do Porto,
Rua D. Sancho I, 981, 4480-876 Vila do Conde, Portugal. E-mail: cristinalopes@eseig.ipp.pt
2Departamento de Produção e Sistemas, Escola de Engenharia, Universidade do Minho, Campus de Gualtar, 4710-057
Braga, Portugal. E-mail: vc@dps.uminho.pt

�

�

“main” — 2015/6/29 — 22:20 — page 214 — #2
�

�

�

�

�

�

214 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

Problems (PAP), consist in finding the permutation of the predetermined cutting patterns that

optimizes a given objective function, related, for instance, with the number of tool changes, the
average order spread, the number of discontinuities or the number of open stacks.

A set of m cutting patterns relating n item types can be represented in a n × m matrix A, whose
element ai j equals 1 if pattern j contains item i, and 0, otherwise. Pattern sequencing problems

consist of constructing a permutation of the columns of this matrix, while minimizing some given
objective function. The selected permutation of the columns provides the order for processing
the patterns. There are, evidently, m! solutions.

Consider a cutting machine that processes just one cutting pattern at a time. The items of the

same type already cut are piled in a stack by the machine. The stack of an item type remains near
the machine if there are more items of that type to be cut in a forthcoming pattern. A stack is
closed and removed from the working area only after all items of that type have been cut, and

immediately before starting to process the next cutting pattern. After a pattern is completely cut
and before any stack is removed, the number of open stacks is counted. The maximum number
of open stacks for that sequence of patterns is called the MOSP number.

There are often space limitations around the cutting machines, there is danger of damages on

the stacked items, difficulty in distinguishing similar items, and in some cases there are handling
costs of removing the stack temporarily to the warehouse. It is advantageous to minimize the
number of open stacks, and that can be done simply by finding an optimal sequence to process

the cutting patterns. The Minimization of Open Stacks Problem (MOSP) is a pattern sequencing
problem that was first addressed in 1991 by Yuen [42] and Richardson [43]. It arose in the
Australian flat glass industry, but it can appear in other cutting industries like steel tubes, paper,

wooden panels, and others.

Most papers on pattern sequencing study the MOSP, maybe because the problem itself has a
complex structure and it is very rich in applications to other fields of science. Many authors use
it while solving a two stage procedure: first, they solve the classic problem of finding the best

patterns to cut stock sheets, and only then, in a second stage, do they deal with determining the
sequence in which those patterns should be cut, in order to minimize the number of open stacks.
There are also researchers who tried to solve both the problems of pattern generation and pattern

sequencing in an integrated way [32, 33, 39], and others use the number of open stacks rather as
a constraint than as the objective function [35, 26].

There are several papers that propose integer programming models for pattern sequencing prob-
lems, which are described with detail in section 2. Madsen [30] was the first to present an exact

formulation based on the Travelling Salesman Problem (TSP) as a model for the Minimization
of Order Spread Problem (MORP), but in fact it only solves the Minimization of Discontinuities
Problem (MDP) because it does not consider the duration of the discontinuities when counting
the order spread [14]. Bard [3] presented a nonlinear model for the MSTP using binary vari-

ables to assign the jobs to the n available positions in time. Tang & Denardo [35] also used time
indexed binary variables to develop an IP formulation for the Minimization of Tool Switches

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 215 — #3
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 215

Problem (MTSP). In [37], Yanasse proved two propositions that make the model by Tang and

Denardo suitable for modeling the MOSP. There is also another IP model based on the TSP by
Laporte, González & Semet [26] for the MTSP where the scheduling uses linear ordering vari-
ables, that later was adapted to the MOSP by Pinto [33]. Yanasse and Pinto also proposed a new

IP model for the MOSP [40] which aims at sequencing the completion of stacks rather than fo-
cusing on sequencing the patterns. And there is a Mixed Integer Programming formulation for
the MOSP by Baptiste [2], submitted to the 2005 Constraint Modeling Challenge.

In this paper, we present a new integer programming formulation for the MOSP based on interval

graphs and the existence of a perfect vertex elimination scheme. We first associate the MOSP
problem with a graph with a vertex for each item (stack) and with an arc between two vertices
if there is a pattern that produces both items. We solve the MOSP by adding arcs to this graph,

converting it into an interval graph and defining an ordering of the vertices based on a sequence
of cliques.

This paper is organized as follows. In Section 2, we present the MOSP and some related prob-
lems. Then, in Section 3, review concepts in graph theory that are related to the structure of the

solutions of the MOSP. In Section 4, we review MOSP graphs, and, in Section 5, we derive an
integer programming model. In Section 6, computational results are presented, and afterwards,
some conclusions are drawn.

2 MOSP: MINIMIZATION OF THE NUMBER OF OPEN STACKS

Consider the matrix An×m with the specification of the m cutting patterns, whose element ai j

equals 1 if pattern j contains item i, and 0, otherwise. A sequence to process the cutting patterns

is a permutation � = (π1, . . . , πm) of the columns of this matrix, where π j denotes the pattern
that is positioned currently in column j . A stack i is open at position t of the pattern sequence if

t∑
j=1

aiπ j ·
m∑

j=t

aiπ j > 0

We define the MOSP number of a permutation � = (π1, . . . , πm) of the m patterns as

M OS P(�) = max
t

∣∣∣∣∣∣
⎧⎨
⎩i :

t∑
j=1

aiπ j ·
m∑

j=t

aiπ j > 0

⎫⎬
⎭

∣∣∣∣∣∣
where |.| denotes the cardinality of the set.

The optimal solution of the minimization of open stacks problem is a permutation � of the
columns of matrix A such that M OS P(�) is minimum over all such permutations.

Observe an example of this problem from [41] with 8 cutting patterns and 6 items. The compo-

sition of the cutting patterns is described in Table 1. If the patterns are processed in the original
sequence (Figure 1a), there is a time when there are 5 simultaneously open stacks. If the ordering
of the patterns is as in Figure 1b), there are only 4 simultaneous open stacks at most.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 216 — #4
�

�

�

�

�

�

216 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

Table 1 – An example of the MOSP with 8 patterns and 6 items.

Items
Patterns

P1 P2 P3 P4 P5 P6 P7 P8

1 1 0 0 1 1 0 0 0
2 1 1 0 0 0 0 0 1
3 0 0 1 1 0 0 0 0
4 1 1 1 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 0 0 0 0 1 1 1

Items
Patterns

P1 P2 P3 P4 P5 P6 P7 P8

1 1 0 0 1 1 0 0 0
2 1 1 0 0 0 0 0 1
3 0 0 1 1 0 0 0 0
4 1 1 1 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 0 0 0 0 1 1 1

#open
3 4 5 5 4 4 3 2

stacks

Items
Patterns

P4 P5 P3 P1 P2 P6 P7 P8

1 1 1 0 1 0 0 0 0
2 0 0 0 1 1 0 0 1
3 1 0 1 0 0 0 0 0
4 0 1 1 0 1 0 1 0
5 1 1 0 0 1 1 0 0
6 0 0 0 0 0 1 1 1

#open
3 4 4 4 3 4 3 2

stacks

(a) (b)

Figure 1 – Two solutions for the Pattern Sequencing Problem.

MOSP has been proved to be a NP-hard problem [28]. Besides the applications referred to

above, it arises in production planning (for rapidly fulfilling the customers’ orders) [36], and
also in other fields such as VLSI Circuit Design with the Gate Matrix Layout Problem and PLA
Folding [28], and in classical problems from Graph Theory presented in Section 3.8 such as
Pathwidth, Modified Cutwidth and Vertex Separation.

2.1 Other pattern sequencing problems related to MOSP

The Minimization of Order Spread Problem (MORP) arises when it is desirable to keep all the
pieces cut belonging to one order as close in time as possible, as, for instance, in the glass cutting

industry, where the glass pieces have to be handled and stored individually, which is very time-
and storage-consuming, and hence expensive. Reducing the time elapsed between cutting all the
pieces corresponding to the same order cuts down the handling and storing costs [30]. A stack

is created for each customer, as happens in the MOSP. The order spread is the distance between
the first and the last item cut that belongs to the same order. The distance can be measured in
number of stock sheets: if the whole order is cut from just one stock sheet, the order spread is 0,
if it is cut completely in two consecutive sheets, the order spread is 1 [30]. The objective of the

MORP is therefore to minimize the order spread, which will minimize the time that the stacks
remain open.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 217 — #5
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 217

The Minimization of Discontinuities Problem (MDP) consists in finding a sequence to process

the cutting patterns such that the number of discontinuities is minimum. We say that a disconti-
nuity occurs when an item that is being cut in a given pattern is not cut in the following pattern
and is cut again later. The difference from the previous problem is that the duration of the discon-

tinuities does not influence the cost of the solution, just its existence. This is a NP-hard problem,
and it is also known in the literature as the Consecutive Blocks Minimization Problem [17].

Another problem is the Minimization of Tool Switches Problem (MTSP). This is a job scheduling
problem that arises in flexible manufacturing machines, and has been applied, for instance, in the

metal working industry and in the assembling operations of printed circuit boards. Machines
in such systems are capable of different tasks, but may need a certain combination of tools.
This problem considers machines that can hold a set of tools, which can be changed in order

to have the adequate set of tools for each job. As these machines only have a capacity for C
tools simultaneously, some tool switching must be made between different tasks sometimes.
These tool changing operations may include retrieval from storage, transportation, loading and

calibration, and have a cost proportional to the number of switches. The MTSP problem consists
of finding a sequence of the tasks, in order to minimize the number of tool switches. A link
between MTSP and MOSP can be established considering the jobs as cutting patterns and the
tools as items to be cut.

The MORP, the MDP and the MTSP are NP-hard problems that are not equivalent to the MOSP,
and not even to each other. Linhares & Yanasse [28] presented counterexamples to all the equiv-
alence conjectures, except for the equivalence between the MTSP and MDP. They proved that
if MTSP is fixed parameter tractable (FPT), then MDP is also FPT. Yanasse [37] showed that,

although the MOSP is not equivalent to the MTSP in a general case, they are equivalent when
the optimum of the MOSP (denoted by C∗) equals the capacity C of the machine in the MTSP.
If C > C∗, an optimal solution for the MOSP is always optimal for the MTSP, but the converse

is not true. If C < C∗, an optimal solution for the MOSP may not be an optimal solution for the
MTSP and vice-versa.

3 GRAPHS AND LAYOUT PROBLEMS

3.1 Basic Definitions

A graph G = (V , E) consists of a set V (that we call the set of vertices or nodes) and a set E of

tuples from V × V , i.e, E = {e = [vw] : v, w ∈ V } (that we call edges or arcs). An edge with
both endpoints on the same vertex is called a loop. An edge e = [uv] is a multiedge or k-fold
edge if there are exactly k edges e1, e2, . . . , ek such that e1 = e2 = · · · = ek = [uv]. For k = 2,
or k = 3, it is called a double edge, or a triple edge, respectively. We call a graph with no loops

or multiedges a simple graph. In this work, all graphs are assumed to be simple graphs.

A directed graph or digraph is a graph G = (V , E) where each edge in E has a direction defined,
so that E is a collection of ordered pairs of elements in V . In a directed (oriented) edge [vw], the

first vertex v is called the tail and the last vertex w is called the head. For a given vertex v ∈ V ,

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 218 — #6
�

�

�

�

�

�

218 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

the number of edges where v is a head is called the indegree and denoted by indeg(v), and the

number of edges where v is a tail is called the outdegree and denoted by outdeg(v). The graph
G−1 = (V , E−1) is said to be the reversal of G if E−1 = {[uv] ∈ V × V : [vu] ∈ E}.
A graph G = (V , E) is called undirected if E = E−1. A graph G = (V , E) is called oriented
if E

⋂
E−1 = ∅. In this work, we will mostly use undirected graphs; for this reason, from this

point forward, unless stated otherwise, by graph we mean an undirected graph, and we will use
without distinction [uv] and [vu]. Two vertices v, w ∈ V are adjacent if [vw] is an edge. Two
edges are adjacent if they share a common vertex.

The neighborhood of a vertex is the set of its adjacent vertices. In simple graphs, as edges from a

vertex to itself are not allowed, one vertex does not belong to its own neighborhood. So it is also
usual to define the closed neighborhood of a vertex if we want to include it. For a given vertex
u ∈ V , we define the neighborhood or adjacency set of u as: N(u) = {v ∈ V : [uv] ∈ E} and

define the closed neighborhood of v as: N [u] = {u}⋃
N(u).

We define the degree of a vertex v ∈ V to be the number of times that v is an endpoint of an
edge. A graph is said k-regular if every vertex has degree k. In a simple graph, the degree of a
vertex v is also the cardinality of N(v).

The complement of G is the graph G = (V , E) where E = {[uv] ∈ V × V : u �= v ∧ [uv] /∈ E}.
Hence the complement graph is formed by the vertices together with the missing edges. A graph
is complete if every pair of distinct vertices is connected by one edge. The complete graph on n
vertices is usually denoted by Kn . In a simple graph, the number of all possible edges is

(n
2
)
.

3.2 Graph Optimization Problems

There are several problems in Graph Theory that are somehow related to the MOSP problem.

The solutions to those problems provide graph measures that are illustrated in Figure 2.

Maximum Clique Number: find the set of vertices that form the largest clique in a graph. A
clique is a set C of vertices of a graph G such that all pairs of vertices in C are adjacent. A
clique C is maximal if there is no clique of G which properly contains C as a subset. A clique

is maximum if there is no clique of G of larger cardinality. The size of the maximum clique in a
graph G is called the clique number, and is denoted by ω(G).

Minimum Clique Cover: find a set of cliques to cover all the vertices in the graph. A clique

cover of a graph G is a set of cliques such that every vertex in G belongs to one clique. The size
of the minimum clique cover is called the clique cover number, and is denoted by k(G).

Maximum Independent Set: find the largest set of vertices nonadjacent to each other. A stable
set or independent set of a graph G is a subset I of vertices such that no edge has both endpoints

in I . The number of vertices in a stable set of maximum cardinality is called the stability number,
and is denoted by α(G).

Chromatic Number: find the minimum number of colors that are necessary to color the vertices
of a graph using different colors for adjacent vertices. A proper k-coloring of G = (V , E) is a

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 219 — #7
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 219

a

b

c

d

eG

ω(G) = 3

k(G) = 2

χ(G) = 3

a

b

c

d

eG

α(G) = 3

k(G) = 3

χ(G) = 2

Figure 2 – Chromatic number, stability number, clique cover number

and clique number of a graph and its complement graph.

partition of the vertices V = X1 ∪ X2 ∪ · · · ∪ Xk such that each Xi is a stable set. In a proper
k-coloring there is an assignment of integers {1, 2, . . . , k} (corresponding to k different colors)
to the vertices V such that for any edge the two endpoints have been assigned different colors.

The smallest number k such as G has a k-coloring is called the chromatic number of G and is
denoted by χ(G).

Given a graph G = (V , E) and a subset S of V , S is a clique of G if and only if S is a stable set
of G. As a consequence of this, for any graph G, we have:

ω(G) = α(G)

Since every vertex of a maximum stable set must be contained in a different partition segment in
any minimum clique cover, it is valid that:

α(G) ≤ k(G)

As a stable set in a graph G corresponds to a clique in the complement graph G, we have, for
any graph G, the equality:

χ(G) = k(G)

For any graph G, there is also a lower bound for the chromatic number

ω(G) ≤ χ(G),

because if it contains a clique of size k then we need at least k different colors to color the vertices
in that clique.

For general graphs the minimum coloring problem is NP-complete [17]. However, for a special

type of graphs, that are called perfect graphs, linear time algorithms are known. The class of
perfect graphs includes interval graphs, chordal graphs and comparability graphs that play a
central role in the structure of the solutions of Pattern Sequencing Problems.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 220 — #8
�

�

�

�

�

�

220 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

3.3 Chordal Graphs

A path is a sequence of vertices [v0, v1, . . . , vk] such that [vi−1vi] is an edge for i = 1, . . . , k
and its length is the number of edges in the sequence. If no vertex is repeated, it is called a simple
path. A graph is connected if there exists a path from any vertex to any other vertex in the graph.
A connected component of a graph is a maximal subgraph that is connected. A path that begins
and ends at the same vertex is called a cycle. If no vertex occurs more than once, the cycle is
called a simple cycle. A graph without any cycle is called a forest. A graph with n vertices is a
tree if it is a forest and it has exactly n − 1 edges.

A simple cycle [v0, v1, . . . , vk, v0] is said to be chordless if [viv j] /∈ E for i and j differing by
more than 1 mod k +1. The chordless cycle on n vertices is usually called a n-cycle and denoted
by Cn .

Definition 1. A graph is a chordal graph if it does not contain an induced k-cycle for k ≥ 4.

The name “chordal” comes from the fact that in every simple k-cycle with k ≥ 4 that may exist
in this graph, there must be a chord, which is an edge between two non-consecutive vertices of
the cycle. Because of its geometric properties, these graphs are also called triangulated graphs.
Being chordal is a hereditary property inherited by all the induced subgraphs of G.

3.4 Perfect Elimination Order

Chordal graphs can be recognized by finding a special type of vertices and applying an iterative
procedure to its induced subgraphs.

Definition 2. A vertex v ∈ V is called simplicial if its neighborhood N(v) induces a complete
subgraph of G, i.e. N(v) is a clique (not necessarily maximal).

From Dirac (1961), as cited in [18], it is known that simplicial vertices appear in all chordal
graphs:

Theorem 1. Every chordal graph G has a simplicial vertex and if G is not a complete graph
then it has two nonadjacent simplicial vertices.

Definition 3. Given a graph G = (V , E), such that |V | = N, a linear ordering of the vertices is
a bijective function ϕ : V → {1, . . . , N}. The reversed linear ordering, ϕR : V → {1, . . . , N},
is a linear ordering such that ϕR(u) = N − ϕ(u) + 1.

A linear ordering of the vertices of a graph is sometimes called a layout of the graph, a number-
ing, a linear arrangement or a labeling of the vertices. We will also use the symbol ≺ to express

the linear ordering on the set of vertices.

Definition 4. Given a graph G = (V , E) and a linear ordering ϕ of its vertices, we say that

vertex i precedes vertex j , and denote by i ≺ j , if ϕ(i) < ϕ(j). We denote the set of predecessors
of a vertex by Pred(i) = { j ∈ N(i) : ϕ(j) < ϕ(i)} and the set of successors by Succ(i) = { j ∈
N(i) : ϕ(j) > ϕ(i)}.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 221 — #9
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 221

This ordering of the vertices can also lead to edge directions, directing the edge [i j] if i ≺ j . If

the graph is simple then |Pred(v)| = indeg(v) and |Succ(v)| = outdeg(v), where |.| designates
the cardinality of the set.

Definition 5. A linear ordering σ = [v1, v2, . . . , vn] of the vertices of a graph G = (V , E) is
called a perfect elimination scheme (or p.e.s.) if each vi is a simplicial vertex of the induced

subgraph Gvi ,...,vn .

A simplicial vertex can start a perfect elimination scheme, or start a similar linear ordering called
a perfect elimination order:

Definition 6. [4] A perfect vertex elimination order (or p.e.o.) is a linear ordering of the vertices
of the graph in which the sets of predecessors of each vertex Pred(i) form a clique, ∀i ∈ V .

In a perfect elimination scheme, each of the sets Succ(i) are complete sets. In a perfect elimina-

tion order, the sets Pred(i) are complete. This means that if ϕ is a perfect elimination order, then
the reversed ordering ϕR may not be a perfect elimination order as well, but it will be a perfect
elimination scheme. The reason for this is because the set of predecessors of a vertex for a given

linear ordering is the set of successors of that vertex for the reversed linear ordering, since:

ϕR(j) > ϕR(i) ⇔ N − ϕ(j) + 1 > N − ϕ(i) + 1 ⇔ ϕ(j) < ϕ(i)

Definition 7. A subset S ⊂ V is a vertex separator for nonadjacent vertices a and b (or an
(a, b)-separator) if the removal of S from the graph separates a and b into distinct connected

components. If no proper subset of S is an (a, b)-separator, then S is a minimal vertex separator
for a and b.

All the minimal vertex separators of a chordal graph are cliques [18]:

Theorem 2. Let G be an undirected graph. The following statements are equivalent:

(i) G is chordal;

(ii) G has a perfect vertex elimination scheme. Moreover, any simplicial vertex can start a

perfect scheme;

(iii) Every minimal vertex separator induces a complete subgraph of G.

The equivalence of items (i) and (ii) is due to Fulkerson & Gross [16]. Chordal graphs can thus
be characterized by the existence of a perfect elimination scheme. This gives origin to an iterative
procedure to recognize chordal graphs: locating a simplicial vertex and eliminating it from the

graph, then locating a new simplicial vertex and eliminating it too, and by repeatedly doing this,
at the end no vertices remain. If at some stage there are no more simplicial vertices it means that
the graph is not chordal. This procedure was used by Lueker (1974) and Rose & Tarjan (1975)

to write a linear time algorithm to recognize chordal graphs.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 222 — #10
�

�

�

�

�

�

222 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

3.5 Comparability Graphs

Comparability graphs are a special case of graphs that can be transitively oriented.

Definition 8. A comparability graph is an undirected graph G = (V , E) in which each edge can
be assigned a one-way direction in such a way that the resulting oriented graph (V , F) satisfies:

[uv] ∈ F ∧ [vw] ∈ F ⇒ [uw] ∈ F ∀u, v, w ∈ V

This transitive orientation is acyclic, i.e., a comparability graph does not contain any directed

cycle. With the orientation fixed, a comparability graph is also called a partially ordered set or
poset.

A graph G is said a co-comparability graph if G is a comparability graph.

3.6 Interval Graphs

Definition 9. An interval graph is an undirected graph G such as its vertices can be put into a

one-to-one correspondence with a set of intervals I of a linearly ordered set (like the real line)
such that two vertices are connected by an edge of G if and only if their corresponding intervals
have nonempty intersection. I is called an interval representation for G.

Graphs which represent intersecting intervals on a line are an useful concept for us because if

we associate each open stack of our MOSP problem to an interval in the real line (the interval
of time that the stack stays open), then we can associate a solution of the MOSP to an interval
representation of an interval graph.

Being an interval graph is a hereditary property, i.e., an induced subgraph of an interval graph is

an interval graph. Recognizing whether a given graph is an interval graph can be carried out in
linear time.

Besides the definition, there are theorems that characterize interval graphs. Lekkerkerker &
Boland (1962) characterization [27] focuses on the fact that an interval graph cannot branch into

more than two directions nor circle back onto itself.

Theorem 3. [18] An undirected graph G is an interval graph if and only if the following two

conditions are satisfied:

(i) G is a chordal graph and;

(ii) any three vertices of G can be ordered in such a way that every path from the first vertex

to the third vertex passes through a neighbor of the second vertex.

The last statement in this theorem introduces the concept of asteroidal triple: an independent set
of three vertices is an asteroidal triple (AT) if between each pair of vertices in the triple there
is a path that avoids the neighborhood of the third vertex. A graph is asteroidal triple free or

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 223 — #11
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 223

AT-free if it contains no asteroidal triple. Using this terminology, Theorem 3 states that a graph is

an interval graph if and only if it is chordal and AT-free. The AT-free structure of interval graphs
has been used to develop a linear time algorithm to recognize interval graphs [9].

The graph in Figure 3 is not an interval graph because it contains an asteroidal triple: the vertices
a, b, c. A path from a to b is a, d, g, e, b which avoids N(c) = f .

Figure 3 – Not an interval graph.

Some other characterizations of interval graphs are known, namely the following theorem (Gil-
more & Hoffman, 1964) as cited in [18]:

Theorem 4. Let G be an undirected graph. The following are equivalent:

• G is an interval graph;

• G is chordal and G is a comparability graph;

• The maximal cliques of G can be linearly ordered such that, for every vertex v of G, the
maximal cliques containing v occur consecutively.

Note that, in this theorem, it is stated that the complement of an interval graph is a comparability
graph. However, the reverse does not hold, i.e., the complement of a comparability graph is not
always an interval graph. An example is shown in Figure 4.

Figure 4 – G is a comparability graph but G is not an interval graph.

The last statement in Theorem 4 is related to another characterization of interval graphs by Fulk-

erson & Gross (1965), which refers to the clique matrix of a graph. The clique matrix of a graph
is the incidence matrix of the maximal cliques versus the vertices of the graph. The entries of the
clique matrix are of the form ai j = 1 if vertex j belongs to the maximal clique i.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 224 — #12
�

�

�

�

�

�

224 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

Definition 10. A matrix of zeros and ones is said to have the consecutive 1’s property for columns

if its rows can be permuted in such a way that the 1’s in each column occur consecutively.

Theorem 5. [16] An undirected graph G is an interval graph if and only if its clique matrix M
has the consecutive 1’s property for columns.

This property is not only present in the clique matrix, but also in the adjacency matrix of an
interval graph (Tarjan, 1976) as cited in [5].

Theorem 6. G = (V , E) is an interval graph if and only if there exists a linear ordering of G

such that the associated adjacency matrix A verifies:

∀i ∈ {1, . . . , N} ai j = 1 for j = fi (A), fi (A) + 1, . . . , i

where fi (A) = min{ j : ai j �= 0}
There is an alternative characterization of interval graphs, due to Olariu [9], that uses the linear

ordering of the vertices, and is illustrated in Figure 5:

Figure 5 – Olariu’s characterization of interval graphs.

Theorem 7. A graph G = (V , E) is an interval graph if and only if there exists a linear ordering
ϕ : V → {1, . . . , N} such that ∀i, j, k ∈ V : ϕ(i) < ϕ(j) < ϕ(k) we have [ik] ∈ E ⇒ [i j] ∈
E.

We will use this characterization to develop an integer programming model for the MOSP. Start-
ing from a graph that represents the MOSP instance, new edges are added to the MOSP graph
to assure that the graph of the solution is an interval graph, as described in detail in Section 4.

Issues related to adding edges (edge completion) are addressed in Section 3.10.

The ordering of the maximal cliques in an interval graph referred to in Theorem 4 will allow us
to set an interesting ordering for the vertices, using the following theorem from Biedl [4].

Theorem 8. An interval graph G has an interval representation such that all endpoints of inter-
vals are distinct integers.

By using, for instance, the left endpoints of the intervals, we can define a natural ordering of the

vertices of the graph: declare i ≺ j if the left endpoint of interval i precedes the left endpoint
of interval j . Therefore, we can assign edge directions based on this vertex order, choosing to
direct each edge from left to right, directing the edge [i j] if i ≺ j .

For an interval graph with an interval representation such that all endpoints are distinct, if the

vertices are ordered by the left endpoint of the intervals, every maximal clique referred to in

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 225 — #13
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 225

Theorem 4 occurs consecutively and has the form Pred(u) ∪ {u} for some vertex u. But not

every set Pred(u) ∪ {u} has to be a maximal clique: Let v1, . . . , vn be a perfect elimination
order. Then C = Pred(vi) ∪ vi is not a maximal clique if and only if there exists a successor v j

of vi such that vi is the last predecessor of v j and indeg(v j) = indeg(vi) + 1.

The perfect elimination order of the vertices of the graph can give origin to a linear ordering of

the left endpoints of the intervals of an interval representation constructed for the graph. Note
that if a graph G has a perfect elimination order, then G is chordal.

Given an interval graph and some vertex vi represented by an interval that starts at si , Pred(vi) is
the set of all vertices representing intervals that start before si and do not end before si . Therefore,

all these intervals contain the point si , and hence overlap each other, which means that Pred(vi)

is a clique and therefore the vertex order is a perfect elimination order [4].

Figure 6 – The p.e.o. a, b, c, d, e, f gives the linear ordering of the left endpoints of the intervals.

The vertex ordering defined by the left endpoints of the intervals creates in fact the sequence of
cliques that will appear in the interval graph, and that we are interested in finding, in order to
discover the solution of a MOSP problem.

It is known that an interval graph H is chordal and it has at least two simplicial vertices where a
perfect vertex elimination scheme can be started. Locating a simplicial vertex and eliminating it
will create another simplicial vertex and its subsequent elimination and so on.

A perfect elimination scheme is not appropriate for ordering the left endpoints of the intervals,

as can be confirmed in Figure 7. In fact, the order in which the intervals must start can be set by
following the reverse order of the eliminated vertices, which is a perfect elimination order.

Figure 7 – The p.e.s. f, e, d, c, b, a is not adequate for ordering the left endpoints of the intervals.

The reverse of a p.e.o. is always a p.e.s and vice versa. Generally, the reverse of a p.e.o. is not
a p.e.o.; this is only true for proper interval graphs [31], which are interval graphs where no

interval properly contains another.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 226 — #14
�

�

�

�

�

�

226 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

Although every interval graph has a perfect elimination order, the reverse does not hold. For
example, trees may not be interval graphs (for example Figure 3), but have a p.e.o. because they
are chordal graphs.

3.7 Perfect Graphs

Interval graphs are part of a more general class of graphs beautifully called perfect graphs.

Definition 11. A graph G = (V , E) is a perfect graph if it satisfies both the properties:

(i) ω(G A) = χ(G A) ∀A ⊆ V ;

(ii) α(G A) = k(G A) ∀A ⊆ V .

Actually, it is sufficient to show one of these properties, as the Perfect Graph Theorem (Lovász,
1972) implies that these two properties are equivalent.

Theorem 9. (Perfect Graph Theorem) [18] A graph G is perfect if and only if its complement
G is perfect.

An odd length cycle is called an odd hole and its complement is called an odd anti-hole.

Conjecture 1. (Strong Perfect Graph Conjecture) A graph is perfect if and only if it does not
have an odd hole or an odd anti-hole as an induced subgraph.

This conjecture was posed in 1961 by Claude Berge and proved by Chudnovsky, Seymour,
Robertson and Thomas in 2003 [8].

Theorem 10. [18] Every comparability graph G is a perfect graph.

To see this let us define on the oriented graph G = (V , F) the height function

h(v) =
{

0 if v is a sink

1 + max{h(w) : [vw] ∈ F} otherwise

A sink is a vertex of the oriented graph that has outdegree zero. This is always a proper coloring
of the vertices of a graph. The number of colors used is equal to the number of vertices in the
longest path of F .

If G is a comparability graph with a transitive orientation F , every path in F will correspond
to a clique of G because of transitivity. So in this case, the height function will yield a coloring
which uses exactly ω(G) colors, which is the best possible. As being a comparability graph is
hereditary, the clique number and the chromatic number are also equal for all induced subgraphs
of G. As the complement of an interval graph is a comparability graph, then interval graphs
are perfect.

There is a polynomial time algorithm to test whether a graph is perfect, as shown by Cornuéjols,
Li & Vušković [10]. Biedl showed in [4] that many problems which are generally NP-hard, such
as the Clique, Coloring and Maximum Independent Set problems, can be solved in polynomial
time when circumscribed to perfect graphs.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 227 — #15
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 227

3.8 Graph Layout Measures

The linear ordering of the vertices of a graph is also called the layout of the graph, because when
the vertices are arranged by that ordering, there are several measures that naturally can be taken

and used to describe geometric properties of the graph.

Treewidth

The treewidth is a layout measure that counts the number of adjacent vertices of a given graph

G that we can group together and replace each group by a vertex of a tree T appropriately built
from G by connecting the vertices of the tree T that are covering the same vertices of the graph
G.

Definition 12. A tree decomposition of a graph G = (V , E) is a tree T = (I, F) where each
node i ∈ I has a label Xi ⊆ V such that:

• ⋃
i∈I Xi = V . We say that all vertices are covered.

• For any edge [vw] there exists an i ∈ I with v, w ∈ Xi . We say that all edges are covered.

• For any v ∈ V the nodes in I containing v in their label form a connected subtree of T .

We call this the connectivity condition.

Figure 8 – A graph with a tree decomposition of width 2 [6].

A given tree can be the tree decomposition of several different graphs. The graph implied by a
tree decomposition is the graph obtained by adding all edges between vertices that appear in a

common label.

Definition 13. Given a tree decomposition T = (I, F), the width of the tree decomposition is
maxi∈I |Xi | − 1.

Definition 14. The treewidth of a graph G is the minimum k such that G has a tree decomposition
of width k:

T W (G) = min

{
max
i∈I

|Xi | − 1 : T = (I, F) is a tree decomposition of G

}

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 228 — #16
�

�

�

�

�

�

228 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

The treewidth problem consists in, given k ≥ 0 and a graph G, finding if T W (G) ≤ k.

Notice that each clique in a graph must be part of at least one node in the tree decomposition,

and hence the clique number minus one is a lower bound for treewidth. For this reason, all trees
have treewidth 1.

Lemma 1. [6] If G is chordal then G has a tree decomposition of width ω(G) − 1.

The minimum degree δ(G) of the vertices of a graph G and the degeneracy of a graph δD(G),
defined by δD(G) := max

H⊆G
δ(H), are lower bounds for the treewidth:

δ(G) ≤ T W (G)

δD(G) ≤ T W (G)

Computing the treewidth is a NP-hard problem [1, 7].

Pathwidth

A particular case occurs when we require the decomposition to be a path, which is called a path

decomposition of width k.

Definition 15. A graph G has pathwidth PW (G) bounded by k if G has a tree decomposition T

of width k such that T is a path.

Computing the pathwidth is NP-hard in general but, for a given constant k, testing whether G has
pathwidth bounded by k can be done in linear time. From the definition, we immediately have

T W (G) ≤ PW (G).

In [28], Yanasse and Linhares pointed out that the MOSP, the Gate Matrix Layout Problem
(GMLP) and the Pathwidth are equivalent problems that have been studied independently in the
literature. In fact, Kinnersley proved in [24] the equivalence between the Pathwidth and the

Vertex Separation problem and showed that the GMLP cost of a graph equals its pathwidth plus
one. Hence the pathwidth is equivalent to the MOSP. In fact, the pathwidth problem consists of
finding an interval supergraph with the smallest clique number [15].

3.9 Linear ordering

Many graph layout problems involve finding a linear ordering of the vertices to optimize a given
objective function. One example is the Linear Ordering Problem (LOP). It consists in finding a

linear ordering of the vertices such that the number of directed edges in the graph that are not
in accordance with this ordering is minimized. It belongs to the class of NP-hard combinatorial
optimization problems, and its integer programming formulation and its polytope were studied

in [13, 19, 34]. The decision variables are defined as:

xi j =
{

1 if vertex i precedes vertex j
0 otherwise

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 229 — #17
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 229

We will not present the LOP, but just focus on the constraints that define the linear ordering of

the vertices:

xi j + x ji = 1 ∀i, j ∈ V , i < j (1)

xi j + x jk + xki ≤ 2 ∀i, j, k ∈ V , i < j, i < k, j �= k (2)

xi j ∈ {0, 1} ∀i, j ∈ V , i < j (3)

The first set of contraints (1) means that, in the linear ordering, either vertex i is before j or vice

versa, reducing this to a minimal equation system. The inequalities (2) are called the 3-dicycle
inequalities and along with the first equations guarantee that the graph is free from cycles. The
last inequalities (3) are called hypercube constraints.

The inequalities (2) and (3) define facets of the linear ordering polytope [19]. For n ≤ 5, the

inequalities (1)-(3) are sufficient to describe the linear ordering polytope, but for n > 6 more
facet defining constraints are needed [34].

3.10 Edge Completion Problems

An edge completion problem consists in, given a graph G = (V , E), finding a supergraph H =
(V , E ∪ F) with the same set of vertices V and an extra set of edges F (called the fill edges)
that are added to the previously existing ones E , chosen in a way such as H belongs to some
predefined class of graphs C , like chordal graphs, interval graphs, split graphs, while optimizing

some cost function, like the number of added edges |F |, or the clique number of the graph ω(H).
Note that we consider E ∩ F = ∅ for distinguishing the fill edges in F from the original ones
in E .

Several edge completion problems have been studied in literature, concerning different aimed

classes of graphs C and different cost functions to optimize. The class of chordal graphs is the
most addressed. If the desired supergraph H of G is required to be chordal, H is called a trian-
gulation of G. Another class for edge completion problems is the class of interval graphs. If the

supergraph H is required to be an interval graph, the edge completion problem is called an in-
terval graph completion. Edge completion problems where C is the class of AT-free graphs [25],
split graphs [21], proper interval graphs [23] and comparability graphs [22] have also been

studied.

Minimum vs. Minimal Edge Completion Problems

There are also variants depending on the selected cost function. For example, if the cost function
is one less than the size of the largest clique ω(H) − 1, its optimization can lead to problems
like treewidth or pathwidth. There exists a triangulation H = (V , E ∪ F) of G with maximum

clique sizes k + 1 if and only if the treewidth of G is k [6]. By Lemma 1, the treewidth of
a graph G coincides with minH ω(H) − 1 for all triangulations H of G. The treewidth is the
problem of finding a triangulation H of G that minimizes the size of the largest clique ω(H)−1.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 230 — #18
�

�

�

�

�

�

230 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

The pathwidth problem consists of finding an interval graph completion that minimizes also

ω(H) − 1.

A minimum C -completion of G = (V , E) is a supergraph H = (V , E ∪ F) ∈ C that minimizes
the number of added edges |F |. A triangulation of G that minimizes the number of added edges
|F | is called a minimum triangulation or minimum fill-in, and an interval graph completion that

minimizes the number of added edges |F | is called a minimum interval graph completion (IGC).

The minimum fill-in is a NP-hard problem, as well as the minimum interval completion, the
treewidth and the pathwidth problems. Most researchers choose to address an easier problem that
is related to these, which is to find a minimal fill-in or a minimal interval graph completion [20].

A minimal C -completion of G = (V , E) is a supergraph H = (V , E ∪ F) ∈ C such that every

H ′ = (V , E ∪ F ′) for F ′ ⊂ F is not a C -completion of G. In the case of minimal triangulations,
it is equivalent to saying that the removal of a single fill edge of a solution H will result in loosing
chordality. For the problem of finding a minimal interval graph completion that does not hold,

i.e. removing a single fill edge of a minimal interval graph completion H of G might give a
subgraph that it is not interval, but removing more than a single fill edge might give an interval
graph completion of G.

A solution to the minimum completion problem must always be a minimal completion, but min-

imal triangulations or interval completions do not imply that the number of edges is minimum.

4 MOSP GRAPH

A MOSP problem with at most two different items per pattern can be represented through a graph

that associates vertices to orders and arcs to patterns [38]. By making each item correspond to
a vertex, and considering two vertices to be adjacent if and only if the corresponding items are
simultaneously present in a pattern, we obtain a MOSP graph.

The condition of having at most two different panel types per pattern represents no loss of gen-

erality, because a solution of the general case can be transformed in a solution of the first case
in polynomial time (and vice-versa) [38]. Given a general MOSP problem, a MOSP graph can
be obtained by introducing a clique of size k for each pattern composed by k panel types. By

analogy to each arc in the clique, this pattern can be divided in subpatterns with at most 2 items
in each, transforming it in a MOSP graph corresponding to a problem where there are at most 2
items per pattern. In [38], Yanasse proves that the maximum number of stacks in both problems
is the same.

As an example, consider the MOSP instance with seven patterns and six different items pre-
sented in Table 2. This instance originates a MOSP graph with 6 vertices, one for each item, and
with edges between the vertices (items) that belong to the same pattern. Notice that, for example,
vertices 2 and 4 are connected because pattern P2 produces both items 2 and 4, and 2 and 5 are

connected because those items are both contained in pattern P3.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 231 — #19
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 231

Table 2 – An instance of the MOSP with 7 cutting patterns and 6 items.

Patterns P1 P2 P3 P4 P5 P6 P7

Item 1 X X X
Item 2 X X
Item 3 X
Item 4 X X X X
Item 5 X X
Item 6 X

Figure 9 – MOSP Graph of the instance in Table 2.

Furthermore, Yanasse showed that it is possible to take a solution for the ordering of the vertices
of the MOSP graph and construct a sequence for the corresponding cutting patterns [38]. A linear

ordering of the vertices sets an ordering for the opening of the stacks; following this ordering, a
pattern will be put in the sequence when it is the first time that all vertices corresponding to all
items present in that pattern have been opened.

Some simplifications are possible. When there are some patterns with only one item that is also

produced by another pattern, we say that the first pattern is contained in the second pattern. It
has been proved by Yanasse [37] that this type of patterns can be removed from the problem and
inserted later in the solution just before the patterns in which they were contained. It happens,

for instance, with patterns P6 or P7 in Table 1. Each pattern should be sequenced just before the
first of the patterns containing that item, and the number of simultaneously open stacks will not
increase [37]. Therefore, this instance can be reduced to only five relevant patterns (P1, P2, P3,

P4 and P5) generating the same graph.

There are other situations in which patterns can be removed from the original problem before
solving it, and then inserted later in the solution. Items that are present in just one pattern will
appear in the graph as isolated vertices if that pattern does not include any other item. In this

case, that pattern can be the first or last in the sequence, and it will open and close a stack
without any other stacks open at that same time, so it does not increase the maximum number of
simultaneously open stacks.

For the example in Table 1, if the patterns are sequenced by the ordering P1 P2 P3 P4 P5 P6 P7,

there is a period of time when there are four open stacks simultaneously. If the ordering of
the patterns is changed, the number of open stacks can be lowered. A possible solution is the
sequence of vertices 2-5-4-6-1-3 that corresponds to the stacks opening and also to a sequence of

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 232 — #20
�

�

�

�

�

�

232 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

patterns P3 P7 P2 P5 P6 P4 P1. As there are some stacks that are not simultaneous at any time, like

3 and 4, or 1, 2 and 6, those stacks can use the same stack space; hence this sequence of patterns
gives a maximum of three simultaneously open stacks, which is the optimum for this instance,
as can be observed in Figure 10.

Figure 10 – Non simultaneous items can share stack space.

This means that it is natural to associate the lifetime of a stack in the solution with intervals of
time measured not in minutes or hours but measured in terms of the patterns in the sequence.
We saw that we can start solving a MOSP problem with a graph, and that in the solution of the

problem we can consider an interval for the time that each stack is open. By associating each
open stack of our MOSP problem to an interval in the real line (the interval of time that the stack
stays open), we can associate a solution of the MOSP to an interval representation of an interval

graph. An interval graph can be associated to the set of intervals in the solution and the MOSP
graph will be modified in order to become an interval graph. We will use some properties of
interval graphs to find the solution of MOSP instances.

For the example in Figure 9, the interval graph corresponding to the solution displayed in Fig-

ure 10 has the same vertices and edges of the MOSP graph and two additional edges, as depicted
in Figure 11. This is an interval graph completion (as explained in Section 3.10) of the original
MOSP graph. The fill edge [54] was added to make the graph chordal, because it is a chord

of the previous 4-cycle 1, 4, 2, 5. The fill edge [56] was added to eliminate the asteroidal triple
3, 2, 6, transforming the MOSP graph in an AT-free graph. In the original MOSP graph 3, 2, 6 is
an AT because 3, 5, 2 is a path from vertex 3 to vertex 2 that does not pass through any neighbor

of vertex 6. With the edge [56] now vertex 5 is a neighbor of vertex 6.

Figure 11 – Interval Graph of the instance in Table 2.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 233 — #21
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 233

As discussed in Section 3.6, the vertex order defined by the left endpoints of the intervals is

related to the sequence of cliques that will appear in the interval graph of the solution of a MOSP
problem.

5 AN INTEGER PROGRAMMING MODEL FOR THE MOSP

Given an instance of the problem, we first build a MOSP graph G = (V , E), associating each

item cut from the patterns to a vertex and creating an arc joining vertex i and j if and only if items
i and j are cut from the same pattern. This graph may not be an interval graph at the start, but
we will add some arcs to it in such a way that it will become one. We need this graph to become

an interval graph because, if we associate each item to the interval of time in which the stack
of that item is open, we can use the graph to model what intervals should occur simultaneously
and what intervals should precede others. Each arc of the future interval graph means that, for a

period of time, the two stacks (the 2 vertices that are endpoints of the arc) will remain both open.
The initial graph contains only the arcs that must be there, in any possible sequence in which
the patterns can be processed. The remaining arcs that are added later to the graph will differ

according to the sequence of the patterns. It is the choice of these arcs that defines which are the
other simultaneously open stacks.

Our model consists in finding out which edges should be added to the original MOSP graph G =
(V , E) in order to get an interval graph H = (V , E ∪ F) that minimizes the maximum number

of simultaneously open stacks. We will use the characterization in Theorem 7 to guarantee that
the graph obtained in the solution of the problem is an interval graph.

5.1 Decision Variables

We set an ordering for opening the stacks by assigning a number to each item cut, with a bijective

function ϕ : V → {1, . . . , N}. This linear ordering of the vertices is set by the decision variables
xi j :

xi j =
{

1 if ϕ(i) < ϕ(j)
0 otherwise

∀i, j ∈ V

Notice that xii = 0 for any i ∈ V and also that we have xi j = 1 ⇔ x ji = 0. These variables
set an orientation into the arcs, to keep track of the sequence of the items. If xi j = 1 then item i
starts being cut before the item j , even though the corresponding stacks may overlap or not, i.e.,

in spite of having an arc between the two vertices or not.

Other decision variables will be used to identify the arcs that are added to the original graph
G = (V , E) to get an interval graph H = (V , E ∪ F) and, together with variables x , determine
which intervals will overlap. To decide which of these additional arcs are to be added, we define

a variable yi j for each arc i j that did not exist before in the graph:

yi j =
{

1 if [i j] /∈ F and ϕ(i) < ϕ(j)
0 if [i j] ∈ F or ϕ(i) ≥ ϕ(j)

∀i, j ∈ V : [i j] /∈ E

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 234 — #22
�

�

�

�

�

�

234 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

Note that yi j is 1 when the arc [i j] is NOT added. Variables y depend on the linear ordering of

vertices, so it follows that there is an anti-reflexive relation yi j = 1 ⇒ y ji = 0. When yi j = 1,
the arc [i j] is not needed in the interval graph, so, by definition of interval graph, if there is not
an arc [i j], then the intervals i and j do not intersect. Consequently, one of the intervals should

finish before the other one starts. As i ≺ j , the interval i opens and finishes before the interval j
starts. It means that the stacks for items i and j will never be open at the same time, so they can
share the same stack space, as seen in Figure 12.

Figure 12 – Interval i opens and closes before j starts.

As one of the conditions for the variable yi j to be equal to 1 is that vertex i precedes vertex j ,
equivalent to saying that xi j = 1, then we must have:

yi j ≤ xi j ∀i, j ∈ V : i �= j, [i j] /∈ E (4)

When yi j = 1, the arc [i j] is not needed in the interval graph; so, by definition of interval graph,
if there is not an arc [i j] then intervals i and j do not intersect. Consequently, one of the intervals
should finish before the other one starts. As yi j ≤ xi j , we must also have xi j = 1, determining

that the interval i opens and finishes before the interval j starts.

5.2 Edge Completion to Obtain an Interval Graph

To guarantee that the graph H = (V , E ∪ F) is an interval graph, we use in the model the

characterization given in Theorem 7, to express relations between the binary variables yi j and xi j .
Recall that Olariu’s Theorem characterizes interval graphs as graphs in which the vertices can be
linearly ordered in such a way that, for any three vertices i, j, k such that i ≺ j ≺ k, if [ik] ∈ E
then [i j] ∈ E , as shown in Figure 5.

We will consider three different vertices i, j, k ∈ V that do not form a clique in the original
MOSP graph, and analyze in what circumstances the arcs [i j] have to be added. Let us separate
the analysis in two cases: (i) arc [ik] ∈ E and (ii) arc [ik] /∈ E .

Case 1: arc [ik] ∈ E

Let us suppose that arc [i j] /∈ E , otherwise H already obeys the condition needed in an interval

graph. If i ≺ j ≺ k then as [ik] ∈ E then for H to be an interval graph it must be [i j] ∈ F .
When xi j = 1, an arc [i j] will belong to the graph H if yi j = 0. Clearly, if xi j = 1, then
y ji = 0. Olariu’s characterization can be expressed as follows. For each arc [i j] /∈ E , the

value of the corresponding variable yi j should obey: yi j + xi j + x jk ≤ 2. The inequality states
that, if vertex i precedes j and vertex j precedes k, or equivalently xi j = x jk = 1, then the
variable yi j must be equal to 0, i.e. arc [i j] ∈ F , as in Figure 5.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 235 — #23
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 235

This inequality can be strengthened as follows. Combine the inequality with the inequalities

yi j ≤ xi j and x jk ≤ 1 to obtain:

yi j + xi j + x jk ≤ 2
yi j − xi j ≤ 0

x jk ≤ 1

2yi j + 2x jk ≤ 3

Divide both sides by 2 and, as the variables are integers, we can round the fractional part of
the right hand side to obtain a stronger inequality yi j + x jk ≤ 1. Because xkj = 1 − x jk, this

inequality is equivalent to the constraint in binary variables equivalent to the logical implica-
tion yi j ⇒ xkj :

yi j ≤ xkj ∀i, j, k ∈ V , [i j] /∈ E, [ik] ∈ E (5)

We have assumed that i ≺ j ≺ k but this is valid too if i ≺ j but k ≺ j , because we have
xkj = 1. If j ≺ i then xi j = 0 and by (4) we have yi j = 0 and the inequality is also valid. In

fact, when there is the arc [ik] in the initial graph, but not the arc [i j] (it is indifferent if the arc
[k j] exists or not), this means that intervals i and k must overlap.

If yi j = 1, then interval i will close before interval j starts. As interval k must overlap interval i,

because [ik] ∈ E , k must be already open when j starts. So we must have xkj = 1, as depicted
in the next figure.

In the example presented in Section 4, the vertices 2, 6 and 4 form a set in these conditions,

because [24] ∈ E but [2, 6] /∈ E . Hence, in the model for this example there is the inequality
y26 ≤ x46. In the solution, as can be observed in Figure 10, interval 2 opens and closes before
interval 6 opens (y26 = 1) and the linear ordering is 2 ≺ 4 ≺ 6.

Note that if both arcs [ik] and [j k] ∈ E and xik = x jk = 1, then both i and j are predecessors

of k. Following the definition of an interval graph, the predecessors of k must form a clique.
In the model, that is equivalent to having yi j = y ji = 0, meaning that there should be an arc
between vertices i and j .

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 236 — #24
�

�

�

�

�

�

236 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

x jk = 1 means that interval j opens before interval k. As [ik] ∈ E , interval k must overlap with
interval i, even if i opens before j starts. Then interval i cannot be closed before j starts because
i has to wait till k starts. The situation is captured in the following picture.

In the example being analyzed, the set of vertices 5, 4 and 1 will admit in the model the inequality
y54 ≤ x14. As in the solution the linear ordering of these vertices is 5 ≺ 4 ≺ 1, this inequality
forces y54 = 0 meaning that the arc [54] is added to the graph, as can be seen in Figure 11.

Case 2: arc [ik] /∈ E

On the other hand, the arc [ik] may not be originally in the set of arcs E , but it may be added, as
a result of other constraints in the model. In this situation, [ik] ∈ F , we will have the variable yik

taking the value 0, and the function (xik −yik) taking the value 1, meaning that arc [ik] is added to
the set. In this second case, also consider [i j] /∈ E , because otherwise the result was guaranteed.
Clearly, Olariu’s characterization should also apply to this case. Therefore, for each arc [i j] /∈ E ,
the value of the corresponding variable yi j can be constrained as yi j +(xik − yik)+ x jk ≤ 2. The
inequality states that, if both vertices i and j precede k, or equivalently xik = x jk = 1, when the
variable yik is set to 0 by another constraint (meaning that the arc [ik] is added to the graph G)
then the variable yi j must also be equal to 0 (meaning that [i j] ∈ F or i does not precede j).

This inequality can be strengthened as follows. Combine the inequality with the following in-
equalities from the linear ordering polytope, as well as a non-negativity constraint, to obtain:

yi j + xik − yik + x jk ≤ 2

xi j − xik + x jk ≤ 1
yi j − xi j ≤ 0

−yik ≤ 0

2yi j + 2x jk − 2yik ≤ 3

By dividing both sides by 2, and rounding the fractional part of the righthand side, we obtain
yi j + x jk − yik ≤ 1. This inequality is equivalent to a constraint in binary variables equivalent
to the logical implication yi j ⇒ xkj ∨ yik :

yi j ≤ xkj + yik ∀i, j, k ∈ V , [i j], [ik] /∈ E (6)

Supposing that i ≺ j ≺ k, this means that x jk = 1 or equivalently xkj = 0. If we decide to add
the arc [ik], then yik = 0 and the inequality forces yi j = 0, meaning that we must also add the
arc [i j] for the graph to be an interval graph.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 237 — #25
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 237

This inequality is also true if the arc [ik] is not added because then yik = 1 and yi j would be

free. This inequality is also valid in all other possible orderings of the vertices i, j, k as can be
seen in Table 3.

Table 3 – Possible cases when arc [ik] ∈ F .

Vertices yi j ≤ xkj + yik

i ≺ j ≺ k 0 0 0

i ≺ k ≺ j free 1 0
j ≺ i ≺ k 0 0 0

j ≺ k ≺ i 0 0 0
k ≺ i ≺ j free 1 0

k ≺ j ≺ i 0 1 0

In the second, fifth and sixth cases (k ≺ j), adding the arc [ik] to the graph does not force to
add the arc [i j]. In the remaining three cases where j ≺ i, the inequality yi j ≤ xi j (4) forces
yi j = 0.

In fact, if yi j = 1, meaning that i ends before j starts, then xkj = 1 meaning that k should start

before j , as shown in Figures 13 and 14, or yik = 1, meaning that i should end before k starts,
as depicted in Figures 14 and 15.

Figure 13 – Interval i closes before interval j opens, with in-

terval k being simultaneous to interval i and opening before j .

Figure 14 – Interval i closes before intervals j and k open, with
interval k opening before interval j .

Figure 15 – Interval i closes before intervals j and k open, with

interval j opening before interval k.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 238 — #26
�

�

�

�

�

�

238 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

In the example, the three vertices 6, 1 and 3 originate the inequality y61 ≤ x31 + y63.

As in the solution the linear ordering of these vertices is 6 ≺ 1 ≺ 3, if the arc [63] was added,
then the arc [61] should also be added. In this case, both arcs were not added, making these three
variables equal to one.

5.3 Objective function

The position of vertex j in the linear ordering is found counting the number of vertices that
precede it. For every vertex j , the sum

∑N
i=1 xi j counts how many vertices precede j , i.e., the

number of intervals that start before i starts. On the other hand, variable yi j = 1 means that
vertex i closes before vertex j opens. For every vertex j , the sum

∑N
i=1 yi j counts how many

intervals finish before interval j starts.

So, when vertex j opens, the number of intervals that are open at that instant is
∑N

i=1 xi j −∑N
i=1 yi j +1, where the constant 1 accounts for the vertex j itself. This leads to a set of functions

that can be used to evaluate the MOSP number:

N∑
i=1
i �= j

xi j −
N∑

i=1[i j]/∈E

yi j + 1 ≤ K ∀ j = 1, . . . , N (7)

Each function provides a lower bound for the MOSP, being K the maximum of those functions.
The objective function of the model is to minimize K . If one puts each interval in a line, as in
Figure 16, the number of lines open when an interval starts is a lower bound for the maximum

number of open stacks.

Figure 16 – Optimal solution of the example from Table 2.

In the example presented before, when interval 5 starts, the number of open stacks turns to two,

i.e., for j = 5: ∑
xi j −

∑
yi j + 1 = 1 − 0 + 1 = 2 ≤ 3,

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 239 — #27
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 239

which is a lower bound for the MOSP (which is three). The same inequality, corresponding to the

moment that interval 1 starts, gives a better lower bound. At that instant, there are four intervals
already open (2, 5, 4 and 6) but two of those have already closed (intervals 2 and 6). Hence the
inequality is, for j = 1:∑

xi j −
∑

yi j + 1 = 4 − 2 + 1 = 3 ≤ 3.

There are 6 cliques in the sequence of the perfect elimination order, such that every appearance
of a vertex in these cliques is consecutive. The sequence of cliques is:

{2}, {2, 5}, {2, 5, 4}, {6, 5, 4}, {1, 5, 4}, {1, 5, 3}

The first 2 cliques are not maximal, but all the others are maximal with size 3, which is the
optimum for this instance of the MOSP.

The value of the optimum of the MOSP is equal to the size of the largest clique in the solution
graph, ω(H), and, because interval graphs are perfect graphs, it is equal to the chromatic number

of the graph, χ(H), which is the number of colors needed to assign to the vertices of the graph
such that there are no two adjacent vertices of the same color.

Our basic new mathematical formulation for the MOSP problem is:

Minimize K

Subject to:

xi j + x ji = 1 ∀i, j = 1, . . . , N with i �= j (8)

xi j + x jk + xki ≤ 2 ∀i, j, k = 1, . . . , N with i �= j �= k (9)

yi j ≤ xi j ∀i, j = 1, . . . , N with i �= j and [i j] /∈ E (10)

yi j ≤ xkj ∀i, j, k = 1, . . . , N with [i j] /∈ E , [ik] ∈ E (11)

yi j − yik ≤ xkj ∀i, j, k = 1, . . . , N with [i j], [ik] /∈ E (12)

N∑
i=1
i �= j

xi j −
N∑

i=1[i j]/∈E

yi j + 1 ≤ K ∀ j = 1, . . . , N (13)

xi j ∈ {0, 1} ∀i, j = 1, . . . , N with i �= j (14)

yi j ∈ {0, 1} ∀i, j = 1, . . . , N with i �= j, [i j] /∈ E (15)

K ∈ N (16)

Recall that constraints (8) and (9) are the linear ordering constraints presented in Section 3.9.

The variables xi j were defined for every i, j = 1, . . . , N such that i �= j , but it is possible to

use only half of these variables, defining xi j only for i < j , because all the other variables are
defined by equations (8). Later, we will denote the model that only uses variables xi j , for i < j ,
as the reduced model.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 240 — #28
�

�

�

�

�

�

240 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

5.4 Other Valid Inequalities

The model presented in the last section is based on Olariu’s characterization of interval graphs
and has an objective function that seeks the interval graph with the best MOSP number. In this

section, we present other valid inequalities derived from properties of interval graphs. These
inequalities provide insight into the structure of the solutions of the model. In particular, the
4-cycle inequalities proved to be able to strengthen the model.

Neighbor of Successor Inequalities

In an interval graph both variables on the left are not allowed to be simultaneously equal to one
without contradicting Theorem 7.

yi j + yki ≤ 1 ∀i, j, k ∈ V with [i j], [ik] /∈ E, [j k] ∈ E (17)

yi j + y jk ≤ 1 ∀i, j, k ∈ V with [i j], [j k] /∈ E, [ik] ∈ E (18)

yi j + ylk ≤ 1 ∀i, j, k, l ∈ V with [i j], [kl] /∈ E, [j l], [ik] ∈ E (19)

The inequality (17) says that a neighbor of the successor of vertex i, which is vertex k, cannot
end before vertex i opens.

If both variables on the left hand side of the inequality (17) were yi j = yki = 1, then the three

vertices were linearly order as in k ≺ i ≺ j . As [j k] ∈ E , Theorem 7 would force to have the
arc [ki] ∈ F , asserted by yki = 0, which contradicts the initial assumption.

The inequality (18) states that if vertex k is a neighbor of vertex i, it cannot open after the closing

of a successor of vertex i, which is represented by vertex j .

If both variables on the left hand side of the inequality (18) were yi j = y jk = 1, then the linear
order of the three vertices would be i ≺ j ≺ k. As [ik] ∈ E , Theorem 7 would force adding the
arc [i j] ∈ F , making yi j = 0, which is absurd.

Finally, the inequality (19) declares that a neighbor l of the successor j of vertex i cannot close
before the neighbor k of vertex i opens.

If the two variables are considered 1 as in yi j = ylk = 1, then the linear order of the four vertices
should satisfy i ≺ j and l ≺ k. Now there are two possible cases.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 241 — #29
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 241

If j ≺ k, as [ik] ∈ E , by Theorem 7 then [i j] ∈ F , making yi j = 0, which is absurd.

If k ≺ j , then the linear ordering would be l ≺ k ≺ j and the existence of the arc [j l] ∈ E

would make the arc [lk] ∈ F , stated by ylk = 0 which is absurd.

Co-comparability Graph

For the solution graph H = (V , E ∪ F) to be an interval graph, its complement H must be a
comparability graph. The ordering of the vertices must respect transitivity in the complement
graph and must not have direct cycles. If the arcs [i j] and [j k] exist in the complement graph,
with an orientation i ≺ j and j ≺ k , then if the arc [ik] exists, it must be oriented as in i ≺ k.

Figure 17 – H must be transitively orientable.

The transitivity of the relation between the variables y comes from the comparability graph
property and forces an ordering of the vertices. If a direction is defined in an arc of a graph,
that will determine the flow of all the other ones. The variables y define the complement graph,

because yi j equals 1 when the arc [i j] /∈ F , hence it exists in the complement graph H and the
orientation of the vertices is i ≺ j . The transitivity in H is expressed by

yi j = y jk = 1 ⇒ yik = 1

This can be assured by the following statement for every i �= j �= k such as the arcs [i j], [ik],
[j k] did not exist in the initial MOSP graph:

yi j + y jk − 1 ≤ yik ∀i, j, k ∈ V , [i j], [j k], [ik] /∈ E (20)

For example, consider the following graph. If we define an ordering of the vertices from A to
B, then B must come after C because otherwise having A to B and B to C by transitivity we

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 242 — #30
�

�

�

�

�

�

242 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

should also have the arc A to C, which does not exist. By similar reasons, the other arcs have the

following orientations: C to D and A to D.

A• •>

•

B

D C
•

A• •>

•
∨

B

D C
•<

∧

Let us analyze another example, an instance of the MOSP problem with five different items and

eight patterns taken from [11, p.322].

Table 4 – An instance for the MOSP with 5 items and 8 patterns.

Patterns P1 P2 P3 P4 P5 P6 P7 P8

Item 1 X X X X

Item 2 X X
Item 3 X X

Item 4 X X X
Item 5 X X X

This instance originates a MOSP graph with 5 vertices, one corresponding to each item, and with
edges between the vertices (items) that belong to the same pattern.

Figure 18 – MOSP Graph of the instance in Table 4.

The graph corresponding to this instance is not yet an interval graph. We need to add more arcs
so it will become chordal and its complement graph will become a comparability graph. Initially,

the complement graph of the MOSP graph in Figure 18 is:

1• •2 •3 •4 •5

If we set an orientation on the first arc of the complement graph, for example, from vertex 1 to
vertex 2, it will mean that y12 = 1.

1• •>
2 •3 •4 •5

Because H must be a comparability graph, one of the following must happen:

y32 = 1 ∧ y23 = 0 or y32 = y23 = 0

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 243 — #31
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 243

meaning that either an arc exists in H linking vertices 2 and 3 with orientation from vertex 3

to 2, or that arc does not even exist. This will correspond to the inequality

y12 + y23 ≤ 1

and to another inequality to be an interval graph

y21 − y23 ≤ x31

This last inequality means that, for example, if y21 = 1 and x13 = 1 then y23 = 1. In terms of

the intervals, this says that if interval 2 closes before interval 1 opens and interval 1 opens before
interval 3 opens, then interval 2 closes before interval 3 opens.

A feasible solution for this instance corresponds to having the arc [45] removed from the com-
plement graph and the linear ordering as in the following picture:

H 1• •>
2• •<

3• •>
4 5•

The complement of this graph is the interval graph H that corresponds to the solution of the
problem:

Figure 19 – Interval graph corresponding to the solution of the instance in Table 4.

An ordering defined for the vertices of the complement graph H will correspond to the same

ordering for the vertices of the interval graph H . The interval graph of this instance can then be
sketched with the vertices in a straight line sorted by their linear ordering.

H 1• •> •

>

>

5
>

>

>

3 4• •>
2

In this graph, the perfect elimination scheme would first eliminate vertex 2 and its associated
arcs.

1• •> •

>

>

5
> •

>

3 4

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 244 — #32
�

�

�

�

�

�

244 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

Then vertex 4 should be eliminated, resulting in:

1• •> •

>

5
>

3

After that, one would eliminate vertex 3, followed by vertex 5 and finally vertex 1.

1• •>
5

1•
The reverse order of the perfect elimination scheme sets the order of the beginning of the inter-
vals: 1-5-3-4-2.

This sequence of vertices corresponds to the sequence of patterns P1-P6-P3-P7-P8-P2-P4-P5.

As there are some stacks that are not simultaneous at any time, like 3 and 4, or 1 and 2, those
stacks can use the same stack space, hence this sequence of patterns gives a maximum of three
simultaneously open stacks, that is the optimum for this instance, as can be seen in Figure 20.

Figure 20 – Optimal solution of the example in Table 4.

Chords in k-cycles

For the graph G to become an interval graph, it has to be chordal, so in every k-cycle, for k ≥ 4,
sufficient chords must be added. In a 4-cycle defined by the ordered vertices {i j kl}, we need to
add at least one of the arcs in the diagonal, as shown in Figure 21.

Figure 21 – A 4-cycle must have a chord.

The need to add one of the arcs [ik], [ki], [j l] or [l j] can be expressed by the constraint:

yik + yki + y jl + ylj ≤ 1, ∀[ik], [j l] /∈ E, [i j], [j k], [kl], [li] ∈ E (21)

Proposition 1. Constraints (21) can be derived from the constraints of the MOSP model (11).

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 245 — #33
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 245

Proof. Consider the following inequalities:

yik ≤ xlk, y jl ≤ xkl , yik ≤ x jk, ylj ≤ xkj , yki ≤ xli , y jl ≤ xil , and yki ≤ x ji , ylj ≤ xi j .

Combining the constraints that have the variables x pq and xqp on the right-hand side, with pq ∈
{kl, j k, il, i j } we obtain: yik + y jl ≤ 1, yik + ylj ≤ 1, yki + y jl ≤ 1, and yki + ylj ≤ 1.
Furthermore, yik + yki ≤ 1 and ylj + y jl ≤ 1. The six constraints are clique constraint that

form a 4 vertex incompatibility graph: each vertex corresponds to a y variable and each of the
six edges corresponds to a constraint that states that we can only select one of the vertices, which
means that, when a binary variable ypq , with pq ∈ {l j, j l, ik, ki}, takes the value 1, all the other

variables in the set take the value 0, and the constraints (21) for the non-chordal 4-cycle follows.

yik• •−

•

yki

y jl yl j
•

All the chordless 4-cycles have to be identified prior to the solution of the model, and their
number is of order O(n4). An analysis of constraints for k-cycles, with k ≥ 5, is presented

in [29].

6 COMPUTATIONAL TESTS

The original integer programming model and the version with reduced number of variables were
tested on the instances of the Constraint Modeling Challenge 2005, available at:

http://www.cs.st-andrews.ac.uk/∼ipg/challenge/instances.html

The instances were provided by the participants in the challenge and present different kinds of
difficulty, such as size, sparseness and symmetry.

Only the inequalities discussed in the previous section were added to the plain model. No further
actions were taken to improve the efficiency of the solution procedure, as, for instance, including

in the model lowers bounds previously published in the literature or using specially tailored
heuristics for the MOSP.

Computational tests were performed with ILOG OPL Development Studio 5.5 on an Intel�
Core2 Duo T7200@2.00GHz 0.99GB RAM. For each instance, the best objective value found

by the model, the best lower bound, the gap, the number of nodes of the search tree and the
runtime were recorded.

In small instances, the optimal solution is found in just a few seconds. In larger instances, the

optimal solution is often found in just a few seconds as well, but it takes too long to prove that
it is optimal, specially in instances with many symmetries. In really large instances, the models
could not be started because there was not enough memory to handle so many variables and
inequalities.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 246 — #34
�

�

�

�

�

�

246 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

The model with reduced number of variables improved the gap and the runtime in some of the

larger instances, but not in all of them. The cells in gray in Table 5 represent the cases where the
reduced model improved the gap, the runtime or the number of nodes.

Table 5 – Computational results for the MOSP models.

Original MOSP Model Reduced MOSP Model

No. Best
Best

Gap
Runtime

Nodes Best
Best

Gap
Runtime

Nodes

Instance Items Objective
LB (s)

search Objective
LB (s)

search

(N) Value tree Value tree

Harvey wbo 10 10 1 10 3 3 0% 11,06 0 3 3 0% 64,78 0

Harvey wbo 10 20 1 10 5 5 0% 5,50 209 5 5 0% 4,78 106

Harvey wbo 10 30 1 10 6 6 0% 3,75 190 6 6 0% 3,00 121

Harvey wbop 10 10 1 10 3 3 0% 1,76 0 3 3 0% 1,00 0
Harvey wbop 10 20 10 10 5 5 0% 3,26 44 5 5 0% 3,79 55

Harvey wbp 10 10 30 10 9 9 0% 1,50 0 9 9 0% 0,75 0

Simonis 10 10 1 10 5 5 0% 3,50 65 5 5 0% 2,82 76

Simonis 10 10 50 10 5 5 0% 2,85 19 5 5 0% 2,50 19

Simonis 10 20 100 10 6 6 0% 0,50 0 6 6 0% 0,87 0

Simonis Problem 10 20 150 10 9 9 0% 0,75 0 9 9 0% 0,84 0

Wilson nwrsSmaller4 1 10 3 3 0% 0,75 0 3 3 0% 1,03 0

Wilson nwrsSmaller4 2 10 4 4 0% 0,54 0 4 4 0% 1,09 0
Harvey wbo 15 15 1 15 3 3 0% 17,07 10 3 3 0% 18,76 6

Harvey wbo 15 30 1 15 4 4 0% 3,65 0 4 4 0% 13,89 0

Harvey wbop 15 30 15 15 11 11 0% 997,04 21433 11 11 0% 272,29 5540

Harvey wbp 15 15 1 15 4 4 0% 1,51 0 4 4 0% 3,76 0

Harvey wbp 15 15 35 15 14 14 0% 1,53 0 14 14 0% 1,54 0

Simonis 15 15 200 15 11 11 0% 2,29 0 11 11 0% 2,26 0

Simonis 15 15 90 15 11 10 9% 3127,75 148083 11 11 0% 3086,39 174768

Simonis 15 30 100 15 14 14 0% 0,75 0 14 14 0% 1,35 0

Simonis Problem 15 15 100 15 11 11 0% 177,17 5056 11 11 0% 272,53 7834
Wilson nwrsSmaller 4 15 7 7 0% 7,82 11 7 7 0% 2,67 0

Wilson nwrsSmaller4 3 15 7 7 0% 1,25 0 7 7 0% 4,00 0

Harvey wbo 20 10 1 20 6 5 17% 826,09 361 6 5 17% 1307,15 696

Harvey wbo 20 20 1 20 3 3 0% 20,04 0 3 3 0% 18,87 0

Harvey wbop 20 10 10 20 8 6 25% 868,25 284 8 7 13% 806,00 460

Harvey wbop 20 10 15 20 12 9 25% 1646,03 1936 12 12 0% 516,03 507

Miller 20 13 11 15% 1985,75 1871 13 9 30% 1923,10 3017

Shaw Instance 1 20 14 12 14% 1950,50 6237 14 12 14% 1951,51 6757
Shaw Instance 10 20 13 11 15% 1929,78 5051 13 10 23% 1935,01 4950

Shaw Instance 2 20 12 12 0% 1897,75 3349 12 11 8% 1981,75 3214

Shaw Instance 3 20 14 12 14% 1981,75 7344 14 12 14% 1982,50 6397

Simonis Problem 20 10 1 20 9 7 22% 1892,51 1422 9 7 22% 1941,28 1609

Simonis Problem 20 20 100 20 19 19 0% 3,50 0 19 19 0% 4,25 0

Wilson nrwsLarger 1 20 12 12 0% 13,00 0 12 12 0% 4,31 0

Wilson nrwsLarger4 2 20 12 12 0% 14,29 5 12 12 0% 5,03 0

Wilson nrwsLarger 3 25 10 10 0% 8,75 0 10 10 0% 148,60 10

Wilson nrwsLarger 4 25 16 14 13% 1413,50 720 16 14 13% 188,10 38
Wilson SP 1 25 9 8 11% 378,10 2934 9 8 11% 1979,75 49

Harvey wbo 30 15 1 30 7 6 14% 2193,63 2 7 6 14% 2191,26 1

Harvey wbo 30 30 1 30 4 3 25% 1907,06 0 4 3 25% 1934,75 0

Simonis 30 10 1 30 13 9 31% 1681,28 2 12 9 25% 1605,05 100

Simonis 30 15 100 30 27 27 0% 30,71 0 27 27 0% 46,78 3

Simonis Problem 30 30 1 30 21 13 38% 2990,03 54 24 13 45% 1927,45 0

Mean 7% 681,95 4697,55 6% 640,12 4916,66

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 247 — #35
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 247

According to the charts, the reduced model performed slightly better in terms of runtime and

number of nodes in the branching, but the difference between the models is not significant.

��
��

���
���
���
���
���
���
���
���
���

� �� �� �� ��

��
�

������	
���

	
�����
�������
����
��	
������
����
����������

�

���

����

����

����

����

����

����

� �� �� �� ��

��
��
��

�
��
�

������	
���

	
�����
�������
����
��	
������
����
����������

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 500 1000 1500 2000 2500 3000 3500

N
o

d
es

Runtime (s)

Original

Reduced

Linear (Original)

Linear (Reduced)

7 CONCLUSIONS

In this paper, we presented a new integer programming model for the Minimization of Open
Stacks Problem (MOSP). It is based on the edge completion of a MOSP graph (to obtain an in-

terval graph) and on a characterization of interval graphs that uses a perfect elimination ordering
of the vertices. MOSP solutions have a structure that is similar to the solutions of other pattern
sequencing problems, and so the same concepts from graph theory may also apply.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 248 — #36
�

�

�

�

�

�

248 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

Even though approaches based on dynamic programming may be more efficient to solve the
MOSP, the search for MOSP models that may be combined with cutting stock models to tackle
the integrated cutting stock and pattern sequencing problem is still of interest.

Clearly, there is room for improvement. The reduction of symmetry in the sequence of the pat-
terns is a crucial factor for improving the runtime. Even in instances with a small number of
vertices, the existence of symmetry makes proving the optimality of a solution very difficult and
time consuming. It happened, for instance, in the Miller instance in Figure 22. One way to re-
duce symmetry is to choose an opening order for the neighbors of the first vertex to close and to
include it in the model, no matter what vertex closes first. Clearly, all the neighbors of the first
vertex to close must open beforehand, and, for instances with a large value of the MOSP, there
are many permutations of the opening order.

Figure 22 – MOSP graph of the Miller instance.

REFERENCES

[1] ARNBORG S, CORNEIL DG & PROSKUROWSKI A. 1987. Complexity of finding embeddings in a
k-tree. SIAM Journal on Algebraic and Discrete Methods, 8(2): 277–284.

[2] BAPTISTE P. 2005. Simple mip formulations to minimize the maximum number of open stacks. In
Constraint Modelling Challenge, pages 9–13, Edinburgh, Scotland, July 31. IJCAI.

[3] BARD JF. 1988. A heuristic for minimizing the number of tool switches on a flexible machine. IIE
Transactions, 20(4): 382–391, December.

[4] BIEDL T. 2005. CS 762: Graph-theoretic algorithms – Lecture notes of a graduate course.University
of Waterloo, September.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 249 — #37
�

�

�

�

�

�

ISABEL CRISTINA LOPES and J.M. VALÉRIO DE CARVALHO 249

[5] BILLIONNET A. 1986. On interval graphs and matrice profiles. RAIRO. Recherche opérationnelle,
20(3): 245–256.

[6] BODLAENDER HL & KOSTER AM. 2010. Treewidth computations I. Upper bounds. Information
and Computation, 208(3): 259–275.

[7] BODLAENDER HL & KOSTER AMCA. 2008. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3): 255–269.

[8] CHUDNOVSKY M, ROBERTSON N, SEYMOUR PD & THOMAS R. 2003. Progress on perfect graphs.
Mathematical Programming, 97(1): 405–422, July.

[9] CORNEIL DG, OLARIU S & STEWART L. 1998. The ultimate interval graph recognition algorithm?
(extended abstract). In Symposium on Discrete Algorithms, pages 175–180.

[10] CORNUÉJOLS G, LIU X & VUŠKOVIĆ K. 2003. A polynomial algorithm for recognizing perfect
graphs. 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 0: 20.

[11] DÍAZ J, PETIT J & SERNA M. 2002. A survey of graph layout problems. ACM Computing Surveys,
34(3): 313–356, September.

[12] DYSON RG & GREGORY AS. 1974. The cutting stock problem in the flat glass industry. Operational
Research Quarterly, 25(1): 41–53, Mar.

[13] FIORINI S. 2006. 0, 1/2-cuts and the linear ordering problem: Surfaces that define facets. SIAM
Journal on Discrete Mathematics, 20(4): 893–912.

[14] FOERSTER H & WAESCHER G. 1998. Simulated annealing for order spread minimization in se-
quencing cutting patterns. European Journal of Operational Research, 110(2): 272–281, Oct. 16.

[15] FOMIN FV & GOLOVACH PA. 1998. Interval completion with the smallest max-degree. In
o. S. J. Hromkovic, editor, LNCS, number 1517, pages 359–371. WG’98.

[16] FULKERSON DR & GROSS OA. 1965. Incidence matrices and interval graphs. Pacific J. Math., 15:
835–855.

[17] GAREY MR & JOHNSON DS. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York.

[18] GOLUMBIC MC. 1980. Algorithmic graph theory and perfect graphs. Academic Press, New York.

[19] GRÖTSCHEL M, JÜNGER M & REINELT G. 1985. Facets of the linear ordering polytope. Mathe-
matical Programming, 33(1): 43–60, Sept.

[20] HEGGERNES P. 2006. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):
297–317.

[21] HEGGERNES P & MANCINI F. 2009. Minimal split completions. Discrete Applied Mathematics,
157(12): 2659–2669, jun. Second Workshop on Graph Classes, Optimization, and Width Parameters.

[22] HEGGERNES P, MANCINI F & PAPADOPOULOS C. 2008. Minimal comparability completions of
arbitrary graphs. Discrete Applied Mathematics, 156(5): 705–718.

[23] KAPLAN H, SHAMIR R & TARJAN RE. 1999. Tractability of parameterized completion problems
on chordal, strongly chordal, and proper interval graphs. Siam Journal On Computing, 28(5): 1906–
1922, May.

[24] KINNERSLEY NG. 1992. The vertex separation number of a graph equals its path-width. Information
Processing Letters, 42(6): 345–350.

[25] KLOKS T, KRATSCH D & SPINRAD J. 1997. On treewidth and minimum fill-in of asteroidal triple-
free graphs. Theoretical Computer Science, 175(2): 309–335.

Pesquisa Operacional, Vol. 35(2), 2015

�

�

“main” — 2015/6/29 — 22:20 — page 250 — #38
�

�

�

�

�

�

250 GRAPH PROPERTIES OF MINIMIZATION OF OPEN STACKS PROBLEMS

[26] LAPORTE G, GONZÁLEZ JJS & SEMET F. 2004. Exact algorithms for the job sequencing and tool
switching problem. IIE Transactions, 36: 37–45.

[27] LEKKERKERKER C & BOLAND J. 1962. Representation of a finite graph by a set of intervals on the
real line. Fundamenta Mathematicae, 51: 45–64.

[28] LINHARES A & YANASSE HH. 2002. Connections between cutting-pattern sequencing, VLSI de-
sign, and flexible machines. Computers & Operations Research, 29(12): 1759–1772.

[29] LOPES IC. 2011. Pattern sequencing models in cutting stock problems. PhD thesis, Universidade do
Minho, Portugal.

[30] MADSEN OB. 1988. An application of travelling-salesman routines to solve pattern-allocation prob-
lems in the glass industry. The Journal of the Operational Research Society, 39(3): 249–256, March.

[31] PANDA B & DAS S. 2003. A linear time recognition algorithm for proper interval graphs. Information
Processing Letters, 87(3): 153–161, August.

[32] PILEGGI G, MORABITO R & ARENALES M. 2005. Abordagens para otimização integrada dos prob-
lemas de geração e sequenciamento de padrões de corte: caso unidimensional. Pesquisa Operacional,
25(3): 417–447.

[33] PINTO MJ. 2004. Algumas contribuições à resolução do problema de corte integrado ao problema
de sequenciamento dos padrões. PhD thesis, Instituto Nacional de Pesquisas Espaciais, São José dos
Campos, Brasil, Junho.

[34] REINELT G. 1993. A note on small linear-ordering polytopes. Discrete and Computational Geometry,
10(1): 67–78, Dec.

[35] TANG SC & DENARDO EV. 1998. Models arising from a flexible manufacturing machine, part I:
Minimization of the number of tool switches. Operations Research, 36(5): 767–777, September-
October.

[36] YANASSE HH. 1996. Minimization of open orders – polynomial algorithms for some special cases.
Pesquisa Operacional, 16(1): 1–26, June.

[37] YANASSE HH. 1997. On a pattern sequencing problem to minimize the maximum number of open
stacks. European Journal of Operational Research, 100: 454–463.

[38] YANASSE HH. 1997. A transformation for solving a pattern sequencing problem in the wood cut
industry. Pesquisa Operacional, 17(1): 57–70.

[39] YANASSE HH & LAMOSA MJP. 2007. An integrated cutting stock and sequencing problem. Euro-
pean Journal of Operational Research, 183(3): 1353–1370.

[40] YANASSE HH & PINTO MJ. 2003. Uma nova formulação para um problema de sequenciamento
de padrões em ambientes de corte. In INPE, editor, XXXV SBPO, pages 1516–1524, Natal, Brazil,
November 4th to 7th 2003.

[41] YANASSE HH & SENNE ELF. 2010. The minimization of open stacks problem: A review of some
properties and their use in pre-processing operations. European Journal of Operational Research,
203(3): 559–567.

[42] YUEN BJ. 1991. Heuristics for sequencing cutting patterns. European Journal of Operations Re-
search, 55(2): 183–190, November.

[43] YUEN BJ & RICHARDSON KV. 1995. Establishing the optimality of sequencingheuristics for cutting

stock problems. European Journal of Operations Research, 84: 590–598.

Pesquisa Operacional, Vol. 35(2), 2015

