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ABSTRACT. The temperature of refrigerated products along the distribution process must be kept within

close limits to ensure optimum food safety levels and high product quality. The variation of product temper-

ature along the vehicle routing sequence is represented by non-linear functions. The temperature variability

is also correlated with the time required for the refrigerated unit to recover after cargo unloading, due to the

cargo discharging process. The vehicle routing optimization methods employed in traditional cargo distri-

bution problems are generally based on the Travelling Salesman Problem with the objective of minimizing

travelled distance or time. The thermal quality of routing alternatives is evaluated in this analysis with Pro-

cess Capability Indices (PCI). Since temperature does not vary linearly with time, a Simulated Annealing

algorithm was developed to get the optimal solution in which the minimum vehicle traveling distance is

searched, but respecting the quality level expressed by a required minimum PCI value.

Keywords: cold chain, vehicle routing, perishable cargo distribution, PCI, TTI.

1 INTRODUCTION

Lifestyle changes over the past decades led to increasing consumption of refrigerated and frozen
foods, which are easier and quicker to prepare than the traditional types of food. In order to
ensure product quality and health safety (Andrée et al., 2010; Wegener, 2010; Daelman et al.,
2013), the control of temperature throughout the cold chain is necessary. In fact, a number of
factors affect the maintenance of quality and the incidence of losses in fresh food products, such
as (a) the initial quality of the commodity; (b) the temperature at which the product is held during
handling, storage, transport, and distribution; (c) the relative humidity of the postproduction
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environment; (d) the use of controlled or modified atmospheres during storage or transit; (e)
chemical treatments for the control of decay or physiological disorders; (j) heat treatments for
decay control; and (g) packaging and handling systems (Harvey, 1978). But, since temperature
largely determines the rate of microbial activity, which is the main cause of spoilage of most
fresh food products (Tarantilis & Kiranoudis, 2002; Mendoza et al., 2004; Giannakourou et al.,
2005; James & James, 2010; Ellouze & Augustin, 2010; Mai et al., 2011), continuous monitoring
of the full time temperature history usually allows for an adequate control of the process along
the short and medium distance distribution situations (Giannakourou et al., 2005). The quality
of these products might change rapidly because they are submitted to a variety of risks during
transport and storage that are responsible for material quality losses (Pereira et al., 2010; Tassou
et al., 2012). Metabolic activities generally increase as storing temperatures are elevated (Borch
& Arinder, 2002; McMeekin et al., 2008; Havelaar et al., 2010; Mai et al., 2011). On the
other hand, short interruptions in the control of the cold chain may lead to quick deterioration of
product quality (Garcia, 2008).

Therefore, the required product temperature range should be maintained from production to con-
sumption. However, the main difficulties are encountered at the weakest links or interfaces of the
cold chain as delivering, loading or unloading operations and temporary storage where products
are generally handled in somewhat uncontrolled temperature ambiences. For an adequate control
of the cold chain, some practical recommendations have been presented in the literature. Many
investigations have been carried out over the past years on the logistics food chain in order to
characterize the temperature variation as a function of product properties, ambient conditions,
the size and kind of packaging, the presence and thickness of air layer between the product and
the package, solar exposure, and the use of insulating pallet covers. These studies show large
variations of temperature in practice (Moureh & Derens, 2000).

In practical terms, the maintenance of an optimal temperature throughout the postproduction
handling chain is one of the most difficult tasks, and is far from being universally attained. Even
when road transport can provide satisfactory temperatures within the limits of acceptability, the
displacement time may be too long for short-life products to be transported over long distances.
On the other hand, in short or medium distance delivery runs, the chilled or frozen product
can be subjected to many door openings, where there is heat ingress directly from outside air
and from personnel entering to select and remove product (James et al., 2006; Pereira et al.,
2010). Frequent door openings can also lead to increased evaporator frosting, resulting in a re-
duction of the evaporator’s performance and an increase in the need for defrosts, particularly in
humid weather conditions (Estrada-Flores & Eddy, 2006). Additionally, the design of the ve-
hicle refrigeration system has to allow for extensive variation in load distribution, which is a
function of different delivery rounds, days of the week and the removal of product during a
delivery run. A refrigeration system’s ability to respond to sudden demands for increased refrig-
eration is often restricted by the power available from the vehicle. As a result, there are substan-
tial difficulties in maintaining the temperature of refrigerated products transported in small and
medium-size refrigerated vehicles that perform multi-drop deliveries to retail stores and caterers
(James et al., 2006).

Pesquisa Operacional, Vol. 35(2), 2015
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This paper reports a Time-Temperature Indicators (TTI) analysis of a distribution of refrigerated

products along a route containing a number of retail customers with different demand levels.
Time-Temperature Indicators (TTI) can effectively be used to monitor the time/temperature im-
pacts on product quality, offering a cost-effective way to detect problematic points in the chill

chain. TTI are defined as specific elements collected by electronic equipment that show eas-
ily measurable, time and temperature dependent changes that cumulatively indicate the thermal
history of the product from the point of manufacture to its destination (Giannakourou et al.,

2005; Estrada-Flores & Eddy, 2006; Sahin et al., 2007). One simple type of TTI application
involves the registration of temperature measurements along a pre-defined time horizon and the
subsequent analysis of this historical data to get the corresponding probabilistic temperature

distribution, its average and standard deviation, unexpected temperature rises and drops, and
other elements which occur along the transport, storage, and distribution processes (Simpson et
al., 2012; Pereira et al., 2010; Estrada-Flores & Eddy, 2006). Process Capability Indices (PCI),
on the other hand, can additionally be calculated to yield easily computed evaluation coefficients

measured with dimensionless functions on TTI parameters and specifications (Chang & Bai,
2001; Chang et al., 2002; Estrada-Flores & Eddy, 2006). This kind of TTI application helps to
reveal undesired thermal conditions that may impair the compliance of product quality require-

ments along the cold chain.

The paper analyses alternative vehicle routing strategies intended to minimize travel cost, but at
same time keeping thermal PCI performance indicators within the required levels. It is shown
that the standard TSP (Travelling Salesman Problem) approach, used to solve classical routing

problems where vehicle travel distance or time is minimized, usually leads to temperature restric-
tion violations. Thus, instead of using a heuristic to get the optimized TSP vehicle routing se-
quence, such as the largely employed 2-opt and 3-opt improvement methods (Syslo et al., 2006),

other routing strategies, apart from the TSP criterion, can be employed (Ferreira & Pureza, 2012;
Faraz et al., 2013). In this paper a Simulated Annealing algorithm was specifically developed to
optimize the routing problem.

2 THERMAL ASPECTS OF REFRIGERATED TRANSPORT

Thermal PCI serve as benchmarking elements to compare refrigerated transport systems and to
ensure that these systems provide a minimum level of operating effectiveness (Estrada-Flores
& Eddy, 2006). Refrigerated freight transport must comply with international ISO rules (ISO,

1996). In addition, Europe, the United States and many countries have their own specific rules.
In Brazil, there is a specific regulation on the subject issued by ABNT – Brazilian Association of
Technical Norms (NBR 14701, 2001). EU legislation covers temperature control requirements

during the storage and transport of perishable foods. In Europe, the European Commission re-
vised the related rules in 2006 and regulation EC N◦ 852/2004, on the Hygiene of Foodstuffs,
requires manufacturers to have suitable temperature controlled handling and storage facilities

that are able to maintain food at appropriate temperatures, also permitting that these temper-
atures be adequately monitored, controlled and recorded (Tassou et al., 2012). The Australian
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regulation requires that refrigerated vehicles have a sufficient cooling capacity to offset the heat

load infiltrated through the insulated body, plus an extra capacity calculated as a percentage of
the heat leakage. For trucks submitted to only one door opening during an eight-hour period,
the percentage extra cooling capacity required is 25%. The extra capacity increases to 200%,

for trucks that have 31 to 35 door openings per day. The reserve power is also related to the
time-based deterioration of both insulation and refrigerating plant, the differences between test-
ing and in-service conditions, the heat of respiration while transporting fresh produce and the

extra-cooling capacity necessary to eliminate defrosting heat (Estrada-Flores & Tanner, 2005).
In local delivery, which is the focus of this paper, there is also intensifying demand from legis-
lation and retailers for lower delivery temperatures, and increased pressure on fleet operators to

improve temperature control (James et al., 2006).

Road transport refrigeration equipment is required to operate reliably in much harsher environ-
ments than stationary refrigeration equipment. Due to the wide range of operating conditions
and constraints imposed by available space and weight, transport refrigeration equipment has

lower efficiency levels than stationary systems. The thermal performance of refrigerated vehicles
is also dependent of age, since insulation materials deteriorates with time due to the inherent
foam characteristics. Recent data show a typical loss of insulation value of between 3% and 5%
per year which can lead to considerable rise in the thermal conductivity after a few years. If a

5% yearly ageing is assumed, a vehicle after nine years of operation may show an increase of
approximately 50% in energy consumption and CO2 emissions (Tassou et al., 2009, 2012).

The effects of door openings are another important concern in refrigerated cargo transport
(Estrada-Flores & Eddy, 2006; Pereira et al., 2010). Tso et al. (2002) used a commercial compu-

tational fluid dynamics (CFD) program to model the effects of door openings on air temperature
within a refrigerated truck. They carried out a series of experiments to study the effect of door
openings with unprotected doors, with air curtains and with plastic strip curtains, showing ex-

pressive temperature raises during the unprotected operation.

3 THERMAL PERFORMANCE ANALYSIS

Generally, models that address the prediction of heat and mass transfer during transport can be

divided into those that consider the environment within the transport unit (usually in regard to
the airflow) and those that concentrate on the temperature of the product (James et al., 2006).
Some models combine these aspects and deal with the temporal aspects of transportation: fluc-
tuating ambient conditions, door openings, product removal/loading, etc. Other models specif-

ically address the effects of transportation temperatures on microbial growth and its influence
on food safety.

With regard to models based on the ambience in refrigerated vehicles, James et al. (2006) re-

sumed a number of approaches that started in the 1990s. These models use computational fluid
dynamics (CFD) techniques to analyse airflow in cold environments and through cold-store
doorways (Moureh & Derens, 2000; Ge & Tassou, 2001; Moureh et al., 2002). The effects
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of door openings are an important concern in refrigerated cargo transport (Estrada-Flores &

Eddy, 2006; Pereira et al., 2010). Moureh & Derens (2000) employed a CFD model to study
temperature rises in pallet loads of frozen food during distribution. They specifically looked
at the times during loading, unloading and temporary storage when the pallets would be in

an environment above 0◦C.

A number of papers on refrigerated food transport address the time-temperature evaluation along
the cold chain process (Gigiel et al., 1998; James & Scholfield, 1998; Tsironi et al., 2001;
Smolander et al., 2004; Giannakourou et al., 2005; Estrada-Flores & Eddy, 2006; Pereira et

al., 2010; Nga, 2010). The main purpose of maintaining good temperature control during re-
frigerated transport is to decrease the rate of microbial growth and hence maintaining the safety
and eating quality of the food (Zhou et al., 2010). In fact, there are many microbial models

that can be applied to modelling the growth of microorganisms in food during transport. But,
according to James et al. (2006), relatively few studies have been published specifically on the
refrigerated transport subject. Even fewer of these have looked at the fully integrated approach of

combining dynamic microbial growth modelling with heat and mass transfer models that could
represent the characteristics of a food distribution system (James et al., 2006). However, in short-
distance transportation of refrigerated food products, as in the case of this work, it suffices to
observe that the temperature of the product is maintained within pre-established limits. This

condition is adopted in a number of studies reported in the literature based on Time-Temperature
Indicators (TTI).

Papers investigating the thermal performance of refrigerated vehicles can be classified into four
groups: (a) approaches of pure theoretical nature, (b) performance laboratory tests (c) field

data gathering, and (d) TTI based simulations. Studies of the first group use pure mathemati-
cal CFD models based on physical aspects of heat transfer (Cuesta et al., 1990; Zhang et al.,
1994, Campañone et al., 2002; Flick et al., 2012; Hoang et al., 2012a,b). In the second group

are the papers describing controlled laboratory tests, such as Moureh & Derens (2000), Tso et
al. (2002), Estrada-Flores & Eddy (2006), and Garcia (2008). In the third group are the papers
involving field tests, with information eventually supplemented with laboratory data, such as

the CoolVan experiment (Gigiel et al., 1998; James & Scholfield, 1998; James et al., 2006), as
well as other similar efforts (Giannakourou et al., 2005; Pereira et al., 2010; Nga, 2010). The
fourth group comprises TTI – Time-Temperature Indicator analyses, usually employing com-

puter simulations (CoolVan Manual, 2000, Hoang et al., 2012a,b). Of course, a good part of
these papers employ combined methods. In this paper, the approach (d) will be used, involv-
ing time-temperature indicators (TTI) associated with simulation of the thermal performance

of refrigerated vehicle tours.

For the purposes of this study, that focusses a practical logistics application, the employment of
pure theoretical models are not recommended due to the great number of variables and situa-
tions, and the dynamic nature of the problem. The performance of thermal laboratory tests, by its

turn, would allow for the gathering of more reliable technical data, but would not include impor-
tant in-the-field behavioural characteristics and information. Besides, the analytical methodology
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presented in this work is essentially intended to be used in the planning phase of the problem,

which requires an approximate accuracy level. For further applications to real problems, more
accurate data should be sought, and laboratory tests could eventually be contemplated in such
situations. Field tests to gather thermal data, on the other hand, would be acceptable in devel-

oping countries like Brazil only under rigid technological and experimental control, a condition
hard to achieve presently (Pereira et al., 2010). As a result, approach (d) was selected for this
application, involving time-temperature indicators (TTI) associated with thermal performance

simulation of refrigerated vehicle tours.

A number of papers on refrigerated food address the TTI evaluation along the cold chain process
(Gigiel et al., 1998; James & Scholfield, 1998; Jacxsens et al., 2002; Giannakourou & Taoukis,
2003; Giannakourou et al., 2005; Estrada-Flores & Eddy, 2006). The main purpose of maintain-

ing good temperature control during refrigerated transport is to decrease the rate of microbial
growth and hence maintaining the safety and eating quality of the product. In fact, there are
many microbial models that can be applied to represent the growth of microorganisms in food

during transport. But since temperature largely determines the rate of microbial activity, which is
the main cause of spoilage of most fresh and frozen food products, continuous monitoring of the
full time temperature history usually allows for the adequate control of the process along short
and medium distance distribution situations.

One of the most systematic attempts to predict the temperature of refrigerated food during multi-
drop deliveries has been the CoolVan research programme. CoolVan is a software developed by
the Food Refrigeration and Process Engineering Research Centre at the University of Bristol,
UK. The brief description set forth was extracted from Gigiel (1997), Gigiel et al (1998), and

from the Cool Van Manual (2000). The objective of CoolVan is to aid the design and operation
of small and medium delivery vehicles intended to distribute refrigerated food products (Gigiel,
1997; Gigiel et al., 1998; James & Schofield, 1998; James et al., 2006; CoolVan Manual, 2000).

The software contains a mathematical model that predicts food temperatures inside a refrigerated
delivery vehicle, analysing the temperature changes that take place during a delivery journey as
well as the energy used by the refrigeration equipment. The model is solved using an implicit

finite difference method. It starts with the given initial conditions and proceeds to the end of the
journey with variable time steps. The time step is increased when there are few events during
the journey. However, the time step is reduced and the program slows down in order to model in

detail any event which occurs along the route as, for example, when the vehicle stops and the door
is opened. In this way the program is able to model the details of the journey accurately, while
at the same time, running at the fastest possible speed. It shows the thermal consequences of

changes in delivery patterns, the weather, the vehicle construction characteristics, its refrigeration
system, and the type and mass of the food transported.

There are substantial difficulties in maintaining the temperature of chilled foods transported in
refrigerated vehicles that conduct multi-drop deliveries to retail stores and caterers. The vehicles

have to carry a wide range of products and operate under diverse ambient conditions. During
any delivery run, the chilled product can be subjected to many door openings, where there is

Pesquisa Operacional, Vol. 35(2), 2015
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heat ingress directly from outside and from personnel entering to select and remove product. On

the other hand, the design of the refrigeration system has to allow for extensive differences in
load distribution, dependent on different delivery rounds, days of the week and the removal of
product during a delivery run. A refrigeration system’s ability to respond to sudden demands

for increased refrigeration is often restricted by the power available from the vehicle. All these
problems converge to produce a complex interactive system. With so many interacting variables
it is not feasible to obtain, by purely theoretical means, the reasoning required to design and to

operate vehicles that would maintain the required food temperatures. Thus, the CoolVan research
project was set up to provide a predictive model that would assist in specifying the design of, and
the equipment for small and medium delivery vehicles. Operators of the vans need to know in

advance whether a particular vehicle, on a particular route, under given ambient conditions, will
be able to deliver food at the correct temperature levels (Gigiel et al., 1998).

The heart of the CoolVan program is the temperature of air inside the vehicle. The internal air
exchanges heat with the outside environment by the movement of air into and out of the truck,

while the doors are either opened or closed. Heat is conducted into the van through the insulation
from the ambient air and from solar radiation on the outside of the van. Inside the van, the
racking, fittings, trays and food exchange heat with the van air. Evaporator coils or eutectic
plates cool the inside air to maintain its temperature. The composition of each side of the van is

modelled separately and heat flow through each side assessed independently. Each side can be
modelled as up to three layers, an inner and outer skin and insulation. The program models the
heat transfer through each wall of the vehicle separately. However, the walls of vehicles are not

uniform so the heat flowing through the walls will vary. Average values are then calculated for the
thermal properties. An important thermal effect is due to air infiltration into the vehicle through
gaps and cracks as it moves along the road network. It is very difficult to know how much air

enters into the vehicle and, indeed, it will vary after each instance that the door has been opened
and closed. These detailed measurements cannot be accurately modelled with CoolVan software,
but its results are accurate enough for planning purposes and approximate operation analyses.

The usual food distribution scheme starts with the vehicle being loaded at the distributor’s

premises and travelling next to a series of retail outlets, where the individual lots are discharged
in sequence. Often, the vehicle has a large number of servicing stops in a journey, when the doors
are opened and food is removed. Sometimes, food which has passed its shelf-life date, together

with empty trays, return from the retail shops to the distributor. In another cases the insulation,
door protection and refrigeration equipment fitted to the vans prove to be inadequate to maintain
food temperature as cold as required. The food is assumed to be at the same temperature any-

where in the vehicle along the journey. Additionally, it is assumed that the food is loaded into the
vehicle at the same uniform temperature. In practice, this is rarely the case. There are tempera-
ture gradients within each item of food and different foods will have different temperatures. But,

as a first approximation for logistics analysis, such as the one in this paper, the even temperature
approximation is satisfactory.

Pesquisa Operacional, Vol. 35(2), 2015
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The CoolVan program is divided into three parts. The first part allows the user to change over a

large number of different variables that are input into the main program: the weather, the way the
vehicle is used, its construction, the refrigeration plant and the product that is put in it. The second
part of the program does the actual calculations and puts these into an output file that can be

saved for future reference or viewed in another application. The last part of the program plots the
output data graphically on the screen to allow the user to see what is going on during the journey.
Vehicle data are fed into the CoolVan program: the thermal properties of the insulation system,

the year of the van manufacture, the ageing rate which depends on the vehicle maintenance
characteristics, etc. Then, the program calculates the reduced thermal properties of the vehicle
insulation. The mathematical structure of the program also allows different external heat transfer

coefficients to be entered for each side of the vehicle. Solar radiation onto each surface of the
van is modelled separately. The infiltration of outside air into the van is dependent on the van
structure, the degree of maintenance and the speed of the vehicle. These effects were measured
empirically in several vans, allowing for the fitting of appropriate equations and parameters into

the model.

Controlling temperature during Infiltration of air into the vehicle during door openings is also an
important issue. Once the door is opened, the amount of air infiltrating the vehicle approximately
increases linearly with time (Gigiel et al., 1998). Vertical air curtains, plastic strip curtains, in-

ner lightweight sliding doors or shielding are sometimes used on doors in order to limit the air
exchange through them. To accurately model the air exchange in a particular van it is necessary
to perform empirical measurements. However, real measurements of the air exchange rate on

several vans showed that a reasonable approximation is that it varies as a function of the height
and width of the door only.

4 PROCESS CAPABILITY INDICES TO ASSESS TTI DATA

A process capability index (PCI) is a numerical element that compares the characteristics of a
production or servicing process to engineering specifications (Pearn & Chen, 1999; Chang &
Bai, 2001; Chang et al., 2002; Czarski, 2008). A value of such an index equal or larger than
a pre-established level indicates that the current process is capable of producing results that,

in all likelihood, will meet or exceed the pre-defined requirements. Process Capability Indices
(PCI) are frequently used as an integral part of the statistical control of process quality and
productivity. A capability index of this sort is convenient because it reduces complex information

about the quality of the process to a single number. Thus, process capability indices can be
defined as measurements of the ability of the production and servicing processes to meet the
specifications. In our application, the analysis of the temperature variability inside a refrigerated

vehicle is performed by means of PCI estimation applied to TTI values, showing the temperature
distribution on the data collected along a typical distribution journey. We closely follow Chang
& Bai (2001), Chang et al. (2002), Czarski (2008) and Estrada-Flores & Eddy (2006) in applying

PCI analysis to the distribution of refrigerated food products.

Pesquisa Operacional, Vol. 35(2), 2015
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4.1 Capability Indices for Normally Distributed Data

Usually, capability indices are employed to relate the process parameters to engineering specifi-
cations that may include unilateral or bilateral tolerances, with or without a target value (nominal

value). The resulting indices are dimensionless and provide a common, easily understood way
for quantifying the performance of a process. In this application, the monitored variable is the
temperature θ inside the vehicle along a typical distribution journey of refrigerated food products,

with mean μ and standard deviation σ . In this case there are two-sided specification limits for
θ , respectively the upper value U SL and the lower value L SL . Four capability indices are com-
monly used for variables normally distributed: Cp , Cpk , Cpm and Cpmk (Gonçalez & Werner,

2009). The Cp index is defined as

Cp = U SL − L SL

6σ
. (1)

Clearly, the aim of process control is to make Cp as large as possible. The adoption of the Cp

index presupposes that the variable θ is normally distributed and that the mean μ is equal to the
specified target value θT . The coefficient Cp is defined as the ratio of the allowable tolerance

spread and the actual spread of the data. If Cp > 1, it indicates that the temperature variation
fits within the specified limits. In practice, if Cp < 1, the process does not meet the defined
specifications; if 1 ≤ Cp < 1.33 the process probably meets the requirements but additional

attention must be taken; if Cp ≥ 1.33 the process is fully capable (Gonçalez & Werner, 2009).
The six-sigma coverage represents the spread of 99.73% of the data in normally distributed pro-
cesses. On the other hand, the eight-sigma coverage, which represents the case with Cp ≥ 1.33,
covers practically 100% of the data in similar circunstances. In practice, there are cases in which

the process is not centred on the target value θT , i.e μ �= θT . To avoid such drawback, the index
Cpk is defined

Cpk = min

{
U SL − μ

3σ
,
μ− L SL

3σ

}
. (2)

On the other hand, the index Cpm explicitly considers the distance between the mean and the
target value θT (Gonçalez & Werner, 2009):

Cpm = U SL − L SL

6
√

σ 2 + (μ− θT )2
. (3)

For practical purposes, sample estimators can be used for calculating the above indices.

4.2 Capability Indices for Non-Normal Data

Gonçalez & Werner (2009) compared a number of approximate methods to evaluate non-normal

situations and suggested that the method of Chen & Ding (2001) reflects with accuracy the num-
ber of non-conforming items in the evaluated sample, being superior to other methods. Such
method adjusts the values of PCIs in accordance to the degree of skewness of the underlying

Pesquisa Operacional, Vol. 35(2), 2015
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population, by using specific factors in computing the deviations above and below the variable

mean. The method is based on the idea that σ can be divided into upper and lower deviations,
σU and σL , which represent the dispersions of the upper and lower sides around the mean μ,
respectively. An asymmetric probability density function f (θ) can be approximated with two

normal pdfs (Chen & Ding, 2001)

fU (θ) = 1

2σU
∅

[
θ − μ

2σU

]
and fL (θ) = 1

2σL
∅

[
θ − μ

2σL

]
, (4)

with the same mean μ but different standard deviations 2σU and 2σL , where ∅ represents the
standard normal pdf. The upper and lower sides of f (θ) are approximated with the upper side
of fU (θ) and the lower side of fL (θ), respectively. The values of σU and σL are computed as

(Chang et al., 2002)

σU = Pθσ and σL = (1 − Pθ )σ, with Pθ = Pr{θ ≤ μ}. (5)

The value of Cp is defined as (Chang & Bai, 2001)

Cp = min

{
U SL − L SL

6× 2σU
,

U SL − L SL

6× 2σL

}

= min

{
U SL − L SL

6× 2Pθσ
,

U SL − L SL

6× 2(1 − Pθ )σ

}
(6)

= U SL − L SL

6σ
min

{
1

2Pθ
,

1

2(1− Pθ )

}
.

Making Dθ = 1+ |1− 2Pθ |, expression (1) can be simplified to

Cp = U SL − L SL

6σ

1

Dθ
, (7)

where 1/Dθ is a corrective coefficient on (1) due to the skewness of the probability distribution
of θ . On the other hand, according to Chang et al. (2002), the value of Cpk corrected for skewness
can be estimated as follows. First, the upper and lower capability indices are defined as

C(U)
pk =

U SL − μ

3× 2σU
= U SL − μ

6Pθσ
, (8)

C(L)
pk =

μ− L SL

3× 2σL
= μ− L SL

6(1− Pθ )σ
. (9)

The PCI of the temperature θ , for the case of two-side specifications (upper and lower values) is

Cpk = min
{

C(U)
pk , C(L)

pk

}
= min

{
U SL − μ

6Pθσ
,

μ− L SL

6(1 − Pθ )σ

}
. (10)

In Equations (8) and (9), 2σU and 2σL are used in place of σ to reflect the degree of skewness in
the probability distribution of θ . When the underlying distribution of θ is symmetric, Pθ = 0.5,
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repeating the value given by (1). However, if it is skewed, the value of Cpk given by (10) is

smaller than the standard one given by (1). The numerical estimation of Cp and Cpk is performed
as follows. Let (θ1, θ2, . . . , θn) be the sample containing n values of the temperature θ . The mean
θ̂ and the standard deviation σ̂ of the sample are computed. The probability Pθ can be estimated

by using the number of observations less than or equal to θ̂ (Chang et al., 2002):

P̂θ
∼= 1

n

n∑
i=1

g(θ̂ − θi ), (11)

where g(x) = 1 for x ≥ 0 and g(x) = 0 for x < 0. Then Cpk can be estimated by substituting

μ̂, σ̂ , and P̂θ for μ, σ and Pθ respectively in Eq. (10). In this application the series of TTI
data are skewed (see Section 6.4), and the method of Chen & Ding (2001) has been employed
accordingly to get Cpk values.

A fourth capability index Cpmk is used when the mean μ departs from the target value θT

(Gonçalez & Werner, 2009). In this application there is no target value for the temperature θ ,
being only necessary to respect the two-sided specified limits, namely L SL and U SL . Conse-
quently, the index Cpk was adopted.

5 PROBLEM DESCRIPTION

The objective of the analysis is to investigate a regional distribution of ready-to-eat refrigerated
meat products (ham, turkey and chicken breasts, salami, sausage). Other studies analysing distri-

bution schemes of perishable products are Oswald & Stirn (2008), Yu & Nagurney (2013), and
Faraz et al. (2013). The urban distribution district is located about 84 km from the base depot.
The served urban district has an approximated area of 73 sq.km, where 12 retail shops are lo-
cated, as shown in Figure 1. Traditionally, the optimal sequence of points to be visited is obtained

with a TSP (Travelling Salesman Problem) algorithm, that yields the shortest Hamiltonian cy-
cle, which includes, in this application, all the retail outlets, plus the depot. Figure 1 depicts the
TSP route obtained with a 3-opt local search heuristic (Syslo et al., 2006), with a total extension

of 204.1 km.

Along the delivery journey, the air temperature inside the truck tends to increase when it stops
to discharge the products, and the temperature inversely decreases while the vehicle is travelling
from a client to the next one in the routing sequence. Normally, a heavier discharge takes more

time to be accomplished. If the next visiting point is located close by, the corresponding travelling
time might be too short, and the temperature would not decrease enough to compensate for the
heat surge observed in the last unloading stops. This means that the vehicle routing sequence has

an important influence on the TTI history, indicating that both have to be investigated jointly.
When the cargo mass inside the vehicle decreases, the temperature tends to decrease sharply
during the local travel segments. In the CoolVan simulator, a thermostat turns off the refrigeration

system when the temperature reaches 2◦C, in order to avoid chilling injuries. Conversely, during
local travel segments, the refrigeration equipment turns on when θ ∼= 5◦C, but this does not
happen during cargo unloading, since the refrigeration module and the truck engine are not in
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Figure 1 – Distribution of refrigerated food in the district: the TSP vehicle route.

operation (to avoid discharging gases to enter the cargo compartment). This situation is shown
in Figure 2 when the truck is travelling from client 10 to client 11, and from client 12 to client 3.

Normally, the search for an optimal vehicle routing sequence requires quite a number of com-

binatory evaluations. On the other hand, the process of obtaining accurate TTI data is not a
simple task since it requires special laboratory settings and/or elaborate field tests. One alterna-
tive possibility is to apply the simulation approach, such as the CoolVan software (Section 3), in

order to gather basic TTI data to be used in a computer aided routing analysis. This is because
the CoolVan program does not permit automatic replications of the runs, whereas combinatorial
routeing analysis implies automatic combinatorial changes of the delivering sequences in order

to obtain the resulting Cpk coefficients and the traveling distances.

The model employed to solve the proposed problem involves a combination of methods divided
in four steps. First, the CoolVan software has been used to simulate the thermal characteristics of
the basic routing schemes, one of them represented by the TSP formulation as shown in Figure 1.

Next, taking the CoolVan simulation results, the operating stages that compose the temperature
evolution along the distribution journey are analysed individually in order to define mathematical
functions that relate temperature to the explaining variables. Third, a computer program has been
developed to estimate TTI values, step by step, along each routeing sequence, employing the

mathematical functions adjusted in the last step. A PCI coefficient is computed for each route
scheme in order to analyse the thermal performance of the alternative delivery sequences. Next,
and associated with this, a Simulated Annealing algorithm (Section 6) analyses each candidate

route, searching for the minimum travel distance configuration, but at same time respecting the
restriction Cpk ≥ 1.33. The methodology will be described in more detail in the next sections.
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This line of research has some points in common with the paper by Oswald & Stirn (2008). Their

approach differs from the present investigation in two aspects. First, the variable that expresses
product quality in our research is temperature, whereas in Oswald & Stirn paper (2008) product
quality (fresh vegetables) is based on market acceptance: one has 100% quality when the product

can be sold entirely at the current market price and the quality drops to 0% when the product
loses completely its commercial value (Oswald & Stirn, 2008). Second, the mathematical routing
model developed by these authors builds up the routes to be assigned to the vehicles step by

step, while in this application there is only one truck and the route sequence is defined in a
combinatorial way.

5.1 CoolVan route simulation

The CoolVan software is still not available commercially but its developers kindly accepted to

ran basic routing configurations to serve as a data basis for this application. The necessary in-
puts for the CoolVan simulation are presented in Table 1. Next, the data of the food products are
fed into the CoolVan program (CoolVan Manual, 2000). The product is ready-to-eat refrigerated

meat products (ham, turkey and chicken breasts, salami, sausage). A total of 12,000 kg of as-
sorted products are distributed in the daily round, with two retailers receiving larger quantities
(7,000 and 2,000 kg respectively), while the other ten clients getting 300 kg each (Table 2). The

basic delivery information shown in Table 2, and in Figure 2, illustrates the TSP route. Table 2
also shows the distances travelled along the various segments of the TSP route and the delivering
times at the retail premises. It is worth to notice, in Figure 2, the sharp changes of the internal

vehicle temperature in the last phases of the simulation process, when the product mass inside
the van gets successively smaller.

Figure 2 – Graphical representation of TTI results obtained with the CoolVan software for the TSP delivery

route.
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Table 1 – CoolVan simulation inputs.

• Vehicle characteristics:

• Volkswagen model 8150, diesel-powered, 143 HP

• Internal dimensions of cargo compartment (m): 5.0× 2.3× 2.2 (25.3 m3)

• Insulation and wall thickness: 0.1 m; insulation density: 40 kg/m3

• Door protection (none, plastic strip curtain, vertical air curtain): none

• Insulation ageing: new vehicle

• Cargo space loading factor: 79%

• Cargo load: 12,000 kg

• Refrigeration characteristics:

• Equipment: Transfrigor type, RB-TF6, MAXI, refrigerant R404A

• Compressor Sandem, model SD7H15, 7 pistons, fixed displacement,

total of 154.7 mL, max speed of 6,000 rpm

• Refrigeration type: Vapour Comp of Van Engine

• Refrigeration capacity (kW): 17530 BTU/h = 5.14 kW

• Temperature specified limits: L SL = 2◦C and U SL = 7◦C
• Product characteristics:

•Meat products (ham, turkey and chicken breasts, salami, sausage)

• Product temperature when loaded in the vehicle: 5◦C
• Environmental details:

• Equivalent UK weather: hot day (summer in July), approximately

similar to February in São Paulo, Brazil

• Relative humidity: 70%

• Cloud covering: 40% (sunny spells)

•Mean temperature: 18◦C; maximum temperature: 28◦C

The results of the CoolVan simulations are saved in Excel format. Figure 2 exhibits the TTI
results obtained with the CoolVan software for the TSP sequence. The simulation starts with the

outbound line-haul phase, which goes from the depot to the first client in the district. It is fol-
lowed by the delivering visits, intercalating cargo discharging tasks with vehicle travel between
successive delivery points. Finally, there is the inbound line-haul segment, linking the last served

client to the depot.

5.2 Temperature variation modelling

In more elaborated analyses of refrigerated product quality appraisal, the reaction kinetics of
the product spoilage process is characterized by determining the kinetics for microbial popu-

lation growth and chemical degradation. The combined effects of these reactions on perceived
organoleptic quality deterioration (appearance, odor, texture, color) is measured and registered
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ANTÔNIO G.N. NOVAES, ORLANDO F. LIMA Jr, CAROLINA C. DE CARVALHO and EDSON T. BEZ 265

Table 2 – Input data for the TSP sequence of delivery points.

Travel Travel Product Unloading
Stage type Origin Destination distance time delivered time

(km) (min) (kg) (min)

Line-haul Depot Client #1 84.3 85.6 300 10

Local travel Client #1 Client #4 1.6 3.1 300 10

Local travel Client #4 Client #5 2.9 5.8 300 10
Local travel Client #5 Client #8 1.2 2.3 7,000 64

Local travel Client #8 Client #7 0.9 1.9 2,000 24
Local travel Client #7 Client #6 1.3 2.6 300 10

Local travel Client #6 Client #9 2.5 5.1 300 10
Local travel Client #9 Client #10 4.2 8.3 300 10

Local travel Client #10 Client #11 5.7 11.3 300 10
Local travel Client #11 Client #12 0.6 1.2 300 10

Local travel Client #12 Client #3 6.2 12.4 300 10
Local travel Client #3 Client #2 3.8 7.5 300 10

Line-haul Client #2 Depot 86.4 85.6 – –
Total 204.1 232.7 12,000 188

in a TTI data sequence (Sahin et al., 2007; Simpson et al., 2011). However, in short-distance

distribution cases of refrigerated products, as in the present work, it suffices to register the tem-
perature values in order to verify whether they respect the thermal requisites reflected on PCI
values (Section 4).

The theoretical basis to analyze the temperature variation of refrigerated products along time is

the Newton’s Law of cooling. Suppose that a body, with initial temperature θ0, is allowed to
cool in a compartment which is maintained at a constant temperature θ1, with θ1 < θ0. Let the
temperature of the body be θ at time t . Then, the Newton’s law of cooling is

dθ

dt
= −cs (θ − θ1), (12)

with θ = θ0 for t = 0, and where cs is a positive proportionality constant. Conversely, if θ0 < θ1,
cs < 0. Suppose a quantity of cargo, with mass m and temperature θ0, is set inside an empty

refrigerated bin. Departing from the Newton Law of cooling, a simple thermal balance leads to
(Alvarez & Flick, 1999; Hoang et al., 2012b)

mC
∂θ

∂t
= βH (θ − θ1), (13)

where C is the specific heat capacity of the product (J kg−1 K−1), H is the heat transfer conduc-

tance of the product (W K−1) and β is a constant. The integration of (13) yields an exponential
decay function on θ .

In order to fit equations to represent temperature variation along the delivery route, four different
phases were considered: (1) outbound line-haul, which corresponds to the vehicle displacement

Pesquisa Operacional, Vol. 35(2), 2015



�

�

“main” — 2015/7/2 — 14:55 — page 266 — #16
�

�

�

�

�

�

266 PERFORMANCE OF REFRIGERATED VEHICLES IN THE DISTRIBUTION OF PERISHABLE FOOD

from the depot to the first visited retail outlet; (2) product unloading at retailer premises; (3)

vehicle travel from one served retail outlet to the next; (4) inbound line-haul, corresponding to
the travel from the last served client back to the depot. A general mathematical expression, to
represent the internal vehicle temperature variation along the route, was defined to be fitted to

CoolVan simulation results

θtB = a0(θtA )a1(θext )
a2 exp

[
β

H (tB − tA)

mC

]
, (14)

where
• tA = starting time of the phase under consideration;

• tB = time when the phase under consideration ends;

• θtA and θtB = temperature at times tA and tB respectively;

• H = heat transfer conductance of the product, (W K−1);

• C = thermal capacity of the product (J kg−1 k−1);

• m = mass of the product inside the vehicle at the phase under consideration (kg);

• a0, a1, a2 and β are constants to be fitted.

Since in this case the type of product does not vary along all the CoolVan simulation, the values
of H and C have been calibrated together with β, and Eq. (14) reduces to

θtB = a0(θtA )a1(θext )
a2 exp

[
β

(tB − tA)

m

]
, (15)

The fitting of constants in Eq. (15) was based on CoolVan simulation values obtained for one

vehicle type only, the one described in Table 1. Thus, these results should be understood as
preliminary, and should not be extended to other situations. New CoolVan runs are under way,
considering other vehicles and other visiting patterns. In the adjusted equations, the mass of

the product inside the vehicle in expression (15) is expressed as a fraction of the total vehicle
capacity. Furthermore, in the delivery runs analysed in this application, the vehicle leaves the
depot with a 100% load, and returns empty to the depot.

a) Outbound line-haul phase (line-haul I): Since the vehicle leaves the depot with a 100%
load, m = 1 in Eq. (15). For this phase, considering the vehicle carries the same full
cargo load (m = 1) and the external ambient temperature was not statistically significant,

Eq. (15) reduces to
θtB = θtA exp[β(tB − tA)]. (16)

Two vehicle displacement intervals were considered: (a) 0 ≤ �T ≤ 20 sec, leading to
β = −0.7670, and (b) �T > 20 sec, leading to β = −0.0044. In addition, a lower
limit of 4◦C for the temperature θ j was imposed for this phase (meaning the refrigeration

equipment is turned off when the temperature reaches this level).

Pesquisa Operacional, Vol. 35(2), 2015



�

�

“main” — 2015/7/2 — 14:55 — page 267 — #17
�

�

�

�

�

�
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b) Cargo unloading phase: a0 = 0.3234; a1 = 1; a2 = 0.4517; β = 0.00081 in relation (15).

The product mass varies during the unloading process. Assuming tB − tA is the duration
of the unloading phase, m A is the mass at the beginning of the cargo unloading phase, and
mB is the mass at its end, one interpolates linearly over time to determine the value of

m. The regression analysis led to R2 = 0.965, and the adjusted constants have shown t
Student values significant at a 0.05 level.

c) Vehicle local travel phase: a0 = 1.4172, a1 = 0.5869; a2 = 0.0845 and β = −0.0007 in

relation (15). Here m is constant and evaluated at time tA. The regression analysis led to
R2 = 0.913, and the adjusted constants showed t Student values significant at a 0.05 level.

d) Inbound line-haul phase (line haul II): the expression to compute the temperature variation
for the inbound line-haul is similar to the outbound line-haul phase. In this phase, the initial
temperature is equal to the vehicle air temperature at the moment the last cargo delivery is

accomplished. The temperature drops to θ1 = 4◦C after an approximately elapsed time of
2 minutes. It is also assumed that no chilled product is sent back to the depot, only working
elements such as racks, fittings, empty trays, etc., remain in the truck. An equivalent mass

equal to 2.5% of the total load was assumed for such elements, and thus m = 0.025.
Applying Eq. (16) for this time interval, one gets β = −0.0112. For T ≥ 2 min to the end
of the journey, the temperature remains constant and equal to 4◦C.

5.3 TTI generating module

For a specific routing sequence, the TTI model developed on CoolVan data estimates the travel
time between successive delivering stops, the unloading times at different retailer premises, and
the line-haul times. Table 2 is an example corresponding to the TSP route. A TTI time series

is then constructed assuming one-minute intervals, in which each element is associated with the
corresponding phase in the routing process. In the sequel, the vehicle internal temperature is
estimated with the equation, indicated in Section 5.2, that corresponds to the phase in which the

distribution process is at the moment. An element of the TTI data series is composed by the
following elements: (a) element number, (b) phase type, as defined in Section 5.2, (c) starting
time t0 (min) of the event, (d) termination time t1 (min) of the event, (e) temperature θ1 (◦C)
at time t1, estimated with the appropriate equation, (f) last served client number if phase type

is local travel, and zero otherwise, (g) next visiting client if phase type is local travel, or the
servicing retailer number if it is an unloading phase. Along the computation stages one has
θ

( j)
0 = θ

( j−1)
1 for j = 1, 2, . . . and θ

(0)
1 = θini , where θini is the cargo temperature when it is

loaded in the vehicle at the depot.

The TTI generation module was first applied to the initial TSP routing sequence shown in Table 2.
Since the vehicle returns empty to the depot, the line-haul II phase was not considered in the
temperature analysis. A total of 357 TTI points were generated. Figure 3 represents the histogram

of the temperature inside the vehicle for the TSP routing sequence, showing that its distribution
is skewed, which justifies the use of the Cpk index (Section 4).
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Figure 3 – Histogram of the internal vehicle temperature for the TSP routing alternative.

6 SIMULATED ANNEALING ALGORITHM TO OPTIMIZE
THE ROUTING SEQUENCE

6.1 Simulated Annealing

The subject of combinatorial optimization is the development of efficient techniques to find

minimum or maximum values of a function with many integer (or binary) variables. Such a
function, generally called the objective or cost function, represents a quantitative measure of the
performance quality or goodness of a system. Exact methods are computationally unpractical

for larger problems with many integer or binary variables and restrictions. In such cases heuris-
tics are usually employed. One basic strategy to solve combinatorial problems is the iterative
improvement method. In iterative improvement, one starts with the system in a known configu-

ration, or with an initial solution chosen randomly. A standard rearrangement process is applied
to all components of the system until a rearranged configuration, which improves the cost func-
tion, is found. The rearranged configuration is now assumed as the new configuration, and the

process continues until no further improvements can be found. Iterative improvement comprises
a search in the space of feasible solutions for rearrangement steps that will lead downwards to-
ward the global minimum. But this searching process may get stuck in a local minimum. Thus,
it is necessary to carry out the process many times, starting from different random configurations

and choosing the best solution, which will be taken as the optimum.

In practice, the acceptance of only rearrangements that provoke a reduction in the cost function
leads, very often, to poor performance results when applying iterative improvement methods to

larger problems. One significant improvement along this line is the Simulated Annealing meta-
heuristic (Kirkpatrick et al., 1983; Aarts & Korst, 1989). Simulated annealing (SA) is a gener-
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ally applicable meta-heuristic for solving combinatorial optimization problems. The algorithm is

based on a combination of ideas from two different fields: statistical physics and combinatorial
optimization. On the one hand, it can be viewed as an algorithm simulating the physical anneal-
ing process of solids to their minimum energy states. On the other hand, it can be considered

as a generalization of local search algorithms, which play an important role in combinatorial
optimization.

The simulated annealing algorithm starts off with a given initial solution, very often chosen at
random, and continuously tries to move from a current solution to one of its neighbours by ap-

plying a generation mechanism and an acceptance criterion. The acceptance criterion allows for
sporadic deteriorations in the cost function in a limited way. This is controlled by a parameter
that plays a similar role as the temperature in the physical annealing process. The possibility

of deteriorations makes the SA algorithm more general than pure iterative improvement algo-
rithms, in which only strict improvements are applied. The resulting effect is that the annealing
algorithm can systematically avoid local minima in order to arrive at a global minimum (Aarts

& Korst, 1989).

Metropolis et al. (1953) developed a simple algorithm that can be used to provide an efficient
simulation of a collection of atoms in equilibrium at a given temperature. Using a cost func-
tion in place of energy, and defining configurations by a set of parameters {xi}, Hastings (1970)

generalized the Metropolis procedure to treat iterative improvement optimization problems out-
side statistical physics, and solving them in an analogous way. Now, temperature is simply a
control parameter expressed in the same units as the cost function. In our application, in order
to avoid duplication of terms, we call it GT – generalized temperature. The annealing process,

as implemented in the Metropolis/Hasting procedure, differs from iterative improvement tech-
niques in that the former avoids getting stuck in local minima, since transitions out of a local
optimum are always possible at intermediate temperatures. In general terms, the SA method to

solve optimization problems follows the computing sequence depicted in Figure 4.

A number of scientific articles have been published on SA applications to the solution of en-
gineering problems (Correia et al., 2000; Jimenez et al., 2002; Lin et al., 2009). Specifically
applications on vehicle routing problems, which is the main focus of this article: Aarts, 1989;

Breedam, 1995; Osman, 1998; Mauri & Lorena, 2006; Leung et al., 2013; Hamzadayi et
al., 2013.

6.2 Simulated Annealing applied to the distribution of refrigerated food

Let n be the number of delivering points (clients) to be visited in the route. Each client receives
an identification number i = 1, 2, . . . , n. Putting the client numbers according to the sequence
they are visited, one has a vector of n components. As mentioned in Section 5, the depot is part

of the Hamiltonian cycle, and is placed in position n + 1 on such a vector. This is to permit
the direct calculation of the vehicle round trip extension, with data extracted from the distance
matrix, including the depot.
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Let us initially define a data “type” in pseudo-code:

Type solution = record
x : array [1..n + 1] of integer;
Cpk : real;
RT : real;

end;

1 The system under analysis has a representative state described by an n-dimensional vector x, for which the
function to be minimized is f (x).

2 Let i be the step counter of the number of Monte Carlo iterations;
3 The function must return a scalar quantity.
4 The generalized temperature GT is a scalar quantity with the same dimension as f (x).
5 Initial step, i = 1: Select an initial configuration xB (B means before);
6 Set the initial generalized temperature to a high value GT0;
7 Calculate the function value before the transition: fB = f (xB );
8 Choose a transition �x at random;
9 Do the trial transition as x A = xB +�x (A means after);

10 Calculate the function value after the transition f A = f (x A);
11 Compute � f = f A − fB :

(a) If � f ≤ 0, accept the new state x A and make xB = x A;
(b) If � f > 0:

(I) Generate a random number r such that 0 ≤ r ≤ 1;

(II) Accept the state x A only if r < exp
(
− � f

GT

)
;

12 If the state xA is accepted, make xB = x A;
13 Reduce the temperature GT by some small value: GT − εGT ← GT
14 Increase the Monte Carlo step by one: i ← i + 1;
15 If GT > GTmin go to 8, otherwise x = xB and End;

Figure 4 – General SA computing structure.

The data-type contains, first, the mentioned array representing the ordering position of the clients,

plus the depot. Next it appears the variable Cpk , which is the corresponding PC I value computed
for the vector x representing the visiting sequence. Finally, RT is the total route extension,
starting from the depot and terminating back to it when all delivering tasks are accomplished.

Two variables of type solution are defined: ∅b and ∅a, the first one representing the candidate
solution obtained before the SA improvement routine is applied and, the second, the candidate
solution generated afterwards.

In the application, two exploratory stages, indicated by k, are considered. In stage k = 1 a candi-

date solution, represented by the vector x , is defined by a Monte Carlo routine, with the position
of each client in the visiting sequence fully generated at random. This is done to allow the SA
procedure to explore prospective solutions covering all the set of possibilities, thus avoiding local

minima. The sub-optimal solution obtained at the end of stage 1, represented by variable ∅b,
will serve as the initial candidate solution for stage 2.

In stage 2, the selection of a new candidate solution is performed in a more restricted manner.
In order to get a candidate solution ∅a departing from the former solution ∅b two cients are
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selected at random in ∅b.x. The positions of these two clients are exchanged mutually in order

to generate variable ∅a.x , with the remaining clients keeping the same positions they occupied
before in candidate solution∅b. With this approach the SA improvement sequence will explore
closer neighbouring possibilities, thus avoiding too large jumps over the overall set of solutions.

Figure 5 shows the pseudo-code of procedure vehicle route (k), that performs the generation of
a vehicle route according to the stage k of the SA routine. Other intermediate formulations can
also be adopted. For example, one could select a client xi at random in∅b.x, and maintain fixed

in ∅a.x all the positions of the clients located to the left of xi in ∅b.x. Next, one shuffles at
random all the clients located at the right side of xi in ∅b.x, and then putting the result in∅a.x.
This scheme brings an intermediate degree of randomness between the other two alternatives.

For this application, however, this latter scheme was not necessary because the mathematical
structure of the problem led to a rapid SA convergence, as will be explained later.

In applying the SA heuristic to this problem, it is necessary to define the initial value for the
generalized temperature (GT0). Investigating the maximum possible route extension for the

problem analised in this work, one can see that 300 km is a likely value. With an adequate margin,
it was set GT0 = 500 km. At each step of the SA meta-heuristic, the generalized temperature is
decreased according to a cooling rate rt = 0.99. This selected slow value temperature decreasing
rate of 1% allows for a gentle downward trajectory, thus emulating the statistical mechanics

annealing process. On the other hand, a minimum generalized temperature level GTmin = 0.01
(practically zero) was adopted.

The initialization part of the SA procedure starts with the definition of an initial vector xB gen-
erated by a Monte Carlo routine, as explained before. With xB and the distance matrix available

for this application, the total route extension RTB is computed. Similarly, entering the proce-
dure to compute process capability indices (PCI), the corresponding value of C(B)

pk is determined

(Section 4). The triad {xB , C(B)
pk , RTB } will constitute variable∅b.

Let us define a temporary optimum value L∗ for the route extension that is changed whenever a
smaller value of RT is encountered. In the initialization process, if C(B)

pk < 1.33 (meaning the

candidate solution is not acceptable), the value L∗ = GT0 is adopted. Otherwise, if C(B)
pk ≥ 1.33,

L∗ = RTB is assumed. Next, the computer program enters the SA routine proper. The pseudo-
code of the Simulated-Annealing procedure is presented in Figure 6.

Another candidate solution ∅a is generated using the Monte Carlo routine. If C(A)
pk < 1.33, it

means that the candidate solution∅a is not feasible. In this case a penalty is applied duplicating
the value of RTA (row 12 in Figure 6). Otherwise, if C(A)

pk ≥ 1.33 and RTA < L∗, it means
that a feasible and better solution has been obtained. In such a case the temporary optimum
solution so far is ∅a, and consequently one makes ∅b = ∅a to proceed to a new computational

step (rows 15, 16, and 17, Figure 6), and the SA routine reduces the value of the generalized
temperature (row 26).

It may occur that the candidate solution ∅a is feasible (with C(A)
pk ≤ 1.33) but RTA ≥ L∗,

meaning that the SA routine might have been trapped in a local minimum. In this case, taking a
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random number 0 ≤ r ≤ 1, one compares the value of r with the analogue Boltzmann probability
factor (row 21, in Figure 6). If the inequality in row 21 is observed, the SA accepts ∅a and
consequently one makes ∅b = ∅a to proceed to a new computation procedure (rows 22, 23,
and 24, Figure 6), and the SA routine reduces the value of the generalized temperature (row 26).
Otherwise, the value of the generalized temperature is reduced (row 26) and a new SA iteration
is performed. According to this rationale, if the inequality condition in row (21) is satisfied, a
worse (i.e., with RTA ≥ L∗), but feasible solution (i.e., C(A)

pk ≥ 1.33) is accepted in order to
avoid local minima. Otherwise, the former solution is maintained as provisional optimum so far,
and the computation proceeds further to a new iteration.

The stage 1 ends when GTvar ≤ GTmin . In the second stage, the initial candidate solution is not
selected at random, but it is just the sub-optimal solution obtained in stage 1.

6.3 SA convergence

As indicated in Section 5.2, four different stage types along the vehicle route are considered: (I)
outbound line-haul, which corresponds to the vehicle displacement from the depot to the first
visiting retail outlet; (II) product discharge at retailer premises; (III) local vehicle travel from
a visited retail outlet to the next one; (IV) inbound line-haul, corresponding to the travel from
the last served client back to the depot.

On CoolVan basic results, a mathematical expression to represent the step-by-step internal vehi-
cle temperature variation along the route was calibrated (Section 5.2). In the sequel, a computer
program evaluates the vehicle internal temperature at one-minute intervals for each route setting
defined in the SA routine. For each route, the simulation produces a complete TTI set, and the
resulting Cpk values and total distance D travelled by the vehicle are registered.

The value of constant β in Eq. (15) depends on the type of stage along the route. For stage-
types (I), (III), and (IV) the vehicle is travelling with the cargo door shuttled and the refrigeration
system on, and consequently β < 0, since the temperature tends to decrease with time due to
the refrigerating process. For stage-type (II) the cargo door stays opened and the refrigeration
system is off. The refrigeration system is turned down in such situations to avoid vehicle exhaust
pollutants to penetrate the refrigerated compartment, thus spoiling the product. As a consequence
β ≥ 0.

One important aspect to be considered in SA applications is the convergence of the iterative
process (Mengersen & Tweedie, 1996; Holden, 1998; Souza de Cursi & Sampaio, 2012). As
mentioned before, in iterative improvement heuristics used to minimize the objective function of
a given problem a candidate solution along the process is rejected only when the resulting value
of the cost function is not smaller than the previous iterative result. In practice, the dynamics
involved in such routines concentrate the search in the neighbourhood of the actual investigated
point. The Metropolis-Hastings method, on the other hand, accepts eventual and controlled
degradations on the value of the cost function in accordance to a probability evaluation (Souza
de Cursi & Sampaio, 2012). From row (21) in Figure 6 one has

Prob (accepting a degradation Delta) = exp

(
−Delta

GTvar

)
(17)
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Procedure vehicle route (k)

1 if k = 1 then
{fully randomized routing sequence, except for the depot inserted in position n + 1}

2 for i = 1 to n do
3 OK[i] ← true
4 for i = 1 to n do
5 flag← false
6 while not flag do
7 j ← 0
8 while ( j = 0) do
9 r ← random [0, 1]

10 j ← trunc (r × n + 0.5)

11 end-while
12 if ( j > 0) and (OK[ j ] =true) then
13 begin
14 flag← true
15 OK[ j ] ← true

16 x[i] ← j
17 end-if
18 end-while
19 end for
20 x[n + 1] ← n + 1
21 if k = 2 then

{locally randomized routing sequence, except for the depot maintained in position n + 1}
22 for i = 1 to n + 1
23 x[i] ← ∅b.x[i]
24 flag← false

25 while not flag do
26 r ← random [0, 1]
27 i1 ← trunc (r × n + 0.5)

28 if (i1 > 0) then flag← true
29 end-while
30 flag← false

31 while not flag do
32 r ← random [0, 1]
33 i2 ← trunc (r × n + 0.5)

34 if (i2 > 0) and (i2 ← i1) then flag← true
35 end-while
36 �← x[i1 ]
37 x[i1 ] ← x[i2 ]
38 x[i2 ] ← �

39 ∅b.x[i] ← x[i]
40 end-procedure

Figure 5 – Pseudo-code of the Monte Carlo procedure to generate vehicle routes.
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Procedure Simulated Annealing
∅b,∅a : type solution

input k ← 1 or 2
{ in the first stage of the SA, k = 1, and in the second stage, k = 2 }

input n { number of retailers to be served in the route }
input GT0 { initial generalized temperature value }

input GTmin { minimum generalized temperature value }
input rt { cooling rate }

input i ← 0 { step counter }
{ initialization }

1 GTvar ← GT0 { GTvar is the generalized temperature along the SA process }
2 ∅b.RT ← xB { generate route xB via procedure vehicle route(k) and assign it to ∅b }
3 ∅b.Cpk ← Cpk { compute Cpk for route xB and assign it to ∅b }
4 ∅b.RT ex ← RTB { compute route extension for route xB and assign it to ∅b }
5 If (C(B)

pk < 1.33) then L∗ ← GT0 else L∗ ← RTB

{minimum RTB search }
6 while GTvar > GTmin do
7 i ← i + 1
8 ∅a.RT ← xA { generate route xA via procedure vehicle route(k) and assign it to ∅a }
9 ∅a.Cpk ← Cpk { compute Cpk for route xA and assign it to % ∅a }

10 ∅a.RT ex ← RTA { compute route extension for route xA and assign it to ∅a }
11 if C(A)

pk < 1.33 then

12 RTA ← 2× RTA

13 else
14 if RTA < L∗ then
15 ∅b← ∅a
16 L∗ ← RTA

17 C∗pk ← C(A)
pk

18 Else
19 Delta ← abs(RTA − RTB )

20 r ← random number [0, 1)

21 if r < exp
(
− Delta

GTvar

)
then

22 ∅b← ∅a

23 L∗ ← RTA

24 C∗pk ← C(A)
pk

25 end-if
26 GTvar ← rt × GTvar

27 end-while
28 if k = 2
29 write i, xB , L∗, C∗pk { SA results }
30 end-procedure

Figure 6 – SA pseudo-code for the refrigerated product distribution problem.
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Souza de Cursi & Sampaio (2012) presented the following theorem: if {Ui } is a sequence of
random variables respecting

Un+1 = Un , with n ≥ 0, and (18)

Un > m, (19)

such that

Prob(Un+1 > Un) ≤ ϑn with
+∞∑
n=0

ϑn <∞, (20)

the sequence converges to
Un → m. (21)

With decreasing values of GTvar , the probability of accepting a degradation Delta, given by (17),
satisfies conditions (18), (19) and (20), leading to the convergence of the Metropolis-Hastings
method. In fact, such theorem gives a sufficient but not necessary condition, but the practical
result is that the Metropolis-Hastings method has shown to be efficient in solving a large number
of practical problems (Souza de Cursi & Sampaio, 2012).

Furthermore, regarding the specific problem treated in this work, the temperature inside the ve-
hicle tends to increase during the product discharge stage, and tends to decrease during the trav-
elling phases. But, since the discharging times are assumed invariable in this analysis, the impact
of phase (2) in the optimization process is nil. The same happens with phases (I) and (IV), which
also have a fixed behaviour in this analysis. Therefore, the only degrees of freedom when search-
ing for the optimum occurs when the vehicle is travelling from one visit to the next. In other
words, the only phase that opens a way to improve the optimization results is phase III (the
vehicle travelling phase). Since the mass m of the product inside the vehicle decreases during
visiting stops, the value of exp

[
β

(Tj−Tj−1)

m j

]
in expression (15) tends to decrease at every SA

step, because β ≤ 0 and m has a decreasing value as j increases. In conclusion, the probabil-
ity of accepting a degradation Delta, given by (17), satisfies conditions (18), (19) and (20), and
therefore the SA tends to converge rapidly in our application.

7 RESULTS AND RESEARCH PROSPECTS

7.1 Simulated annealing results

Applying the SA procedures described in Figures 5 and 6, the first SA stage involved 1,306 steps,
leading to the following sub-optimal solution:

Routing sequence→ Depot – 8 – 10 – 7 – 4 – 3 – 1 – 6 – 12 – 5 – 11 – 9 – 2 – Depot

Total distance travelled→ 241.0 km, Cpk = 1.58;

The second SA stage, which departed from the former solution, involved 10,815 steps, leading
to the final optimal solution

Routing sequence→ Depot – 8 – 7 – 4 – 6 – 9 – 10 – 11 – 3 – 12 – 5 – 2 – 1 – Depot

Total distance travelled→ 222.7 km, Cpk = 1.33;
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The model was programmed in Free Pascal, version 2.6.4, to be later incorporated in a Delphi

format. It runs in a HP Pavilion dm4-2095br notebook. The first and the second stages of the SA
algorithm take 4 and 21 sec respectively to run.

The route with minimum vehicle travel distance is the TSP one, with 204.1 km. But this route
presented Cpk = 0.35, well bellow the standard level. Taking the inverse TSP route, the PCI is

even worse, with Cpk = 0.15. The solution obtained with the SA heuristic has shown an increase
of 18.6 km when compared with the TSP configuration, a distance 9.1% greater, but maintaining
the refrigerated product within the required temperature range. The SA resulting route is shown

in Figure 7, which can be compared with the TSP alternative route. Figure 8, on the other hand,
depicts the histogram of the TTI series obtained for the optimal SA solution (as compared with
Figure 3, corresponding to the TSP alternative). It can be seen that the temperature distribution is

also skewed, justifying the use of the Cpk index (Section 4). The TTI data used to make Figure 8
do not include the values corresponding to the vehicle travel from the last visit back to the depot
because the truck is empty along that segment of the route, and therefore the corresponding

temperature values do not affect the product quality.

7.2 Sensitivity analysis

For the SA optimal solution indicated in Section 7.1, the values of Cpk were computed for the
intermediate stages of the process and shown in Table 3. As mentioned, the stages correspond to

the end of the cargo delivery phases. The results of the model show that the thermal properties
inside the vehicle are very sensitive to time variations along the route, specifically the cargo
discharging times. This happens due to various real problems as, for example, waiting times to

start the unloading process, long paths to reach the point where the discharged cargo is to be set
inside the client’s premises, excessive product checking time, etc. On the other hand, the vehicle
travelling times, both along the line-haul segments and along the local links between clients in

the route, show comparatively less variation.

Since there are an expressive number of variables in the problem, it was adopted the coefficient
of variation of the vehicle unloading times to perform a preliminary sensitivity analysis of the
results, the coefficient of variation (CV ) being the ratio between the standard variation and the

expected value. For the outbound and inbound line-haul phases, as well as for the local vehicle
displacement times between successive visits, it was assumed CVL H = 0.1. For the cargo
discharging times, on the other hand, a parametric analysis was performed with CVDT varying
from 0.05 to 0.60. Of course, as observed in Table 3, each client shows a particular behaviour

in terms of Cpk values. Therefore the sensibility analysis was performed separately for the 12
clients.

Through a Monte Carlo simulation, the model estimates, for each situation, the probability of

Cpk < 1.33, as a function of CVDT , displayed per visiting sequence. In Table 4 and in Figure 9,
the probability of not satisfying the thermal requirements are shown. It can be seen in Table 4
and Figure 9 that the evaluation index Cpk values are indeed very sensitive to the product
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Figure 7 – The SA optimized route as compared to the initial TSP route.

Figure 8 – SA optimal route: histogram of internal vehicle temperature.

discharging-time variability. The curves exhibit in Figure 8 depend not only on the TTI variation,
but also on the quantity of cargo delivered at each point, the unloading time, and other factors.
An important conclusion is that the unloading times should be reduced substantially in practice,

with extensive field personnel training and the need to perform campaigns directed to retailers,
who very often are responsible for unexpected delays in the delivering process. Of course, for a
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real configuration, with more detailed discharge-time statistical data collected from each client,

this analysis can be performed with more accuracy.

Table 3 – Optimal SA route: Cpk values for each process stage.

Elapsed time
Stage Client no. since departure Cpk

(min)

1 8 157 2.16
2 7 185 2.29

3 4 204 2.34
4 6 222 2.39

5 9 239 2.44
6 10 259 2.47

7 11 282 2.46
8 3 306 2.42

9 12 330 2.37

10 5 355 2.23
11 2 376 1.91

12 1 394 1.33

Table 4 – Probability of occurring Cpk < 1.33 as a function of CVDT and the visiting sequence.

Visiting Client CVDT – Coefficient of variation, vehicle unloading times
sequence number 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60

1 8 0 0 0 0 0 0.01 0.02 0.17
2 7 0 0 0 0 0 0.01 0.02 0.17

3 4 0 0 0 0 0 0.02 0.04 0.25
4 6 0 0 0 0 0.01 0.02 0.04 0.25

5 9 0 0 0 0 0.03 0.05 0.09 0.25
6 10 0 0 0 0.01 0.07 0.11 0.17 0.33

7 11 0 0 0 0.03 0.12 0.22 0.27 0.42

8 3 0 0 0.02 0.08 0.21 0.33 0.39 0.58
9 12 0 0.01 0.06 0.13 0.28 0.42 0.50 0.75

10 5 0 0.04 0.09 0.23 0.37 0.49 0.59 0.75
11 2 0.01 0.11 0.16 0.37 0.49 0.61 0.67 0.75

12 1 0.31 0.40 0.49 0.54 0.62 0.72 0.75 0.83

7.3 Conclusion and research prospects

The main contribution of this work is the joint investigation of the thermal properties of a re-
frigerated product along a distribution route, where TTI data sets are gathered and the product

quality is evaluated with a process capability index. Alternative routing sequences are then opti-
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Figure 9 – Probability of not satisfying the thermal requirement Cpk ≥ 1.33, as a function of CVDT .

mized with a Simulated Annealing algorithm in which the objective function to be minimized is
the vehicle travelled distance, but respecting a minimum capability index target value.

The authors intend to research further on this subject considering a larger refrigerated cargo
distribution problem and using an irregular fleet of vehicles, including smaller trucks, with each

one performing more than one route in a working day, the vehicles getting back to the depot
when a visiting tour is finished and performing other visiting delivery sequences, as in Oswald &
Stirn (2008). Such scheme will possibly improve the overall thermal performance of the delivery

system, although with somewhat higher operating costs.

Second, additional TTI data will be gathered with the CoolVan simulator, in order to improve
the regression fittings representing the TTI variation. Finally, a dynamic version of this cold-
chain distribution planning problem will be developed considering other possible time deviations

that might deserve routing revisions. For example, unexpected delays in the cargo unloading
activities, traffic delays, and other fault occurrences that will be dynamically incorporated into
the model in such a way as to devise corrective real-time measures.
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ANTÔNIO G.N. NOVAES, ORLANDO F. LIMA Jr, CAROLINA C. DE CARVALHO and EDSON T. BEZ 283

[51] MOUREH J, MENIA N & FLICK D. 2002. Numerical and experimental study of airflow in a typical

refrigerated truck configuration loaded with pallets. Computers and Electronics in Agriculture, 34:
25–42.

[52] NBR 14701. 2001. Transport of refrigerated foodstuffs – Procedure and criterion of temperature,
ABNT – Brazilian Association of Technical Norms, Brazil.

[53] NGA MT. 2010. Enhancing Quality Management of Fresh Fish Supply Chains Through Improved

Logistics and Ensured Traceability, PhD Thesis, University of Iceland, Reykjavik.

[54] OSMAN IH. 1993. Metastrategy simulated annealing and tabu search algorithms for the vehicle rout-

ing problem. Annals of Operations Research, 41: 421–451.

[55] OSWALD A & STIRN LZ. 2008. A vehicle routing algorithm for the distribution of flesh vegetables
and similar perishable food. Journal of Food Engineering, 85: 285–295.

[56] PEARN WL & CHEN KS. 1999. Making decisions in Assessing Process Capability Index Cpk . Qual-

ity and Reliability Engineering International, 15: 321–326.
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