
�

�

“main” — 2016/1/12 — 17:45 — page 539 — #1
�

�

�

�

�

�

Pesquisa Operacional (2015) 35(3): 539-554
© 2015 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2015.035.03.0539

METAHEURISTICS EVALUATION:
A PROPOSAL FOR A MULTICRITERIA METHODOLOGY*

Valdir Agustinho de Melo and Paulo Oswaldo Boaventura-Netto**

Received July 16, 2014 / Accepted September 3, 2015

ABSTRACT. In this work we propose a multicriteria evaluation scheme for heuristic algorithms based on

the classic Condorcet ranking technique. Weights are associated to the ranking of an algorithm among a set

being object of comparison. We used five criteria and a function on the set of natural numbers to create a

ranking. The discussed comparison involves three well-known problems of combinatorial optimization –

Traveling Salesperson Problem (TSP), Capacitated Vehicle Routing Problem (CVRP) and Quadratic As-

signment Problem (QAP). The tested instances came from public libraries. Each algorithm was used with

essentially the same structure, the same local search was applied and the initial solutions were similarly

built. It is important to note that the work does not make proposals involving algorithms: the results for the

three problems are shown only to illustrate the operation of the evaluation technique. Four metaheuristics –

GRASP, Tabu Search, ILS and VNS – are therefore only used for the comparisons.

Keywords: comparison among heuristics, metaheuristics, TSP, CVRP, QAP.

1 INTRODUCTION

1.1 Heuristics evaluation in the literature

This work is dedicated to a proposal of a multicriteria evaluation scheme for heuristic algorithms,
which we called the Weight Evaluation Method (WOM). It involves an application of the Con-
dorcet ranking technique, presented in Item 1.2. The initial discussion of WOM is the object of
Item 1.3. Sections 2 and 3 present, respectively, quick explanations on the three problems and
the four metaheuristics used in the tests. The use of the evaluation technique is detailed in Sec-
tion 4 with the aid of an example. Section 5 presents the results of the comparison among the
metaheuristics when used with the three problems. The conclusions are exposed in Section 6.

The use of metaheuristics to find good quality solutions for discrete optimization problems has
the double advantage of working with algorithms based on models already known and the effi-
ciency of the methods themselves. This is very important when dealing with problems that have

*A preliminary version of this work was presented at Euro XXV, Vilnius, July 2012.
**Corresponding author.
COPPE/Programa de Engenharia de Produção, Universidade Federal do Rio de Janeiro, RJ, Brasil.
E-mails: vmelo@pep.ufrj.br; boaventu@pep.ufrj.br

�

�

“main” — 2016/1/12 — 17:45 — page 540 — #2
�

�

�

�

�

�

540 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

an exponential number of feasible solutions. When there are many techniques available, it is
clearly important to evaluate their efficiency with respect to a given problem. A number of direct
evaluation techniques, both deterministic and probabilistic, is commonly used, such as in Aiex
et al. [2, 3] where their observations lead to the hypothesis that the iteration processing times
of the heuristics based on local searches, aiming at a result with a determined target, follow an
exponential distribution. The use of instance collections, available in the Internet for many prob-
lems, appears there and in a number of other works as an efficient way to evaluate metaheuristics
and compare their efficiency when dealing with a variety of situations.

Tuning parameters of an algorithm for improved efficiency is also a work that benefits from a
system of assessment. Averages of execution times and final solution values, with their standard
deviations, are often used. The normal distribution is commonly considered on these occasions,
an option which is criticized by Taillard et al. [23] as a hypothesis not always verified: for
example, if there are many global optima, the distribution will have a truncated tail, since it is
impossible to go beyond the optimum.

There are in the literature several techniques for this purpose: following this reference, the most
common are:

1. When dealing with optimization, a set of problem instances is solved with a couple of
methods that should be compared, by calculating mean and standard deviation (possibly
also other measures such as median, minimum, maximum, etc.) of the values obtained in
a series of algorithm rounds.

2. In the context of exact problem-solving, the computational effort required to obtain the
best solution is measured, and its mean, standard deviation an so on, are calculated.

3. The maximum computational effort is fixed, as well as a goal to reach, by counting the
number of times each method achieves the goal within the computational time allowed.

In practice, often the measures computed by the first and second techniques are very primitive
and it is common to calculate only the averages, which are insufficient to assert a statistical
advantage of a method of solution in relation to another.

1.2 The Condorcet technique

This work proposes a multicriteria evaluation scheme based on the classic Condorcet ranking
technique, [1, 4, 18]. This technique allows us to substitute orders for concept values, which are
subsequently submitted to a pairwise comparison. The initial concepts can be either qualitative
or quantitative. For instance, a blind test for wine quality evaluation could involve a group of
tasters, each one giving a ranking for a set of similar products by considering mouth sensations,
bouquet, color and so on. When applied to algorithm evaluation, we could use the algorithms
on a given set of instances and consider value rankings for different criteria, such as final value
averages, processing times and so on. These results can be presented as a matrix where we will
be able to evaluate coherence and inconsistency levels in order to arrive to a decision concerning
the quality of the studied options (see Item 4.3).

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 541 — #3
�

�

�

�

�

�

VALDIR AGUSTINHO DE MELO and PAULO OSWALDO BOAVENTURA-NETTO 541

1.3 The Weight Evaluation Method (WOM)

In this method we begin with a Condorcet-type ranking matrix. We use weights associated to the
ranking of the algorithms from a set being object of comparison with respect to instances of a
given problem. In this work, we define five evaluation criteria (see Item 4.2 below) and we apply
a function on the set of natural numbers to the ranking given by each criterion. The valuation is
defined such that the better results are associated to the lesser criterion values.

In this work, we cross three combinatorial optimization problems – the Traveling Salesperson
Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP) and the Quadratic Assignment
Problem (QAP) – against four different metaheuristics: the Greedy Randomized Adaptive Search
Procedure (GRASP), the Iterated Local Search (ILS), the Tabu Search (TS) and the Variable
Neighborhood Search (VNS). To do that, we took instance collections of each problem from
public libraries and made ten independent runs with each one, using an execution time limit of
600 seconds. We looked for solutions with Optimal or Better-Known Values (OBKV), according
to the more recent information available on the Internet.

The algorithms were programmed in C language and ran on a Linux platform. In order to al-
low for a very basic comparison, each algorithm was used with essentially the same structure,
the same local search was used in every case and the initial solutions were similarly built. The
only differences are the specific characteristics of each problem: the problem constraints and the
objective function calculation. We adopted this option owing to the number of improvements al-
ready existing in the literature, since the paper objective is to use the problem-algorithm crossing
to show the functioning of the method and not to propose any algorithm improvement.

The use of a sort function facilitates the visualization of orders. The sum of the values obtained
with each algorithm for each problem makes easier the comparison between the algorithms and
their sensitivities to every problem. It also allows us to evaluate the in-the-whole performance of
an algorithm.

2 TEST PROBLEMS USED IN THE STUDY

The problems used in this study and presented below are widely known by the scientific commu-
nity and often used as benchmarks for the validation of new algorithms, owing to their algorith-
mic complexity [8, 21].

2.1 Traveling Salesperson Problem (TSP)

In simple terms, the Traveling Salesperson Problem (TSP) can be viewed as a list of cities and
their distances in pairs, where the task is to leave the origin and to follow the shortest possible
circuit which visits each city exactly once before returning to the origin. It was formulated as
a mathematical problem by Karl Menger [17]. The TSP is one of the most intensively studied
combinatorial optimization problems. It is of great importance from a practical as well as a
theoretical point of view, given its relationship to other combinatorial optimization problems. It is
used as a benchmark for many optimization methods. Even being computationally difficult (NP-
hard), a large number of exact methods and heuristics have been applied to it, so that instances
with tens of thousands of cities can be solved.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 542 — #4
�

�

�

�

�

�

542 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

2.2 Capacitated Vehicle Routing Problem (CVRP)

Since the work published by Dantzig & Ramser in 1959 [5], many papers related to the Vehicle
Routing Problem (VRP) has been seen in the literature. Some studies show different variants,
such as more than one deposit, a time limit of delivery, different types of vehicles, delivery and
collection of products, among others. In this work we make use of its classical modeling, which
is to meet a set of customers through a fleet of vehicles of the same capacity. Each vehicle comes
from a deposit and the sum of the demands associated with each customer cannot exceed the
vehicle capacity.

2.3 Quadratic Assignment Problem (QAP)

Consider the problem of allocating pairs of activities to pairs of locations, taking into account
the costs of travel distances between locations and some flow units conveniently defined between
activities. The Quadratic Assignment Problem (QAP), proposed by Koopmans & Beckmann
[14], is the problem of finding a minimum cost allocation of activities to locations where costs
are determined by the sum of the products distance-flow.

3 METAHEURISTICS USED IN THE STUDY

The implementations used here for the metaheuristics vary greatly in efficiency. This was deemed
appropriate to facilitate the observation of how WOM works.

3.1 Tabu Search

The Tabu Search was introduced by Fred Glover [9, 10] for integer programming problems and
more recently perfected by Taillard [22]. This metaheuristic is based on the establishment of
restrictions that effectively guide a heuristic search in exploring the solution space, trying to avoid
that the search returns to previously visited solutions. These restrictions work in different ways,
such as excluding the search of certain alternatives, classifying them as temporarily banned or
taboos, or modifying ratings and selection probabilities, designating them as aspiration criteria.

3.2 GRASP

GRASP – Greedy Randomized Adaptive Search Procedure – proposed by Feo & Resende [7]
– can be seen as a metaheuristic which uses the good characteristics of the purely random al-
gorithms and the purely greedy processes in the construction phase. It is a multistart iterative
process in which each iteration consists of two phases: the construction phase, where a feasible
solution is constructed, and the local search phase, where a local optimum is found in the vicinity
of the initial solution and, if necessary, the update of the best solution found so far is made.

3.3 ILS

ILS – Iterated local search – proposed by Lourenço et al. [15], is a simple method that iteratively
applies local search to disturb the site of the current search, leading to a random walk in the space
of local optima. To apply an ILS algorithm, four procedures must be specified: (a) generation

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 543 — #5
�

�

�

�

�

�

VALDIR AGUSTINHO DE MELO and PAULO OSWALDO BOAVENTURA-NETTO 543

of initial solution, (b) disturbance, which generates new starting points for local search, (c) the
acceptance criterion that decides from which solution the search will be continued, (d) the local
search procedure is defined as the search space.

3.4 VNS

VNS – Variable Neighborhood Search – was proposed by Hansen & Mladenović [11, 12]. It is
based on a systematic neighborhood exchange associated with a random algorithm to determine
starting points of local search. The basic VNS scheme is very simple and easy to implement.
Unlike other metaheuristics based on local search methods, VNS does not follow a trajectory
but explores incrementally more or less distant neighborhoods of the current solution, ranging
from the current solution to the new, if and only if an improvement occurs. According to the
authors, the advantage of using various neighborhoods is that the local optimum in relation to
a neighborhood is not necessarily the same from others: thus, the search should continue in a
way downward (or upward) until the solution current is a minimum (or maximum) location of
all structures of the pre-selected neighborhoods.

4 DETAILS ON CONDORCET AND WOM TECHNIQUES

In this section we present in more detail the proposed performance criteria, the application of the
Condorcet method and the use of its results to generate the indicators associated with WOM.

4.1 Performance criteria for the proposed versions

Following the already cited concern of Taillard et al. [23] about the dependency of heuristic
efficiency on instance type, we built a multicriteria evaluation with five comparison criteria. The
criteria definitions below are such that lower values represent better results.

a) Number of not-OBKV solutions obtained (nopt)

b) Average relative value distance (avd)

This is the average of the values (obtained value – OBKV)/OBKV, for those tests not reaching
the OBKV, expressed in percentages.

c) Quality index (qual)

This is a tailor-made function used to express performance, whether the algorithm reaches the
OBKV or not. We used:

I (nsol, error) = nSol Not Otm ∗ (Avg Error%) + nSol Otm−1 (4.1)

where nSolOtm is the number of solutions with the OBKV value, nSolNotOtm is the number
of solutions with worse values and AvgError is the average error percentage of those instances
where the OBKV was not reached. The last term is disregarded whether no OBKV value is
found.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 544 — #6
�

�

�

�

�

�

544 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

As an example, let us consider that in 10 executions of an instance, 8 produced the OBKV and 2
presented an average error of 1.3%. The index value is then I = 0.125 + (2 × 1.3) = 2.725. If
the error of those two instances were 21.6%, we would have I = 0.125 + (2 × 21.6) = 43.325.
We can see that the index is sensitive to the presence of bad solutions and that its value decreases
when the number of OBKV solutions grows.

d) Average execution time (exec)

This includes only the instances where OBKV was obtained before the maximum execution time
(600 seconds).

e) Average stagnation time complement (stag)

This shows the average difference between the maximum execution time of 600 seconds and the
time associated with the last improvement in the solution value before the algorithm stops by
maximum time criterion. Whenever the algorithm gets the OBKV, this value is nullified. This
criterion can be associated with an algorithm capacity to avoid sticking at local optima.

4.2 Some details on the Condorcet technique

As discussed in Item 1.2, the Condorcet technique is based on a pairwise evaluation, seeking to
order pairs of results, looking for obtaining a measure for performance differences, as detailed in
what follows.

Let W be a set of w objects o1, o2, . . . , ow and let us consider their w! permutations. Each
permutation pk(1 ≤ k ≤ w!) induces a classification Ok , that is, an order relation in which the
object oi is said to be better or easier than o j according to the order Ok , if oi precedes o j in
Ok(oi < o j). The pair (oi , o j) is said to show a discrepancy between Op and Oq if and only
if oi < o j in the order Op and o j < oi in the order Oq . The distance between Op and Oq ,
dist(Op, Oq), is defined as the number of discrepant pairs among the Cw,2 possible ones. We
can then define the relative error of Op with respect to Oq as:

εpq = 100 ∗ dist(Op, Oq)/Cw,2 (4.2)

This technique can be used to compare the performance of a pair of algorithms with respect to
a given instance. Let then |W | = w the number of algorithms that will be compared with a
total of z evaluation criteria, whose values refer to a given instance, each criterion generating a
possibly different order. A criterion-algorithm table is obtained for each instance, where each
position contains the algorithm number and its corresponding criterion value. In this table, the
algorithm number in each entry corresponds to that of the corresponding column.

We exemplify the method with the QAP instance Tai25a, used among other QAP instances for
testing five VNS variations, [16] (Table 1).

After this, we order each line by nondecreasing order of the corresponding criterion value. The
algorithm identifiers are carried on along the ordering. After the execution, the initial matrix
stays as in Table 2.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 545 — #7
�

�

�

�

�

�

VALDIR AGUSTINHO DE MELO and PAULO OSWALDO BOAVENTURA-NETTO 545

Table 1 – Instance Tai25a – The matrix with the values obtained by the algorithms.

Tai25a Algorithms: before ordered results
criteria lst 2nd 3rd 4th 5th

a 1 – 10.0000 2 – 9.0000 3 – 8.0000 4 – 10.0000 5 – 10.0000
b 1 – 0.5800 2 – 0.6800 3 – 0.5700 4 – 0.7100 5 – 0.5500

c 1 – 5.7600 2 – 7.1200 3 – 5.0400 4 – 7.1100 5 – 5.4500

d 1 – 0.0000 2 – 0.0900 3 – 176.3800 4 – 0.0000 5 – 0.0000
e 1 – 557.5400 2 – 564.9100 3 – 472.0000 4 – 481.5700 5 – 483.9400

Table 2 – Instance Tai25a – Criteria values in nondecreasing order.

Tai25a Algorithms: after ordered results
criteria lst 2nd 3rd 4th 5th

a 3 – 8.0000 2 – 9.0000 1 – 10.0000 4 – 10.0000 5 – 10.0000

b 5 – 0.5500 3 – 0.5700 1 – 0.5800 2 – 0.6800 4 – 0.7100
c 3 – 5.0400 5 – 5.4500 1 – 5.7600 4 – 7.1100 2 – 7.1200

d 1 – 0.0000 4 – 0.0000 5 – 0.0000 2 – 0.0900 3 – 176.3800
e 3 – 472.0000 4 – 481.5700 5 – 483.9400 1 – 557.5400 2 – 564.9100

In the next step, we examine each value pair along each line, considering the algorithms which
produced the corresponding results. We represent the comparison result by a matrix where each
column corresponds to a pair of algorithms and each entry value is k ∈ {−1, 0, +1}. The value
choice for k is given by (+1; >); (−1, <); (0, =) (e.g., Criterion a gives the second posi-
tion to Algorithm 2 (value 9.0000) and the fourth one to Algorithm 4 (value 10.0000), hence
(a, [2, 4]) = −1, while Criterion d gives the first position to Algorithm 1 and the second one to
Algorithm 4 (both with value 0.0000); hence, (d, [1, 4]) = 0).

Table 3 – Instance Tai25a – The value pair comparison matrix.

Tai25a Algorithms
criteria [1, 2] [1, 3] [1, 4] [1, 5] [2, 3] [2, 4] [2, 5] [3, 4] [3, 5] [4, 5]

a 1 1 0 0 1 –1 –1 –1 –1 0
b –1 1 –1 1 1 –1 1 –1 1 1

c –1 1 –1 1 1 1 1 –1 –1 1

d –1 –1 0 0 –1 1 1 1 1 0
e –1 1 1 1 1 1 1 –1 –1 –1

The next step is the (Condorcet) distance determination. An expanded matrix is built where
the lines correspond to criteria pairs and columns to algorithm pairs. Here, we say there is a
discrepancy (expressed by a unity in Table 4), when the entries corresponding to a criteria pair
in Table 3 have opposite signs. The remaining entries of Table 4 are null. The line sums express
the distances between the orders given by the algorithms, while the column sums correspond to
the distances between the orders given by the criteria (e.g., (a, [1, 2]) = 1 and (b, [1, 2]) = −1,
then, in Table 4, ([a, b], [1.2]) = 1).

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 546 — #8
�

�

�

�

�

�

546 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

The last row and column of Table 4 are used for indicator evaluation. If all pairs have very high
disagreements, for example, over 75%, a questioning about their validity will be convenient.

For this example of Tai25a instance, only the criteria pair [a, d] shows a higher disagreement
(70%). The other pairs have better consistency, which indicates this criteria set as having good
evaluation capacity for the algorithms applied to this instance. We can also look at the columns
sum. It is interesting to observe that [1,5] column indicates no discrepancy, which is the same to
say that Algorithms 1 and 5 are equivalent, according to all criteria utilized.

The Condorcet method proceeds by calculating the relative errors to be included in Eqn. 4.2 and
preparing comparison tables based on those results. The number of comparisons will grow to
O(w2) for each instance. The final evaluation would be done by inspection, since it becomes
difficult to establish logical criteria which could be used for computational evaluation. Since the
number of alternatives may be large, according to the value of w, we consider the Condorcet
technique as becoming impractical.

Table 4 – Instance Tai25a – Comparison between pairs (by algorithms and by criteria).

Tai25a Algorithms
Dist. %

criteria [1, 2] [1, 3] [1, 4] [1, 5] [2, 3] [2, 4] [2, 5] [3, 4] [3, 5] [4, 5]
[a,b] 1 – – – – – 1 – 1 – 3 30

[a,c] 1 – – – – 1 1 – – – 3 30
[a,d] 1 1 – – 1 1 1 1 1 – 7 70

[a,e] 1 – – – – 1 1 – – – 3 30
[b,c] – – – – – 1 – – 1 – 2 20

[b,d] – 1 – – 1 1 – 1 – – 4 40
[b,e] – – 1 – – 1 – – 1 1 4 40

[c,d] – 1 – – 1 – – 1 1 – 4 40
[c,e] – – 1 – – – – – – 1 2 20

[d,e] – 1 – – 1 – – 1 1 – 4 40

Dist 4 4 2 0 4 6 4 4 6 2

% 40 40 20 0 40 60 40 40 60 20

4.3 The Weight Ordering Method – WOM

The situation we have just described calls for some evaluation improvement. It led us to propose
a Condorcet-like technique where the comparison can be easily made by calculation, the Weight
Ordering Method (WOM). Here we have the advantage of automatically translate the results of
the comparisons into numeric values. We do it with the aid of a function designed to be injective
for the considered value set: then, we can be sure it will condense in numbers the information
provided by Table 4 above.

From the ordered array of the Condorcet method (Table 2), we look for equal-valued elements.
If they exist, we proceed to a rearrangement to condense these values in a single entry. Otherwise
we proceed with Table 2 without changing. Anyway, we obtain Table 5, where equal values in
the various entries were condensed in a unique position (e.g., Algorithms 1, 4 and 5, with Criteria
a and d). For the instance Tai25a, Table 5 will be:

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 547 — #9
�

�

�

�

�

�

VALDIR AGUSTINHO DE MELO and PAULO OSWALDO BOAVENTURA-NETTO 547

Table 5 – WOM method – rearrangement of equal values for Tai25a.

Tai25a Order

criteria lst 2nd 3rd 4th 5th

a 3 – 8.0000 2 – 9.0000 1 – 10.0000
4 – 10.0000

5 – 10.0000

b 5 – 0.5500 3 – 0.5700 1 – 0.5800 2 – 0.6800 4 – 0.7100

c 3 – 5.0400 5 – 5.4500 1 – 5.7600 4 – 7.1100 2 – 7.1200

d 1 – 0.0000 2 – 0.0900 3 – 176.3800

4 – 0.0000
5 – 0.00000

e 3 – 472.0000 4 – 481.5700 5 – 483.9400 1 – 557.5400 2 – 564.9100

We do not consider the empty entries in the ordering (e.g., Line (d): Algorithm 2 in column 4
will be second in order, not fourth; Algorithm 3 will be third, not fifth).

With these data we are able to create an Oi j – type matrix, similar to that of Condorcet method.
(Table 6), where each entry (i, j) contains the number of times Algorithm i appears in order
j , for the whole criteria set applied to a given instance. (e.g., Table 5 shows that Algorithm 1
obtained one first position (with Criterion d), three third positions (criteria a, b, c) and one
fourth position (criterion e)).

Table 6 – WOM method – ordering matrix for Tai25a.

Algorithms
Order

lst 2nd 3rd 4th 5th

1 1 0 3 1 0

2 0 2 0 1 2
3 3 1 1 0 0

4 1 1 1 1 1
5 2 1 2 0 0

To quantify the performance of each algorithm we use this matrix to associate with a weight
function over the obtained set of orders, where a first-rated algorithm receives a greater value
than the second-rated one and so on. The suggested weight function (4.3) for a given algorithm
considers the number w of algorithms, the order of the algorithm i for a given instance, an
exponent basis k and the matrix O = [Oi j] of the instance, as follows:

W t Funci =
w∑

j=1

Oi j ∗ kw− j+1 (4.3)

This function becomes injective for k sufficiently high. One has to test some values, given the
arrangement set obtained. For the example, we found that k = 13/3 guarantees the injective
property. Here, a higher value corresponds to a better performance.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 548 — #10
�

�

�

�

�

�

548 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

It is crucial to observe that we are already working with an ordered set: since the function
values reflect the ordering of the multicriteria evaluation for each algorithm, they correspond
to the pairwise ordering used by Condorcet method, condensing its results into numeric values
which indicate the algorithm performance order according to the proposed criteria.

Table 7 is Table 6 with a new column showing WtFunc values. We can see that the best global
performance was that of Algorithm 3 (279) and the worst, that of Algorithm 2 (59).

Table 7 – WOM method – final algorithm ordering for Tai25a.

Algorithms
Order

WtFunc
lst 2nd 3rd 4th 5th

1 1 0 3 1 0 111

2 0 2 0 1 2 59
3 3 1 1 0 0 279

4 1 1 1 1 1 121
5 2 1 2 0 0 207

It is important to mention that these results are consistent only within a given situation, since
the orderings obtained in two different situations may not be consistent with one another and it
may not be significant to add up their respective ratings.

5 COMPUTATIONAL RESOURCES AND RESULTS

For each problem, we used about 100 test instances, taken from their respective websites, [24]
for TSP and CVRP, and [19] for QAP.

All algorithms departed with randomly generated initial solutions. We performed a set of ten
executions for each instance, each one initialized with a new seed in order to ensure inde-
pendence. The seeds were randomly selected from the list of prime numbers between 1 and
2,000,000, [6]. The tests were run on a computer with an Intel Core 2 Quad 2.4 GHz with 4 GB
of RAM, under the Linux operating system, openSUSE distribution.

Table 8 contains the list of instances from the three problems, with the corresponding sizes.

Table 9 shows the values of the weight function associated with the four algorithms, working on
the problems used in the test. We can see that GRASP was the better technique both on TSP and
on CVRP, while VNS worked more efficiently on QAP.

It may be noted that no algorithm was better than the others for the three problems. Although
behavior differences should be expected between an algorithm-problem pair and another one, the
results have also been influenced by our use of basic versions, which detailed descriptions can
easily be found in the literature.

A comparison test for WOM was designed with the use of boxplots [20]. The boxplot description
followed the pattern used in Table 6, that is, for each problem we built a boxplot set for each
criterion, involving all four algorithms. The graphics is shown in Appendix 1.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 549 — #11
�

�

�

�

�

�

VALDIR AGUSTINHO DE MELO and PAULO OSWALDO BOAVENTURA-NETTO 549

Table 8 – Tested instances for QAP, TSP and CVRP.

Instances
QAP Size QAP Size TSP Size TSP Size CVRP Size CVRP Size

chr12a 12 tai30a 30 burma14 14 gr202 202 P-n16-k8 16 A-n55-k9 55
had12 12 tho30 30 ulysses16 16 ts225 225 P-n20-k2 20 P-n55-k7 55
nug12 12 esc35a 32 gr17 17 tsp225 225 E-n22-k4 22 B-n56-k7 56
rou12 12 esc32b 32 gr21 21 pr226 226 eil22dat 22 B-n57-k7 57
scr12 12 esc32c 32 ulysses22 22 gr229 229 P-n22-k8 22 B-n57-k9 57
tai12a 12 esc32d 32 gr24 24 gil262 262 E-n23-k3 23 A-n60-k9 60
had14 14 kra32 32 fri26 26 pr264 264 E-n30-k3 30 P-n60-k10 60
chrl5a 15 tai35a 35 bayg29 29 a280 280 eil30dat 30 A-n63-k9 63
dre15 15 ste36a 36 bays29 29 d1291 291 B-n31-k5 31 B-n63-k10 63
nug15 15 lipa40a 40 dantzig42 42 pr299 299 E-n31-k7 31 A-n65-k9 65
rou15 15 tai40a 40 swiss42 42 lin318 318 A-n32-k5 32 B-n67-k10 67
scr15 15 tho40 40 att48 48 linhp318 318 A-n33-k5 33 P-n70-k10 70
tai15a 15 dre42 42 gr48 48 fl417 417 A-n33-k6 33 F-n72-k4 72
esc16a 16 sko42 42 hk48 48 gr431 431 E-n33-k4 33 tai75a 75
esc16b 16 tai45e01 45 eil51 51 pr439 439 eil33dat 33 tai75b 75
esc16c 16 sko49 49 berlin52 52 pcb442 442 A-n34-k5 34 tai75c 75
esc16d 16 lipa50a 50 brazil58 58 att532 532 B-n34-k5 34 tai75d 75
had16 16 lipa50b 50 st70 70 ali535 535 B-n35-k5 35 E-n76-k10 76
nug17 17 pal50 50 eil76 76 si535 535 A-n36-k5 36 E-n76-k14 76
tai17a 17 tai50a 50 pr76 76 pa561 561 A-n37-k5 37 E-n76-k7 76
chr18a 18 wil50 50 gr96 96 rat575 575 A-n37-k6 37 E-n76-k8 76
dre18 18 dre56 56 rat99 99 d493 593 A-n38-k5 38 eila76dat 76
els19 19 sko56 56 kroA100 100 p654 654 B-n38-k6 38 P-n76-k5 76

chr20a 20 lipa60b 60 kroB100 100 d1655 655 A-n39-k5 39 B-n78-k10 78
had20 20 tai60a 60 kroC100 100 d657 657 A-n39-k6 39 A-n80-k10 80
lipa20a 20 esc64a 64 kroD100 100 gr666 666 B-n39-k5 39 tai100a 100
lipa20b 20 sko64 64 kroE100 100 u724 724 P-n40-k5 40 tai100b 100
nug20 20 lipa70a 70 rd100 100 rat783 783 B-n41-k6 41 tai100c 100
pal20 20 pal70 70 eil101 101 pr1002 1002 B-n43-k6 43 tai100d 100
rou20 20 dre72 72 lin105 105 si1032 1032 A-n44-k6 44 E-n101-k14 101
scr20 20 sko72 72 pr107 107 u1060 1060 B-n44-k7 44 E-n101-k8 101
tai20a 20 tai75e01 75 gr120 120 vm1084 1084 A-n45-k6 45 eila101dat 101
chr22a 22 lipa80a 80 pr124 124 pcb1173 1173 A-n45-k7 45 M-n101-k10 101
nug22 22 pal80 80 bier127 127 rl1304 1304 B-n45-k5 45 X-n101-k25 101
dre24 24 tai80a 80 ch130 130 rl1323 1323 B-n45-k6 45 X-n106-k14 106
chr25a 25 dre90 90 pr136 136 nrw1379 1379 F-n45-k4 45 X-n110-k13 110
nug25 25 lipa90a 90 gr137 137 fl1400 1400 P-n45-k5 45 X-n115-k10 115
tai25a 25 sko90 90 pr144 144 u1432 1432 A-n46-k7 46 X-n120-k6 120
bur26a 26 pal100 100 ch150 150 fl1577 1577 A-n48-k7 48 M-n121-k7 121
bur26b 26 skol00a 100 kroA150 150 vm1748 1748 eil48dat 48 X-n125-k30 125
bur26c 26 tai100a 100 kroB150 150 u1817 1817 B-n50-k7 50 X-n129-k18 129
bur26d 26 wil100 100 pr152 152 rl1889 1889 B-n50-k8 50 X-n134-k13 134
nug27 27 dre110 110 u159 159 d2103 2103 P-n50-k10 50 F-n135-k7 135

tai27e01 27 esc128 128 si175 175 u2152 2152 P-n50-k7 50 X-n139-k10 139
dre28 28 dre132 132 brg180 180 u2319 2319 B-n51-k7 51 X-n143-k7 143
dre30 30 pal150 150 rat195 195 pr2392 2392 E-n51-k5 51 tai150a 150
kra30a 30 tai150b 150 d198 198 pcb3038 3038 eil51dat 51 tai150b 150
lipa30a 30 tho150 150 kroA200 200 fl3795 3795 B-n52-k7 52 tai150c 150
nug30 30 pal200 200 kroB200 200 fnl4461 4461 A-n53-k7 53 M-n151-k12 151
pal30 30 tai256c 256 A-n54-k7 54 X-n139-k10 139

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 550 — #12
�

�

�

�

�

�

550 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

Table 9 – Comparison among the four metaheuristics using WOM.

Problem Metaheuristic Criterion1 Criterion2 Criterion3 Criterion4 Criterion5 WtFunc Order

GRASP 492 477 475 491 308 2243 1st

TSP
ILS 492 390 387 492 427 2188 2nd
TS 492 390 385 492 427 2186 3rd

VNS 491 327 331 488 459 2096 4th

GRASP 468 481 481 468 407 2305 3rd

CVRP
ILS 546 407 407 507 433 2300 4th
TS 454 519 519 452 484 2428 2nd

VNS 519 540 540 519 540 2658 1st

GRASP 432 270 344 392 401 1839 3rd

QAP
ILS 451 405 417 438 420 2131 2nd
TS 439 362 267 408 258 1734 4th

VNS 492 466 473 476 419 2326 1st

6 CONCLUSIONS

The WOM technique allows us to choose the level of detail in an algorithm performance study.
For example, we can check performances by using an isolated instance or a set of instance classes,
as in [16]. Comparison between different versions of the same algorithm can be made much more
easily than by using the Condorcet method (whose output file increases with the square of the
number of elements and is designed to give results by inspection), since the WOM gathers the
evaluation results on a single parameter. It is also easily adaptable to an insertion, a replacement
or a removal of a criterion or algorithm under study, allowing for faster scanning and analysis of
their results.

Based on the Condorcet method, WOM shows very clearly both algorithm strengths and weak-
nesses and also allows for an overall comparison in terms of performance ordering. We believe,
even with this small example, that we can show its efficiency to make comparisons and sorting
techniques by performance in the midst of a much larger number of alternatives.

We think WOM can be very useful in algorithm development, when a researcher has to deal with
a number of different, but similar, algorithm versions, or with several sets of different parameter
values for a given algorithm. As for the Condorcet method, the proposed criteria set can be
changed or modified according to the research objective.

A comparison with the boxplot analysis (Appendix 1) shows most of its results comparable with
those of WOM, CVRP being the less precise, TSP matching well and QAP fairly good.

REFERENCES

[1] ABREU NMM, BOAVENTURA NETTO PO, QUERIDO TM & GOUVÊA EF. 2002. Classes of

quadratic assignment problem instances: isomorphism and difficulty measure using a statistical ap-
proach. Discrete Applied Mathematics, 124(1-3): 103–116.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 551 — #13
�

�

�

�

�

�

VALDIR AGUSTINHO DE MELO and PAULO OSWALDO BOAVENTURA-NETTO 551

[2] AIEX RM, RESENDE MGC & RIBEIRO CCC. 2002. Probability distribution of solution time in

GRASP: an experimental investigation. Journal of Heuristics, 8: 343–373.

[3] AIEX RM, RESENDE MGC & RIBEIRO CCC. 2005. TTTPLOTS: a PERL program to create time-

to-target plots. AT&T.

[4] BARBUT CCP. 1990. Automorphismes du permutoèdre et votes de Condorcet. Math. Inform. Sci.

Hum., 28E, 111: 73–82.

[5] DANTZIG GB & RAMSER JH. 1959. The truck dispatching problem. Management Science, 6(1):

80-91. INFORMS.

[6] ESTANY CP. 2010. Prime numbers. Available in: http://pinux.info/primos/, Accessed April 2010.

[7] FEO TA & RESENDE MGC. 1995. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6: 109–133.

[8] GAREY MR & JOHNSON DS. 1979. Computers and Intractability: A Guide to the Theory of NP-

Completeness. A Series of Books in the Mathematical Sciences. San Francisco, Calif. Victor Klee,
ed.

[9] GLOVER F. 1989. Tabu search-Part I. ORSA Journal on Computing, 1: 190–206.

[10] GLOVER F. 1989. Tabu search-Part II. ORSA Journal on Computing, 2: 4–32.

[11] HANSEN P & MLADENOVIĆ N. 1997. Variable neighborhood search. Computers and Operations

Research, 24: 1097–1100.

[12] HANSEN P & MLADENOVIĆ N. 2001. Developments of variable neighborhood search. Les Cahiers

du GERAD, G-2001-24.

[13] HOLLAND JH. 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann
Arbor.

[14] KOOPMANS TC & BECKMANN MJ. 1957. Assignment problems and the location of economic ac-
tivities. Econometrica, 25: 53–76.

[15] LOURENÇO HR, MARTIN OC & STÜTZLE T. 2003. Iterated local search. Glover F & Kochenberger

GA (editors), Handbook of Metaheuristics, Chapter 11, p. 321–353. Kluwer Academic Publishers.

[16] MELO VA. 2010. QAP: Investigations on the VNS metaheuristic and on the use of the QAP variance
on graph isomorphism problems (in Portuguese). D.Sc. Thesis. Program of Production Engineering,

COPPE/UFRJ, Rio de Janeiro, Brasil.

[17] MENGER K. 1931. Bericht über ein mathematisches Kolloquium. Monatshefte für Mathematik und

Physik, 38: 17–18.

[18] MOREIRA AST. 2006. Hybrid GRASP-Tabu algorithms using the structure of Picard-Queyranne ma-
trix for the QAP (in Portuguese). D.Sc. Thesis. Program of Production Engineering, COPPE/UFRJ,

Rio de Janeiro, Brazil.

[19] QAPLIB HOME PAGE. 2012. http://www.seas.upenn.edu/qaplib/ Accessed on: 12/10/12.

[20] R CORE TEAM. 2015. R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

[21] REITER EE & JOHNSON CM. 2013. Limits of computation: an introduction to the undecidable and
the intractable. CRC Press, Boca Raton.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 552 — #14
�

�

�

�

�

�

552 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

[22] TAILLARD E. 1991. Robust taboo search for the quadratic assignment problem. Parallel Computing,

17: 443–455.

[23] TAILLARD E, WAELTI P & ZUBER J. 2008. Few statistical tests for proportions comparison. Euro-

pean Journal of Operational Research, 185: 1336–1350.

[24] TSPLIB HOME PAGE. 2012. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Accessed on:

12/10/2012.

APPENDIX 1: BOXPLOT ANALYSIS

Here we present the boxplot set for each problem, each graphic box corresponding to a criterion,
where the plots correspond to the four algorithms, GRASP, ILS, TS and VNS, respectively.

In order to have a better painting for avd and qual, we reconfigured the values on a percentual
basis, by using the maximum obtained value as a standard. The new avd and qual values are
calculated as follows,

newavd = 100 ∗ (avd − O B K V)/max(avd) and newqual = 100 ∗ qual/max(qual).

The stagnation time stag was also put on a percentual basis.

A discussion follows each set. We begin with the QAP boxplots (Fig. A1-1):

GRASP ILS TS VNS

0
10

0
20

0
30

0
40

0

GRASP ILS TS VNS

0
20

40
60

80

GRASP ILS TS VNS

0
20

0
40

0
60

0

GRASP ILS TS VNS

0
10

0
20

0
30

0
40

0

GRASP ILS TS VNS

0
20

40
60

80

GRASP ILS TS VNS

0
20

0
40

0
60

0

GRASP ILS TS VNS

0
2

4
6

8
10

Criterion: nopt Criterion: avd Criterion: exec Criterion: stag

Figure A1-1 – Boxplot set for QAP.

For VNS, the number of not-OBKV solutions (nopt) covered the whole set of eleven possible
values (from zero to 10). It seems then to be strongly instance-dependant, but all results are
within the interquartile (IQ) zone. ILS ranks as second, TS as third and GRASP as fourth, but all
with high median values.

The value average (avd) gave the lesser values for VNS among the four algorithms, ILS being
second, GRASP third and TS fourth (only because of its outliers).

The quality index (qual) had no difference with respect to avd.

VNS execution time (exec) has a behavior similar to nopt for the IQ zone, but the median value
is reasonably low (while the other algorithms have it high). ILS ranks second, TS third, GRASP
fourth.

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 553 — #15
�

�

�

�

�

�

VALDIR AGUSTINHO DE MELO and PAULO OSWALDO BOAVENTURA-NETTO 553

The stagnation time (stag) has the lesser median for VNS. TS presented the higher stagnation
times and the higher median. GRASP was second and ILS, third. On the other hand, GRASP
had the lesser value spread, followed by ILS, VNS, then TS.

We can say the boxplot comparison matches WOM results, VNS being easily the first, TS and
ILS having near results and GRASP certainly worse.

The TSP boxplots are in Figure A1-2 below.

GRASP ILS TS VNS

0
20

40
60

80
10

0

GRASP ILS TS VNS

0
20

40
60

80
10

0

GRASP ILS TS VNS

0
20

40
60

80

TSP_avd TSP_qual TSP_stag

GRASP ILS TS VNS

0
20

40
60

80
10

0

GRASP ILS TS VNS

0
20

40
60

80
10

0

GRASP ILS TS VNS

0
20

40
60

80

TSP_avd TSP_qual TSP_stag

Figure A1-2 – Boxplot set for TSP.

The criteria nopt and exec were not effective: since the TSP instances have real values, the
algorithms spent all the allowed execution time of 600 seconds, within the ten executions for
instance, trying to obtain better solutions within an interval of 1% fixed around the originally
OBKV value given by the site, associated to the problem.

We can observe that GRASP produced low avd and qual values. This behavior allows us to
understand its stag behavior as a strong search for better values, most of them falling in the
immediate neighborhood of the 1% region around OBKV. Since GRASP is a multistart method,
along this process it would have less chance of sticking to local optima.

The same analysis, applied to the other three algorithms, points to less precision. We have to
remember that, by the definition of qual, it approaches avd when the number of successful trial
goes to zero. Then the painting of the two criteria, here, is very similar and indicates that the
stagnation time was consumed with worse solutions than those found by GRASP. The early
stagnation also should mean the influence of local optima.

Considering this last point, VNS is the most susceptible and it presents also the higher values
for avd and qual, showing the worst performance in this test. GRASP is evidently the most
efficient and to decide between TS and ILS to be second and third it is convenient to consider the
somewhat lesser avd and qual values of TS. It should then rank second and ILS third.

This result is the same obtained by the WOM technique (Table 7).

The CVRP boxplots are in Figure A1-3 below.

The analysis is somewhat similar of that made with TSP results. There are nevertheless some
interesting differences. CVRP is a more difficult problem than TSP. This difficulty reflects it-
self in the differences of avd and qual in this case: we can observe that the very sensible qual

Pesquisa Operacional, Vol. 35(3), 2015

�

�

“main” — 2016/1/12 — 17:45 — page 554 — #16
�

�

�

�

�

�

554 METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY

GRASP ILS TS VNS
0

20
40

60
80

GRASP ILS TS VNS

0
20

40
60

80

GRASP ILS TS VNS

0
20

40
60

80

CVRP_qual CVRP_stag
CVRP_avd

GRASP ILS TS VNS
0

20
40

60
80

GRASP ILS TS VNS

0
20

40
60

80

GRASP ILS TS VNS

0
20

40
60

80

CVRP_qual CVRP_stag
CVRP_avd CVRP_qual CVRP_stag
CVRP_avd

Figure A1-3 – Boxplot set for CVRP.

indicates the presence of greater distances related to the OBKV as final results. This is generally
true, with the four algorithms.

By looking at the avd boxplot, GRASP could be considered the better technique, also in this
case: but its qual values show that its output is somewhat unstable. Then the interpretation of its
high stag values – apparently similar to that of TSP – becomes less reliable.

The avd values for the other three algorithms are comparable, but when looking at the qual
boxplot we observe an advantage of TS over ILS and VNS.

The stag values for ILS and TS are comparable, while VNS shows lesser values. This early
stagnation seems, according to qual, to arrive at local optima.

It becomes difficult to classify GRASP in this case. ILS and TS are certainly in a middle
position, and very close, while VNS should rank fourth. Here, the result is quite different from
that shown by WOM (Table 7), which ranks VNS, TS, GRASP and ILS.

The fact of the GRASP to be a multistart algorithm, can also justify their higher number of
outliers that appeared in all algorithm, if it is compared to others. Sometimes, this characteristic
can be interesting during the local search, sometimes not.

Pesquisa Operacional, Vol. 35(3), 2015

