Pesquisa Operacional (2017) 37(3): 487-508

© 2017 Brazilian Operations Research Society
. SOBRAPO Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

(cc) doi: 10.1590/0101-7438.2017.037.03.0487

SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

Daniele Ferone, Paola Festa“, Antonio Napoletano and Tommaso Pastore

Received April 31, 2017 / Accepted October 23, 2017

ABSTRACT. This paper provides an overview of the state-of-the art and the current research trends con-
cerning shortest paths problem on dynamic graphs. The discussion is divided in two main topics: reop-
timization and time-dependent shortest paths. Reoptimization consists in the solution of a sequence of
shortest path problems in which each instance slightly differs from the previous one. The reoptimization
tackles this problem wisely using information stored in an optimal solution previously computed. On the
other hand, shortest path problems on time-dependent graphs are characterized by a weight function which
not only depends upon the arcs but changes in time according to a certain time horizon.

Keywords: Shortest Path, Network Optimization, Network Flows, Structure path constraints, Labelling
methods, Auction Method.

1 INTRODUCTION

One of the most iconic algorithms in combinatorial optimization is due to Dijkstra [21], who
in 1959 devised a label setting algorithm for the shortest path problem (SPP). Since then, the
SPP established itself as one of the most representative problems of operations research. Indeed,
even today, many combinatorial optimization problems (COPs) require the solution of SPP as
sub-task. Some examples of these problems are Maximum-Flow Minimum-Cost Problems [2],
Vehicle Routing Problems [64], and several other variations of the SPP, spanning from problems
on time-dependent graphs [49, 50] to general constrained SPP [25, 57].

Reoptimizing shortest paths on dynamic graphs consists in solving a sequence of shortest path
problems, where each problem differs only slightly from the previous one, because the origin
node has been changed, some arcs have been removed from the graph, or the cost of a subset of
arcs has been modified. Each problem could be simply solved from scratch, independently from
the previous one, by using either a label-correcting or a label-setting shortest path algorithm.
Nevertheless, a clever way to approach it is to design ad hoc algorithms that efficiently use
information resulting from previous computations.

*Corresponding author.
Department of Mathematics and Applications “R. Caccioppoli”, University of Napoli Federico II, Italy.
E-mails: daniele.ferone @unina.it; paola.festa@unina.it; antonio.napoletano2 @unina.it; tommaso.pastore @unina.it



488 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

Another type of dynamic graph is the time-dependent graph, introduced in Cooke & Halsey [13],
where the characteristic cost function w is defined for each edge (i, j), as w;;(¢), where t is a
time variable in a time domain 7'. The value w;; (¢) specifies how much time it takes to travel from
node i to node j, if departing from i at the time ¢. Most of the solution strategies for problems
on dynamic graphs (often called networks) have been adopted to solve instances of shortest path
problems on time-dependent graphs.

In the wholeness of its variations, shortest path problems on dynamic graphs appear in a wide
variety of contexts and application settings, including logistics, telecommunications, transporta-
tion, urban traffic, and transit planning.

The remainder of the paper is organized as follows. In Section 2 the shortest path problems
are formally introduced and the classical approaches to solve them are presented. Sections 3
and 4 analyze the scientific literature of reoptimization and time-dependent graphs, respectively.
Conclusions and final remarks are given in Section 5.

2 MATHEMATICAL FORMULATIONS AND CLASSICAL APPROACHES

2.1 Mathematical Formulation of the Shortest Paths Problem

In this section, the mathematical formulation for all types of shortest path problems is given.
Indeed, SPPs can be classified in three different sub-categories: shortest path point-to-point
(P2P), shortest path tree (SPT), and all pairs shortest paths (APSP).

All these problems rely on the following notation. Let G = (V, A) be a directed weighted graph,
where:

e V=1{1,2,...,n}is aset of nodes;
e AC{(i,j)eV xVl|i,jeV Ai# j}isasetof m arcs;

e w: A — R isa function that assigns a non-negative cost w;; to each arc (i, j) € A.
Furthermore, foreachi =1, ..., n, let

e FS(i) =1{j e V]|, j) e A} be the forward star of node i;

e BS(i) ={j € V|(j, i) € A} be the backward star of node i.

2.2 Shortest path point-to-point problem (P2P)

The problem consists in finding a shortest path P* = (v, vy, ..., vy) from a source node v; = s
to a destination node v, = ¢, with s,¢ € V. Introducing m Boolean decision variables, x;;,
Y (i, j) € A, such that:
1, if (i, j) belongsto P*,
= 0, otherwise,

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 489

the mathematical formulation of the (P2P) problem is the following:

(P2P) z = min Z W;jXij
(i,j)eA
subject to:
(P2P-1) Y oxji— Y xij=bi VieV
jEeBS(@) JEFS()
(P2P-2) xij € {0, 1}, V@, j) €A,
with b; = —1 for i = s, b; = 1 for i = ¢, and b; = 0 otherwise.

2.3 Shortest path tree problem (SPT)

Given a node r € V, named root, the goal of the problem is to find a shortest path from r to
all other nodes i € V, i # r. Defining m Boolean decision variables x;;, ¥V (i, j) € A, the
mathematical formulation of the (SPT) problem is the following:

(SPT) z = min Z W;jXij
(i.j)eA
subject to:
(SPT-1) Y oxji— Y xij=bi, YieV:
jeBS() JEFS()
(SPT-2) xij =0, V(i j)eA.

where by = —n+ 1 for i =r, and, b; =1 for i #r.

2.4 All pairs shortest path problem (APSP)

The aim of this problem is to find all the point-to-point shortest paths between each pair of
nodes i, j € V,i # j.Its mathematical formulation can be easily obtained starting from
the mathematical formulation of the SPT. With few modifications, the following model can be
obtained:

n
(APSP) z = min Z Z wijxlkj

k=1 (i,j)eA
subject to:
(APSP-1) Y xk— Y xf=bf viev.Vkev:
JjEBS(>) JEFS()
(APSP-2) xk >0, Y(i,j) e A, Yk eV,

1y —

where b¥ = —n +1 for i =k, and, b¥ =1 for i # k.

Pesquisa Operacional, Vol. 37(3), 2017



490 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

2.5 Labeling Methods

A first successful attempt to solve the SPP was originally proposed by Ford Jr [28] and Ford Jr &
Fulkerson [29], although the most famous algorithm to solve P2P and SPT is a labeling method
proposed by Dijkstra [21], whose pseudo-code is reported in Figure 1. Let s € V be the source
node in a graph G, to find a shortest path from s to each other v € V, i # s, Dijkstra’s algorithm
maintains and updates for each node v € V:

e dist [v], the distance of v from the source node s;

e pred[v], the predecessor of the node v in the incumbent path from s to v.

In addition, the following sets are used: S and Q, that are the sets of visited and unvisited nodes,
respectively.

The algorithm starts with an initialization phase (lines 2-5), where the vectors pred, dist and
the sets § and Q are initialized. Afterwards, while set Q is nonempty, the algorithm selects an
unvisited node v, relaxes all the edges in FS(v), and insert v in S. The relaxation operation is
described in lines 10-12.

If the weight function w is non-negative, the algorithm always terminates with the correct shortest
path distances stored in dist[], and shortest path tree in pred[]. The following theorem
holds:

Theorem 1. If the cost function w is non-negative, then Dijkstra’s algorithm visits nodes in
non-decreasing order of their distances from the source, and visits each node at most once.

Algorithm 1 — Dijkstra’s algorithm
1: procedure DIJKSTRA(G = (V, A), s)
2 dist([s] :=0;pred([s] :=NULL; § :=0;
3 forallv e V \ {s} do
4 dist[v] :=+o00;pred([v] :=NULL;
5: Q0 <«V

6: while O # ¢ do

7

8

9

u := extract_min(Q);

S:=SU{u};

forallv e FS(u) do
10: ifdist[v] > dist[u] + wy, then
11: dist[v] :=distlu] + wyy;
12: pred[v] =u;

In the case of P2P problem, bidirectional versions of Dijkstra’s algorithm were proposed in [14,
22, 53]. The bidirectional framework is based on the consideration that if s and ¢ are the source
and the destination node, respectively, then it is possible to run the algorithm into two opposite

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 491

directions: the first from node s to ¢, called the forward search, and the latter from ¢ to s, the
backward search. The backward search operates on the reverse graph, obtained from G reversing
the direction of each arc in A. The algorithm terminates when the two paths meet.

Hart et al. [36] proposed another labeling method for SPP: an informed search algorithm called
A*, It refines the Dijkstra’s method, using a best first paradigm, firstly exploring sub-paths which
appear to lead most quickly to the solution.

The estimation of the most promising sub-paths is carried out by means of a potential function
;. Let m; : V — R be a non-negative function, giving an estimate on the distance from each
node v to . The A* search uses a new set L, which contains all the nodes that are relaxed at
least once and whose label is not permanent. It selects a node v € L with the smallest value of
k(v) =d(s, v) + m;(v), where d(s, v) is the shortest distance from s to v.

A potential function 7; is defined to be feasible if d, (u, v) = d(u, v) — n;(u) + m:(v) is non-
negative for each arc (u, v) € A. Goldberg & Harrelson [34] showed that A* search with a
feasible non-negative potential function visits no more nodes than Dijkstra’s algorithm.

In order to define m;, in the Euclidean domain, it is possible to use the canonical Euclidean
distance to establish a lower bound. Such computation is carried out by means of a method based
on the concept of landmarks selection [34] and the triangle inequality.

3 REOPTIMIZATION

Nowadays, in the era of big data and huge networks, there is a rising need of well performing
algorithms, able to handle the massive amount of available information. One of the suitable
approaches to tackle this complexity is to reuse information already computed, in order to reduce
the computational time needed to obtain an optimal solution. In the context of SPP, previous
information can be reused while tackling a problem which differs only slightly from another SPP
previously solved. This occurrence can happen with one of the following changes in the network:

o the origin node has been changed;
o some nodes have been added or removed;
e some arcs have been added or removed;

e some arcs weight have been increased or decreased.

This problem can be addressed as a shortest path reoptimization problem [26], which consists in
solving a sequence of shortest path problems, where the k" problem marginally differs from the
(k — D' one.

In the first case, we say that there was a root change from the (k — 1) problem to the k"
problem, in the remaining cases we say that the graph is dynamic. Moreover, for what concerns
problems on dynamic graphs, they can be classified according to the type of changes that can

Pesquisa Operacional, Vol. 37(3), 2017



492  SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

occur on the network. A dynamic graph is said to be fully dynamic if both insertion and deletion
of either edges or nodes are allowed.

Shortest Path
Reoptimization

The origin node ~ Perturbation
has been changed APSP T 7 7 of the graph

N

Disruption Disruption
of the nodes of the arcs
A \
<4 iy
Ve 7
4 ¥
Some nodes Some arcs Some arcs cost
are added are added are increased
or removed or removed or decreased
adding deleting adding deleting |, increasing decreasing
node node arc arc cost cost

the node must be
connected to the network

: the deletion of an arc
weennd is a particular case
f cost increasing

all arcs in the FS(:) and BS(-) i
of the node must be deleted H

Figure 1 — Reoptimization problems hierarchy.

In Figure 1, we propose a diagram of the interplays among all possible cases of shortest path
reoptimization. The root change reoptimization problem does not admit further sub-cases. For
what concerns dynamic graphs, the problems can be classified in two different branches, de-
pending on whether the changes involve nodes or arcs. The only possible changes involving a

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 493

node are addition or removal. On the other hand, the arcs can be either added/removed or their
cost can be increased/decreased. It is worthy to note that the case of changes involving nodes
implies also arcs insertion or deletion.

Without loss of generality, we can consider the input graph G = (V, A) as a complete graph.
Indeed, if G is not complete, for each pair of nodes i and j, such that (i, j) & A, it can be always
added a dummy arc from i to j with w;; = +o00.

This operation allows the following considerations:

e arc removal in the graph can be seen as a special case of arc cost increasing. If an arc (i, j)
is deleted, then the cost w;; increases to +00.

e Arc insertion can be seen as a special case of arc cost decreasing. If an arc (i, j), must be
inserted, then the cost w;; is decreased from +o0 to the new cost k.

3.1 Root change

The purpose of this paragraph is to show how, in the case of root change for the SPT problem, it
is possible to obtain a well performing algorithm making wise use of the information stored in a
SPT previously computed. Such result relies on some remarkable theoretical properties proven
by Gallo [32], starting from the assumption that a single root shortest path tree problem has been
solved.

Let G = (V, A) be a complete directed graph, and let 7, be a shortest path tree rooted at node r,
i.e., a tree that contains a shortest path from r to each node v € V, v # r. Let s be anode of V,
s # r, and Ts be a SPT rooted at node s.

The following propositions show how the knowledge of 7, provides useful informations on 7.
Let T (h) denote the subtree of 7, which contains node % together with all its descendants, then

Proposition 1. 7, (s) C Ty and d(s, j) =d(r, j) — d(r, s), forany j € T, (s).

Henceforth, the paths contained in the subtree of 7, rooted in s still remain optimal shortest paths
from s to its descendants. This result shows how a wise handling of the old solution is likely to
be the most efficient strategy, since — especially when the new root s is close to » — a consistent
part of the previously optimal tree 7, will remain optimal.

As formerly stated, beyond the theoretical insight given by Proposition 1, the information pro-
vided by 7, can be employed in order to reduce the computational time needed to solve the new
SPT problem, improving the classical Dial’s implementation of Dijkstra’s Algorithm (DDA) [19,
20]. In Dial’s implementation, in fact, one of the most time consuming tasks consists in the iden-
tification of the minimum temporary node cost, due to the high number of comparisons to be
performed. This number of comparisons strongly depends on the maximum weight among the
arcs, Wmax = Max(;, j)es w;j. Propositions 2 and 3 show how to reduce wmax without changing
the sets of feasible and optimal solutions.

Pesquisa Operacional, Vol. 37(3), 2017



494  SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

Let 71, 72, ..., 7, be integer numbers such that

Lij=wij+m —n; >0 V@, j)eA. 1)

Proposition 2. The problem of finding the SPT from s with arc lengths w;; is equivalent to the
problem of finding the SPT with arc lengths l;; given by (1).

Proof. Let P be a generic path from a node & to a node & of G = (V, A), and let W(P) and
L (P) be the lengths of P pertaining to the length functions w and /, respectively. Then, it holds
that
LPy= Y L= Y (wj+m—mr;)=W(P)+ (mx — 7). )
(i,j)eP (i,j)eP
Henceforth, the lengths W (P) and L(P) only differ by a constant depending only on the source
and the destination nodes of the path.

Ultimately, a shortest path tree 7, with respect to the arc length w;; will remain optimal with arc
length [;;. O

A straightforward consequence of Proposition 2 is that lengths w;; can be replaced by lengths
l;j, and once the new shortest length d'(s, h), h € V,is found, the value d(s, h) can be obtained
as follows:

d(s,h) =d'(s, h) — g + 7p. 3)

The results outlined above suggest that an appropriate choice of the integers r; might decrease
the distance from the source to the farthest node, and thus also the computation time required by
DDA. Indeed, when selecting 7r; = d(s, j) one has d'(s, j) = 0, for all j € V, thus obtaining
the validity of the following proposition:

Proposition 3. Let be wj = d(r, j), for all j € T,, and let be the arc lengths defined as in (1).
Let h be one of the farthest node from the origin s, then:

d'(s,h) =d(@r,s)+d(s,r). %)

From Proposition 3 it follows that if nodes r and s are close enough, the computational effort
required by DDA can be strongly reduced by a cost modification of type (1), with the vector =
givenby ; =d(r, j),forall j € T,.

As reported in Gallo [32], in terms of Linear Programming, such new costs correspond to the
reduced costs relative to a dual feasible, but primal unfeasible, basis. This interpretation of the
vector (71, 72, ..., 7,) as a dual feasible solution for the Shortest Path Problem is due to Bazaraa
& Langley [6].

Deriving a cost reduction in a similar fashion, in 1982 Gallo & Pallottino [33] devised an algo-
rithm which outperforms both the one proposed in [32] and classical from scratch optimization

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 495

techniques. This algorithm refines the classical label setting paradigm by partitioning the nodes
of the graph in three distinct sets: NT, NP, and N Q. As in a classical label setting algorithm,
NT and N P are the set of nodes whose labels are temporary and permanent, respectively. While,
the nodes in N Q are those nodes such that d(s, v)=d(s, p(v)). This property ensures that such
nodes can be inserted straightaway in N P without further comparisons, thus speeding up the ex-
ecution of the algorithm. In [33], it has been noted how in any reoptimization problem instances
a large share of nodes of V is likely to be found in N Q.

The observations made by Gallo are the starting point of the work of Florian et al. [27]: the
shortest path tree rooted at node r is an optimal solution to a corresponding linear program, but
when a successive new source s is considered, the previous tree is a dual feasible and primal
infeasible solution for the new problem. The approach proposed by Florian et al. [27] consists in
the adaptation of the dual simplex method to compute the shortest paths from the new root s. It
is shown in Florian et al. [27] that the proposed algorithm runs at most in O (n?).

In order to evaluate the performances of their method, the authors tested their code on graphs
representing the regional roads of the cities of Vancouver and Winnipeg, as in Gallo [32].

The experimental evaluations proposed in these works show how Gallo [32] is slightly better
performing than Dijkstra’s from scratch technique, meanwhile Gallo & Pallottino [33] further
improves the previous results. Although, among all, the algorithm proposed by Florian et al. [27]
appears to outperform the other competitive methods.

In Ferone et al. [26], a novel dual approach based on an auction framework [8] is presented.
Given a shortest paths tree 7., and a new source s, all the arcs in BS(s) are deleted and the nodes
of the tree T, (s) are included in a priority queue Q, containing the nodes ordered according to the
reduced costs in decreasing order. Q is analyzed with a strongly polynomial auction algorithm
[10]. During the extraction of the nodes from Q, when the algorithm reaches a node j € T;, it
moves the sub-tree T, (j) from T to Ty, and its nodes are included in Q. The algorithm terminates
when Q becomes empty.

3.2 Arc Cost Change

Given a shortest paths tree, 7, the problem of arc cost change consists in recalculating tree 7,
when a new weight is assigned to one or more (batch updates) arcs. As extensively discussed in
Gallo [32], the results of Theorem 4 can be used to derive algorithms that reoptimize the solution
of a SPP after a change of the cost of a single arc.

Theorem 4 (Gallo [32]). Let T, be a shortest paths tree, w;v be the new cost of the arc (u, v) €
A, and S(u) = {v € V|d(r,v) < d(r,u)}. Denoting with T! the new shortest paths tree, the

following properties hold:

(i) if w,, < wyy and (u, v) € Ty, then

Pesquisa Operacional, Vol. 37(3), 2017



496 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

T, (v) € T/ (v),
jehw) =drj)=dr j)— (wuv - w;v)’
JESW) =d(r,j)=d(r, j);

(ii) if w), < wyy and (u, v) ¢ Ty, then

T, (v) € T/ (v),
JESw) =d(r,j)=d(r, j);

(iii) if w),, > wyy and (u, v) € T, then

J¢Sw) =dr j)=dr j);

(iv) if w), > wyy and (u, v) ¢ T;, then

T, (v) = T (v),
d(r,j)=d(r,j) VYjeV.

In other words, a decrease in the cost of the arc (u, v) (cases (i) and (ii)) implies that the sub-tree
T, (v) remains part of the optimal solution and the optimal distances of its nodes accordingly
decreased where necessary. Case (iii) tackles the cost increase when (u, v) is part of the solution,
stating that the optimal distances are preserved for each j ¢ S(u). Finally, in case (iv) the entire
solution remains optimal.

Pallottino & Scutella [55] assume that a shortest paths tree 7, has been determined and address
the problem of computing the shortest paths tree when new costs are given to a subset K of
the arcs of G, either lower or higher than the old ones. The reoptimization framework used is
based on the determination of a suitable decomposition of the arc set K into disjoint subsets,
and performs subsequent phases, where each phase reoptimizes with respect to the change of the
arc costs of one subset of such decomposition. Pallottino & Scutella [55] also compute the time
complexity of the algorithm as a function of both the input size and the overall cost perturbations.
Nevertheless, in the same work it has not been proposed an implementation of any kind for this
framework, henceforth numerical results are not available.

One of the most important works in shortest path reoptimization in case of arc cost changes is
Ramalingam & Reps [58], that proposes the so called DynamicSWSF-FP algorithm. At any time,
it is defined

rhs(v) = xergisrzv) {de +wi, ).

where d, is the distance of x from root r in the current intermediate tree 7. In the proposed
algorithm, each node is processed differently according to whether rhs(v) is greater than (un-
derconsistent node), equal to (consistent node), or less than (overconsistent node) cfv. The algo-
rithm processes inconsistent nodes, opportunely stored in a heap H, in a nondecreasing order of

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 497

key values, where key(v) = min{d,, rhs(v)}. Let q be the inconsistent node currently selected.
If it is underconsistent, then the algorithm sets dq = +o00; otherwise, it sets dq = key(q), its
forward star is relaxed, and ¢ is removed from the heap. The algorithm terminates when the set
of inconsistent nodes is empty.

Buriol et al. [9] empirically showed how the algorithm devised by Ramalingam and Reps out-
performs an optimization from scratch by means of Dijkstra’s algorithm. Furthermore, they pro-
posed a new technique to improve computational times of the approach described above. This
technique is called Reduced-Heap, because it reduces the number of nodes of Q (inconsistent
nodes) to be inserted in the heap H.

Buriol et al. [9] use the reverse graph representation, so a shortest path tree 7;- is obtained as the
tree of shortest paths from every node to the single target r. Let a = (u, v) be the arc whose cost
is increased by an amount A. The effective increase V of the node distance d,, is then computed,
and the distances of nodes x € Q are updated to d, + V. Afterwards, the only nodes of Q to be
inserted in the heap H are the nodes {x € Q|3y € FS(x): dy > dy + wyy}, which is the set of
nodes x for which there exists a path shorter than d, + V. The method can be applied to the case
of a single arc cost decrease in a very similar and straightforward way. This permits, in many
cases, to reduce the computational time of the re-optimization algorithm.

While Buriol et al. [9]’s algorithm is able to manage the cost update of a single arc, Chan &
Yang [12] proposed a comparison between several algorithms devised to handle multiple arc cost
updates. The first algorithm is a dynamic version of the classic Dijkstra’s algorithm. Given the
original shortest paths tree 7}, after the arc cost changes occur, all the updated arcs are removed
from T, and the set N, the set of nodes that are not reachable anymore from the root r, is
computed. The nodes that have an arc connecting to a node in V \ N are added in an heap H and
a Dijkstra-like algorithm is used to update labels.

The main accomplishment made by Chan & Yang [12] is the MFP algorithm. It is an extension
of algorithm by Ramalingam & Reps [58] in order to handle optimization in fully dynamic net-
works. The algorithm has been improved to avoid unnecessary rhs value recomputations and
also simplifying computation when it is possible. When an overconsistent node v is extracted,
for each child g, MFP recomputes rhsA(q) = min{rhsA(q), cfv + w{,q}. When an underconsistent
node u is extracted, M F P reevaluates the rhs values only on children where rhs(v) = d; +w),

Another approach to handle batch updates is proposed by D’Andrea et al. [23]. They use the
concept of accounting function to estimate and potentially reduce the computational complexity
of the reoptimization algorithm. An accounting function f for G is a function that, for each arc
(x,y) € A, determines either node x or node y as the owner of the arc; f is k-bounded, if & is
the maximum over all nodes x of the cardinality of the set of arcs owned by x.

Moreover, if § is a batch of arc update operations, Q(8) is defined as the set of affected nodes
caused by the execution of all the operations in §, simultaneously. If the input graph admits
a k-bounded accounting function, then the algorithms proposed by D’Andrea et al. have the
following theoretical properties:

Pesquisa Operacional, Vol. 37(3), 2017



498 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

1. the algorithm is able to process only a batch of arc deletions and weight increases. Its
worst case time complexity is O((|8| + |Q(B)]| - k) - logn);

2. the function that solves the dynamic shortest path of only arc insertion and arc cost de-
crease has a time complexity of O(|8| + |Q(B)| - max{k, k*} - logn) in the worst case,
where k* is the minimum integer such that a k*-bounded accounting function exists in the
graph after B;

3. finally, the combined method to solve a mixed sequence B = (81, ..., B;) of incremental
and decremental batches is shown to require O ((|B| + |Q| - k) -logn) overall time, where

|B| = Zﬁ;eB |Bi| and Q = Zﬁ;eB |Q(B)I.

Narvéez et al. [51] establish a framework to manage a variety of well known strategies for the
dynamic SPT. Unlike previous work bas:w ed on Dijkstra’s algorithm only, the proposed frame-
work also yields the dynamic version of Bellman-Ford [7, 28] and D’Esopo-Pape [56] ones.
They consider both arc cost increasing and arc cost decreasing reoptimization case, but the up-
date affects only one arc. In [52], the same authors provide an extension which allows to manage
the arc cost change in the case of multiple updates. Although in practice it would seem a very
efficient approach, Chan & Yang [12] proved that it is not correct in some case of multiple arc
cost increases.

Thomas & White [63] proposed a mathematical model for the problem named “dynamic shortest
path with anticipation”. It frequently occurs on road networks, where some arcs are congested
due to extraordinary events (i.e., car accidents), and a driver can choose to change its route to
destination. Nevertheless, if the time to solve the congestion is known, it can be preferable to
remain on the same road.

Nannicini et al. [48] proposed a Polynomial-Time Approximation Scheme (PTAS) heuristic for
the P2P on dynamic road networks. The algorithm is based on Dijkstra-type searches performed
on clusters nodes. The clusters are defined in order to give a bound on the solution performance
and to speed up the search to be practically useful within the given time constraints.

Tretyakov et al. [65] try to tackle the SPT reoptimization in the fully dynamic context proposing
an approximation method based on landmarks estimation. They justified this approach arguing
that the classical exact method are unable to efficiently address instances based on very large
graph representing, for example, social networks with hundreds of millions of users and billions
of connections. Two improvements to existing landmark-based estimation methods for undi-
rected graph are described. The first improvement is based on the maintaining a shortest paths
tree to store the paths between each landmark and every node in the graph, while the second
adopts a greedy approach to select the landmarks which provide the best coverage of all shortest
paths in a random sample of vertex pairs.

Hong et al. [39] proposed a disk-based approach to discover shortest paths over large dynamic
graphs. The disk-based approach divides a large graph into memory-sized subgraphs and loads
them into memory to partial processing. They used a relational database (RDB) to maintain an

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 499

index table that stores the pre-computed shortest segments with distances shorter than a given
threshold. This table is used to compute the complete shortest paths using several relational
operations. When an arc cost change occurs, only the shortest segments involved in the index
table are recomputed.

Apart for what described for the SPT, the reoptimization has been considered also for the All
Fairs Shortest Paths (APSP), whose goal is to find the shortest paths between all pairs of nodes
in a graph G = (V, A). There are several algorithms that solve the static version of this problem.
The algorithm by Fredman & Tarjan (1987) using Fibonacci heaps has a running time of O (mn+
n’logn), but the best asymptotic bound has been obtained by Takaoka [62], whose algorithm

solves APSP in O(n>,/loglogn/logn).

In the fully dynamic APSP, we wish to maintain a directed graph G = (V, A) with real-valued
arc costs under an intermixed sequence of Update(x, y, w’) operations, which modify the cost
of arc (x, y) to the real value w’.

The first dynamic algorithm for handling all pairs shortest paths in a graph was presented by
King [45], with the constraint that all costs are positive integers and bounded by a value b.
Initially, they proved that any shortest paths tree, where the length of each path is at most §, can
be maintained in time O (m§), where m is the cardinality of the arcs set, during a sequence of
arbitrary number of arc deletions. While, still considering arc deletions only, all pairs shortest
paths can be maintained with a forest of n shortest paths trees of depth nb. Finally, they showed
how to maintain all pairs shortest paths both in case of arc deletion and insertion, where the
insertion/deletion is allowed only for arcs with maximum weight 6.

In Demetrescu & Italiano [18], the authors use the equivalence between APSP and matrix mul-
tiplication on the {min, +} semiring [1]. Assuming that each arc can assume at most S different
real values (each arc can have a different set of real values), they use several data structures to
handle both decreasing costs of arcs incident on a single node i, or increasing costs of any arc

of the graph. Any Update(x, y, w’) operation can be supported in O (n>>,/S log® n) amortized

time. If only decreasing operations are performed in an operation sequence of length ® (n2), the
amortized cost per update is O(S - nlog’ n).

4 SHORTEST PATHS ON TIME-DEPENDENT NETWORKS

While reoptimization tries to handle sudden and unpredictable changes in the graph, in shortest
path problems on time-dependent networks (TDSPP), arc costs are known beforehand and given
as a function of time. The growing interest in time-dependent SPP shown in literature can be
addressed to the key role that these problems play in logistics, due to their high suitability to
model congestion and time delay in transit planning.

One of the early works on the subject is due to Cooke & Halsey [13], who proposed an iter-
ative scheme as extension of Bellman’s principle of optimality [7] for the TDSPP, presenting
an evaluation of the theoretical computational complexity, although not actually reporting any

Pesquisa Operacional, Vol. 37(3), 2017



500 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

computational results. Few years later, Dreyfus [22] extended Dijkstra’s algorithm to the case
of time-dependent scenarios, but the use of this technique is restricted to graph G = (V, A)
showing the FIFO property. The FIFO property says that, given (i, j) € A, if two paths X and Y
use the arc (i, j) and X leaves i at the time " and Y leaves i at the time t”/, with T’ < 7", then
Y cannot reach j before X. Orda & Rom [54] proved that the TDSPP is NP-hard in non-FIFO
networks. On the contrary, the problem appears to be polynomially solvable when G shows the
FIFO property, as proved in Kaufman & Smith [44].

Ziliaskopoulos & Mahmassani [67] implemented an algorithm that can be assimilated to a static
label correcting technique, once again based on the Bellman’s principle of optimality. In their
algorithm, the path is calculated starting from the destination node operating backward, and
uses the double-ended queue list technique [2] to reduce the number of label corrections. Their
approach can handle graph as large street in urban transportation networks, where in the peak
period the time costs are discretized into small intervals. Moreover, this technique can be used
on graphs which do not present the FIFO property, being thus suitable to the solution of problems
arising in contexts different from transportation planning, such as equipment replacement policy,
capacity planning and communication networks.

An algorithm with excellent performances in case of time-dependent scenarios is the SHARC-
routing (Shortcut+ArcFlags) algorithm: a fast and robust approach for unidirectional routing
in large networks. This method was proposed by Bauer & Delling [4] and can be considered
an adaptation of the work of Sanders & Schultes [59] to the techniques described in Lauther
[46], Mohring et al. [47], and Hilger et al. [37]. This algorithm is made up of two phases: a
prepocessing phase and an arc-flags phase. In the former, the technique iteratively constructs a
contraction-based hierarchy, and subsequently, in the arc-flags phase, it automatically sets arc-
flags for arcs removed during contraction.

In Nannicini et al. [49], a novel approach based on A* with landmarks (ALT) is described for
the computation of P2P on time-dependent road networks. It is defined also an interval of time
instants T, a departure time 79 € T, in order to redefine the cost function as wl tAXT —>
R*, and with the goal to find a minimum time-dependent cost y,(p), for a path p = (s =

vy, ..., V¢ = t), defined recursively:
Yrou1, v2) = w]  (10); 5)
y‘[()(l“? cee Ui) = wz);—lvi (TO + y‘[()(l“’ ) Ui—])); (6)

fori =2, ..., k. Where A is alower bound function, such that V(i, j) € A, andt € T, A(i, j) <
w; j (1), and A(p) = 25:11 A(v;, vi+1). This algorithm is based on the A* search, in particular
on the time-dependent A* from the source using a set of nodes defined by a time-independent
A* from the target. The forward search is performed on G, while the backward one is performed
on Gy.

Delling & Wagner [16] adapted the algorithm by Goldberg & Harrelson [34] to handle time-
dependent graphs. They show that the landmarks found in the pre-processing phase still produce

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 501

correct results if the costs of the arcs do not drop below their initial value. Therefore no updates
on the pre-processing are required in presence of small changes.

Inherently to the A* search on time-dependent road networks, some relevant strategies were
developed in Chabini & Lan [11], Goldberg & Harrelson [34], Kanoulas et al. [43], Huang et al.
[41] and [49]. The basic idea of this technique was a starting point for several subsequent works,
see Batz et al. [3] and Delling & Nannicini [15] for example. Moreover, Nannicini et al. [50]
present an further elaboration, which can be considered the first attempt to tackle the TDSPP in
a bidirectional fashion.

It is well known that in the solution of the SPP the Dijkstra’s framework proceeds visiting nodes
in circular areas of increasing size, and for this reason should be under-performing according
to the computational time in applications with huge and dense networks. In this regards, in the
last decades more speed-ups techniques of this framework have been presented. Accordingly to
Holzer et al. [38], these can be classified in four different categories.

Goal directed search techniques: where the cost of the arc, linked to the nodes whose proba-
bility of belonging to the shortest path is lower, are increased. The aforementioned A* star
search belongs to this category.

Bidirectional search: a second search which starts simultaneously from the destination node is
carried over. Approaches of this type, previously described, are those proposed in Ahuja
et al. [2] and Nannicini et al. [50].

Bounding boxes: it is adopted a criterion of selection of nodes set. If a group of nodes can be
all inserted in a shortest path then the set is considered, otherwise the set is discarded. This
strategy has been used in Ertl [24], Wagner & Willhalm [66], Gutman [35], Lauther [46]
and Fu et al. [31].

Multi-level approach: introduced by Schulz et al. [60], they are based on the overlay graph
concept. Starting from a graph G = (V, A), amulti-level graph M is computed as follows:
A is extended by multiple levels of arcs, and for each pair of nodes s, € V exists a
subgraph of M smaller than G such that the shortest distance from s to ¢ in the sub-graph
is equal to the shortest distance from s to ¢ in G. Some works which adopt this approach
were presented by Bauer et al. [S], Delling et al. [17] and Holzer et al. [38].

Hu & Chiu [40] proposed an algorithm to find K shortest paths on time-dependent graphs. The
K paths should not be highly overlapped and their travel times should be comparable. If these
two conditions hold, a traveler can choose one of the proposed paths taking in account its per-
sonal constraints. The algorithm iteratively finds the K shortest paths, updating opportunely the
network and the arcs costs between two consequent search queries.

Sun et al. [61] proposed two algorithms. The first algorithm is a Heap-based Bellman-Ford al-
gorithm to solve the Query_FiST problem, where a driver starting at a given time wants to reach

Pesquisa Operacional, Vol. 37(3), 2017



502 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

the destination in the smallest possible time. The second algorithm is an Extended Bellman-Ford
algorithm that solves the Query_BeST, choosing the best starting time to avoid congestion. The
experimental results show that their algorithms outperform older approaches and are able to solve
in few seconds instances with more than 10000 nodes and 20000 arcs.

A new interesting research branch for shortest path problems makes use of neural networks.
Huang et al. [42] proposed an approach that models the time dependent graph as a neural network
and use the auto-waves generated from the neurons to find the shortest paths.

5 CONCLUSIONS

In this survey, starting from the origin till the current state of the art, two different kinds of
shortest path problem on dynamic networks have been analyzed: reoptimization of shortest paths
and time-dependent SPP. The onset of these problems can be traced back respectively to the
works of Gallo [32] and Cooke & Halsey [13], both inspired by the seminal algorithm of Dijkstra
[21] and Ford Jr [28] for the shortest path problem. In Tables 1, 2, and 3 the most relevant works
are listed, respectively surveyed in this paper for root change, arc cost change and time dependent
shortest path. More specifically, each table reports the problem in question, the reference, the
computational complexity of the proposed algorithm (if specified), and the year of publication.
For the three main problem categories, {P2P, SPT and APSP}, the following notations have been
adopted: a™ and a™ are respectively used to indicate cost increase and decrease for a single arc,
while A* and A~ are similarly used for batch updates, addressing respectively cost increase and
decrease for a whole a set of arcs.

Table 1 — Root change chronology. SPT indicates shortest path tree reoptimization.

Problem Reference Complexity Year
SPT Gallo [32] o(m 4+ n - dmax) 1980
dmax 18 an upper bound on the length of

the maximum path.
SPT Florian et al. [27] max{O(n2 -logk), O(m -logk)} 1981
k is the largest number of nodes with
temporary labels.
SPT Gallo & Pallottino [33] O (n?) 1982
SPT Ferone et al. [26] O(5 - (n+1)-logn) 2016

Reoptimization of shortest paths tackles a polynomially solvable combinatorial optimization
problem in a context in which a previous optimal solution to a closely related instance is known.
Most of the scientific effort has been devoted to the design of optimal techniques, in the attempt
to devise increasingly performing implementations of algorithms with a common semantic core.
It is from this perspective that in future works it might be of great interest an in-depth study of
innovative data structures, as major step in the progress towards this goal.

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE

503

Table 2 — Arc cost change chronology.

Problem Reference

Complexity

Year

SPT {at,a™})
P2P {AT, A7)

Gallo [32]
Ramalingam & Reps [58]
APSP {At, A~}  King [45]

SPT {at,a"} Narvéez et al. [51]

SPT {AT, A7) Narvaez et al. [52]

SPT {AT, A7} Pallottino & Scutella [55]

P2P {AT, A7) Thomas & White [63]

SPT {at,a™}
P2P {AT, A7)

Buriol et al. [9]
Nannicini et al. [48]

SPT {AT, A7}
SPT {AT, A7)

Chan & Yang [12]
Tretyakov et al. [65]

P2P {At, A7} D’ Andrea et al. [23]

P2P (A1, A7) Hong et al. [39]

o(m +n - dmax)
01181/ log|18]])?

8 is a measure of the change in the input and output.

0(n?> /b -logn)

b is an upper bound on the weight of the arcs.
)

complexity concerns Bellman-Ford version,

84 denote the minimum number of nodes

that must change their distance or parent
attributes (or both).

O (Ge - In(8y))

with binary heap, where §, and §, are the
maximum number of key decrements and the
maximum size of the heap, respectively.

O(hm + min{hnlogn, Cp} + min{nlogn, Cy, kn}
Let K and K~ the set of the edge incremented
and decremented, then Cp, and C; measure

the cost perturbation due to the arcs in K+

and K, k < min{n — n,, Cg}, where

ny is the dimension of the first fragment

of the new solution, while /4 is the number

of primal phases of the algorithm.

o@ehb

L= |A1 |, where A! € Ais a set of observed arcs.
see Ramalingam & Reps (1996)

O(m +n -logn)

with Fibonacci’s heap

complexity for each unit operation

oW?* - D?)

k is the number of landmarks, D is the diameter
of the graph.

O((IBI +1A(G, B)| - k) -logn)

let B be a batch of updates operations, | B| =

Y pien |Bil, IA(G, B)| is the sum overall
batches of B of the number of vertices affected
by each of these batches, and k = O W)
O(m + moyz - min)

mjy is the average value of the in degree, and
moyy the average value of the out degree.

1980
1996

1999

2000

2001

2003

2007

2008
2008

2009
2011

2013

2017

Pesquisa Operacional, Vol. 37(3), 2017



504 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

Table 3 — Time dependent chronology. Since the arcs have a time-depend cost in this case are considered

both the case of cost increasing and cost decreasing.

Problem Reference Complexity Year
APSP Cooke & Halsey [13] om’ - M) 1966
travel time on the arcs are defined in multiple
of positive unit of time § for every time step
of the discrete scale Sy; = {fg, t9 + 6, 19 +
268,...,t + M3}, M is chosen so that the
travel times are defined for any ¢t € Sy,
APSP Dreyfus [22] o - M) 1969
APSP Orda & Rom [54] ofm - n) 1990
of expresses a functional complexity: an
algorithm operating on functions has a func-
tional complexity a(¢), denoted 0/ (a(q)),
if there is a constant k > 0 such that for an
input of dimension g the number of simple
function operations performed by the algo-
rithm is bounded by ka(q).
APSP Kaufman & Smith [44] 0m?) 1993
considering a consistency condition.
Otherwise, see Cooke & Halsey (1966).
APSP Ziliaskopoulos & Mahmassani [67]  O(n - M - d'-%) 1993
d is the average in degree of a node in the
graph.
APSP Demetrescu & Italiano [18] O(S -n*3 - log>n) 2006
S is a bound on the different real values that
each arc can assume.
P2P, SPT Delling & Wagner [16] — 2007
P2P Nannicini et al. [49] — 2008
p2p Batz et al. [3] O(| fuvl + | fowl) 2009
Suw (@) = (t+ fuy(?)) forapath (u, v, w). In
general, f(¢) is a weight function, associated
to the arc, that specifies the travel time at the
endpoint of the arc when the arc is entered at
time 7.
P2P Bauer & Delling [4] — 2009
P2P Nannicini et al. [50] — 2011
K-SPP Hu & Chiu [40] — 2015
(K-shortest path)
P2P Huang et al. [42] O(c- Y11 z) 2017
¢ is a constant value, z; is the time win-
dow considered for each neuron. The work
presents a time-dependent neural network.
APSP Sun et al. [61] O(k - m -log(n)) 2017

k is a constant value.

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 505

Time-dependent SPP are shortest path problems whose arc cost function depends on both the

arcs and the current instant belonging to a given time horizon. This line of research is of high

interest given its suitability to model the occurrence of congestion in real transit planning scenar-

ios. Asindicated in the scientific literature, when the instance does not exhibit the FIFO property,

the time-dependent SPP is NP-hard. Henceforth, in the near future it can be particularly appeal-

ing to explore the possibility of the solution of such intractable instances, and preferably those

arising from case studies, by means of heuristic and/or meta-heuristic techniques.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

AHO A, HOPCROFT J & ULLMAN J. 1974. The design and analysis of computer algorithms.
Addison-Wesley series in computer science and information processing. Addison-Wesley Pub. Co.

AHUJA RK, MAGNANTITL & ORLIN JB. 1993. Network flows: theory, algorithms & applications.

BATZ GV, DELLING D, SANDERS P & VETTER C. 2009. Time-dependent contraction hierarchies.
In: Proceedings of the Meeting on Algorithm Engineering & Expermiments, pages 97-105. Society
for Industrial and Applied Mathematics.

BAUER R & DELLING D. 2009. Sharc: Fast and robust unidirectional routing. Journal of Experi-
mental Algorithmics (JEA), 14(4).

BAUER R, DELLING D, SANDERS P, SCHIEFERDECKER D, SCHULTES D & WAGNER D. 2008.
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 5038 LNCS, pages 303-318.

BAZARAAM & LANGLEY R. 1974. A dual shortest path algorithm. SIAM Journal on Applied Math-
ematics, 26(3): 496-501.

BELLMAN R. 1958. On a routing problem. Quarterly of Applied Mathematics, 16: 87-90.

BERTSEKAS DP. 1991. An auction algorithm for shortest paths. SIAM Journal on Optimization, 1(4):
425-447.

BURIOL LS, RESENDE MG & THORUP M. 2008. Speeding up dynamic shortest-path algorithms.
INFORMS Journal on Computing, 20(2): 191-204.

CERULLI R, FESTA P & RAICONI G. 2003. Shortest path auction algorithm without contractions
using virtual source concept. Computational Optimization and Applications, 26(2): 191-208.

CHABINI I & LAN S. 2002. Adaptations of the a* algorithm for the computation of fastest paths
in deterministic discrete-time dynamic networks. IEEE Transactions on intelligent transportation
systems, 3(1): 60-74.

CHAN EP & YANG Y. 2009. Shortest path tree computation in dynamic graphs. IEEE Transactions
on Computers, 58(4): 541-557.

CoOOKE KL & HALSEY E. 1966. The shortest route through a network with time-dependent inter-
nodal transit times. Journal of mathematical analysis and applications, 14(3): 493-498.

DANTZIG G. 1963. Linear Programming and Extensions. Princeton University Press.

Pesquisa Operacional, Vol. 37(3), 2017



506 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
(30]

[31]

(32]

[33]

DELLING D & NANNICINI G. 2008. Bidirectional core-based routing in dynamic time-dependent
road networks. In: International Symposium on Algorithms and Computation, pages 812-823.
Springer.

DELLING D & WAGNER D. 2007. Landmark-based routing in dynamic graphs. In: International
Workshop on Experimental and Efficient Algorithms, pages 52—65. Springer.

DELLING D, HOLZER M, MULLER K, SCHULZ F & WAGNER D. 2009. High-performance multi-
level routing. American Mathematical Society Providence, RI, 74: 73-92.

DEMETRESCU C & ITALIANO GF. 2006. Fully dynamic all pairs shortest paths with real edge
weights. Journal of Computer and System Sciences, 72(5): 813-837.

DIAL R, GLOVER F, KARNEY D & KLINGMAN D. 1979. A computational analysis of alternative
algorithms and labeling techniques for finding shortest path trees. Networks, 9(3): 215-248.

DIAL RB. 1969. Algorithm 360: Shortest-path forest with topological ordering [h]. Communications
of the ACM, 12(11): 632-633.

DUIKSTRA EW. 1959. A note on two problems in connexion with graphs. Numerische mathematik,
1(1): 269-271.

DREYFUS SE. 1969. An appraisal of some shortest-path algorithms. Operations research, 17(3):
395-412.

D’ANDREA A, D’EMIDIO M, FRIGIONI D, LEUCCI S & PROIETTI G. 2013. Dynamically main-
taining shortest path trees under batches of updates. In: International Colloquium on Structural
Information and Communication Complexity, pages 286-297. Springer.

ERTL G. 1998. Shortest path calculation in large road networks. OR Spectrum, 20(1): 15-20.

FERONE D, FESTA P, GUERRIERO F & LAGANA D. 2016. The constrained shortest path tour
problem. Computers & Operations Research,74: 64-77.

FERONE D, FESTA P, NAPOLETANO A & PASTORE T. 2016. Reoptimizing shortest paths: From
state of the art to new recent perspectives. In: Transparent Optical Networks (ICTON), 2016 18th
International Conference on, pages 1-5. IEEE.

FLORIAN M, NGUYEN S & PALLOTTINO S. 1981. A dual simplex algorithm for finding all shortest
paths. Networks, 11(4): 367-378.

FORD JR LR. 1956. Network flow theory. Technical report, DTIC Document.
FORD JR LR & FULKERSON DR. 2015. Flows in networks. Princeton university press.

FREDMAN ML & TARJAN RE. 1987. Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. J. ACM, 34(3): 596-615, July.

FU L, SUND & RILETT LR. 2006. Heuristic shortest path algorithms for transportation applications:
state of the art. Computers & Operations Research,33(11): 3324-3343.

GALLO G. 1980. Reoptimization procedures in shortest path problem. Rivista di matematica per le

scienze economiche e sociali, 3(1): 3—-13.

GALLO G & PALLOTTINO S. 1982. A new algorithm to find the shortest paths between all pairs of
nodes. Discrete Applied Mathematics, 4(1): 23-35.

Pesquisa Operacional, Vol. 37(3), 2017



DANIELE FERONE, PAOLA FESTA, ANTONIO NAPOLETANO and TOMMASO PASTORE 507

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

GOLDBERG AV & HARRELSON C. 2005. Computing the shortest path: A* search meets graph
theory, pages 156-165.

GUTMAN RJ. 2004. Reach-based routing: A new approach to shortest path algorithms optimized for
road networks. ALENEX/ANALC, 4: 100-111.

HART PE, NILSSON NJ & RAPHAEL B. 1968. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics,4(2): 100-107.

HILGER M, KOHLER E, MOHRING RH & SCHILLING H. 2009. Fast point-to-point shortest path
computations with arc-flags. The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
74: 41-72.

HOLZER M, SCHULZ F & WAGNER D. 2009. Engineering multilevel overlay graphs for shortest-
path queries. Journal of Experimental Algorithmics (JEA), 13: 5.

HONG J, PARK K, HAN Y, RASEL MK, VonvoU D & LEE Y-K. 2017. Disk-based shortest path
discovery using distance index over large dynamic graphs. Information Sciences, 382-383: 201-215.

Hu X & CHIU Y-C. 2015. A Constrained Time-Dependent K Shortest Paths Algorithm Addressing
Overlap and Travel Time Deviation. International Journal of Transportation Science and Technology,
4(4): 371-394.

HUANG B, WU Q & ZHAN F. 2007. A shortest path algorithm with novel heuristics for dynamic

transportation networks. International Journal of Geographical Information Science, 21(6): 625—
644.

HUANG W, YAN C, WANG J & WANG W. 2017. A time-delay neural network for solving time-
dependent shortest path problem. Neural Networks,90: 21-28. ISSN 0893-6080.

KANOULASE, DU Y, XIA T & ZHANG D. 2006. Finding fastest paths on a road network with speed
patterns. In: Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International Conference
on, pages 10-10. IEEE.

KAUFMAN DE & SMITH RL. 1993. Fastest paths in time-dependent networks for intelligent vehicle-
highway systems application. Journal of Intelligent Transportation Systems, 1(1): 1-11.

KING V. 1999. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive clo-
sure in digraphs. In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages 81—
89. IEEE.

LAUTHER U. 2004. An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. Geoinformation und Mobilitit-von der Forschung zur praktischen
Anwendung, 22: 219-230.

MOHRING RH, SCHILLING H, SCHUTZ B, WAGNER D & WILLHALM T. 2007. Partitioning graphs
to speedup dijkstra’s algorithm. Journal of Experimental Algorithmics (JEA), 11: 2-8.

NANNICINI G, BAPTISTE P, KROB D & LIBERTI L. 2008. Fast paths in dynamic road networks.
Proceedings of ROADEF, 8: 1-14.

NANNICINI G, DELLING D, LIBERTI L & SCHULTES D. 2008. Bidirectional A* search for time-
dependent fast paths. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5038 LNCS, pages 334-346.

Pesquisa Operacional, Vol. 37(3), 2017



508 SHORTEST PATHS ON DYNAMIC GRAPHS: A SURVEY

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

NANNICINI G, DELLING D, SCHULTES D & LIBERTI L. 2012. Bidirectional a* search on time-
dependent road networks. Networks, 59(2): 240-251.

NARVAEZP, S1U K-Y & TZENG H-Y. 2000. New dynamic algorithms for shortest path tree compu-
tation. IEEE/ACM Transactions on Networking (TON), 8(6): 734-746.

NARVAEZ P, S1U K-Y & TZENG H-Y. 2001. New dynamic spt algorithm based on a ball-and-string
model. IEEE/ACM Transactions on Networking (TON), 9(6): 706-718.

NICHOLSON TAJ. 1966. Finding the shortest route between two points in a network. The computer
Journal, 9(3): 275-280.

ORDA A & ROM R. 1990. Shortest-path and minimum-delay algorithms in networks with time-
dependent edge-length. Journal of the ACM, 37(3): 607-625.

PALLOTTINO S & SCUTELLA MG. 2003. A new algorithm for reoptimizing shortest paths when the
arc costs change. Operations Research Letters, 31(2): 149—-160, mar 2003.

PAPE U. 1974. Implementation and efficiency of moore-algorithms for the shortest route problem.
Mathematical Programming, 7(1): 212-222.

PUGLIESE LDP & GUERRIERO F. 2013. A survey of resource constrained shortest path problems:
Exact solution approaches. Networks, 62(3): 183-200.

RAMALINGAM G & REPS T. 1996. An incremental algorithm for a generalization of the shortest-path
problem. Journal of Algorithms, 21(2): 267-305.

SANDERS P & SCHULTES D. 2006. Engineering highway hierarchies. In: European Symposium on
Algorithms, pages 804—816. Springer.

SCcHULZ F, WAGNER D & ZAROLIAGIS C. 2002. Using multi-level graphs for timetable information
in railway systems. Algorithm Engineering and . .., 00104: 43-59.

SUNY, YU X, BIE R & SONG H. 2017. Discovering time-dependent shortest path on traffic graph
for drivers towards green driving. Journal of Network and Computer Applications, 83: 204-212.

TAKAOKA T. 1992. A new upper bound on the complexity of the all pairs shortest path problem.
Information Processing Letters, 43(4): 195-199.

THOMAS BW & WHITE CC. 2007. The dynamic shortest path problem with anticipation. European
Journal of Operational Research,176(2): 836-854.

ToTH P & VIGO D. 2014. Vehicle routing: problems, methods & applications. SIAM.

TRETYAKOV K, ARMAS-CERVANTES A, GARCIA-BANUELOS L, VILO J & DumAs M. 2011.
Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs. In:
Proceedings of the 20th ACM international conference on Information and knowledge management,
pages 1785-1794. ACM.

WAGNER D & WILLHALM T. 2003. Geometric speed-up techniques for finding shortest paths in
large sparse graphs. In: European Symposium on Algorithms, pages 776-787. Springer.

ZILTIASKOPOULOS AK & MAHMASSANI HS. 1993. Time-dependent, shortest-path algorithm for
real-time intelligent vehicle highway system applications. Transportation research record, pages 94—
94.

Pesquisa Operacional, Vol. 37(3), 2017



