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ABSTRACT. The simulated annealing (SA) and genetic algorithm (GA) metaheuristics are comparatively
applied to the berth allocation problem (BAP) of a port container terminal. By synthesizing the experimental
studies of the BAP available in the literature, the two methods are compared when applied to the same case.
For this purpose, six test problems are considered, where SA and GA are compared using four crossover
operators. Once the optimal GA crossover operator is determined, computational tests are performed with
the data obtained at the port terminal to compare the performance of the two metaheuristics.
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1 INTRODUCTION

The rapid development of international trade and the transportation of containerized cargo have
necessitated an increase in the size and number of vessels. This significantly affects the infras-
tructure of container terminals. Hence, techniques are sought for assisting in the decision making
that is necessary for the satisfaction of the growing demand for vessels, without increasing cost,
whether due to delays in the service or inefficiency of the operation.

The search for an efficient logistics system that minimizes the waiting and service time for vessels
prompted the formulation of an Np-hard combinatorial optimization problem known as the berth
allocation problem (BAP) (Aykagan, 2008). An extensive review of BAP is found in the studies
by Meersmans & Dekker (2001), Vis & Koster (2003), Steenken et al. (2004), Vacca et al. (2007),
Stahlbock and VoB3 (2008), Bierwirth & Meisel (2010), and Rashidi & Tsang (2013).
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BAP consists in allocating vessels to berthing positions in order that the pier space may be used
to its maximum and the service time may thereby be minimized. The required decisions to be
made relate to the position and time at which the vessel should berth Imai et al. (2008).

According to Yanasse (2013), it is important to attempt to formulate and analyze decision-making
mathematical models that facilitate a better understanding of the systems under consideration.
The analysis of models that represent combinatorial optimization problems is difficult; thus, it
is challenging from the mathematical perspective. Moreover, it appears that there is a practical
interest in the investigation of these models, which represent combinatorial problems, as their
solution could lead to better use of limited resources, minimizing cost, and maximizing revenue.

In this regard, Guan & Cheung (2004) emphasized the need for implementing the algorithms
for efficiently solving BAP. Thus, the proposed study — which is motivated by a real problem
detected in Brazilian ports — develops a computational method for the discrete BAP that allows
the qualitative evaluation of the behavior of the algorithms. There is growing interest in this class
of algorithms, owing to their easy implementation and, in particular, their robustness in solving
a large variety of problems.

Considering the significance of BAP for the operational efficiency of a port and that the elabo-
ration of a berthing plan, i.e., the allocation of vessels to berths, is costly, owing to the number
of variables involved in the problem, the use of a computational approach is of the utmost im-
portance. The following objectives were considered in the study: the application of a Linear
Programming mathematical model to solve a problem derived from real situations in the port
sector; the implementation of the SA and GA algorithms; the development of computational
methods for simulation tests of the SA and GA algorithms; the identification of the instances
for which the performance of the SA algorithm is different from or similar to that of GA; the
evaluation of the quality of the solution and the run time of the algorithms.

This paper is organized into five sections, including Introduction. In Section 2, a literature review
is presented, highlighting the methods used for solving the berth allocation problem. Moreover,
a synthesis of the results obtained in this study is provided, primarily for comparison of the used
methodologies. In Section 3, the SA and GA metaheuristics are presented in detail and applied
to BAP. In Section 4, the computational tests and the results obtained from the proposed scenario
are presented and discussed. Section 5 concludes the paper.

2 BERTH ALLOCATION PROBLEM

BAP is conditioned at the level of port operation planning and should obey certain rules and
agreements between the terminal (entity that provides operational services in the port) and the
ship-owner (entity that carries out the berthing of the vessel). Owing to the randomness in the
arrival of vessels, for contractual reasons, berthing should generally be performed on First Come,
First Served (FCFS) basis, with respect to the allocation of vessels per linear meter of pier, i.e.,
berth availability. Berthing, whether it be in public or private piers, is often performed in order of
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vessel arrival and by berthing priority and condition, i.e., according to the time window offered
by the terminal to the ship-owner, considering the total cost of the vessels in line.

The dock time window is a period of time offered by the terminal to the ship-owner on a given
day to dock its vessel with the guarantee of a reserved space for berthing. This guarantees the
payment of penalties by the terminal in case the vessel arrives during the given time window and
is unable to berth owing to berth or pier space unavailability.

Therefore, the primary objective of BAP is the minimization of costs with respect to both the
port and the ship-owner that are related to the service time; in this case, the total service time
is considered to be from the moment of arrival of the vessel at the port to its berthing and
deberthing.

The available models in the literature are classified according to spatial as well as time restric-
tions. In regard to the spatial restrictions, the classification is performed according to the layout
of the docking areas of the port. That is, BAP with discrete layout (DBAP) and BAP with con-
tinuous layout (CBAP) can be defined. In DBAP, the docking area is partitioned in so called
berths, where only one vessel can be served in a specific time interval, and the vessel’s length
cannot be longer than the berth length. In CBAP, the docking area is not partitioned, i.e., the
vessels may dock in any position along the wharf or pier (Imai et al., 2005b).

The time restrictions include arrival time, berthing time, and waiting time in line. Time restric-
tions mainly occur in relation to the berthing and deberthing time. In the literature, the time
restrictions have been classified as static arrival and dynamic arrival. In the former, it is assumed
that all vessels are already in the anchoring area, ready to berth. Therefore, the arrival time can
be disregarded. By contrast, in the latter, the vessels have different arrival times throughout the
planning horizon; hence, they cannot berth before their arrival time. Thus, a sequence of ves-
sel services should be performed, called vessel line. BAP with dynamic arrival reflects the port
management needs more accurately (Bierwirth & Meisel, 2010; Imai et al., 2001). Arrival time
can be either deterministic or stochastic. In the deterministic case, arrival time is considered a
fixed parameter of the problem. By contrast, in the stochastic case, the uncertainties in the ar-
rival time, caused by problems in the ports or navigation problems, are taken into consideration.
Several studies have addressed various characteristics of BAP. New mathematical formulations
are considered in the discrete, continuous, as well as real cases.

The systematic literature review of the subject revealed the existence of experimental studies
aiming to identify the behavior of algorithms in relation to the BAP, and of studies that apply
comparison/competition to validate the implementation of an algorithm for the BAP. Chart 1
summarizes the most frequently cited studies on this subject in the Scopus Online database. It
shows the title and authors, the objective function, the method applied in the solution of BAP,
and provides a brief summary of the conclusions of each study.
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Chart 1 — Summary of the experimental studies of BAP in the literature.

Authors and title

Studied Method(s)

Summarized Conclusions

Imai et al. (2001) and
Nishimura et al. (2001)

Minimize the total waiting
and handling times for ev-
ery vessel.

Lagrangian Relaxation (LR) and
Genetic Algorithm (GA) applied to
DBAP.

The calculations obtained with GA indicated
the efficient use of 5 berths instead of 7
berths used in a Japanese public port. The
tests (fictitious data) demonstrated that the
quality of the solution obtained by the (GA)
was the same/similar to the one obtained by
the (LR).

Kim & Moon (2003)

Minimize the penalty
cost resulting from delay
and the additional han-
dling costs resulting from

non-optimal locations.

Simulated Annealing applied to
CBAP.

The unfeasibility of the mixed-integer pro-
gram (MIP) technique with 7 vessels was
demonstrated, and the Simulated Annealing
algorithm was suggested.

Cordeau et al. (2005)

Minimize the sum for each
vessel of the service time.

The Tabu search algorithm applied
to DBAP.

It was demonstrated that the Tabu search
algorithm outperformed both the first-come
first-served rule and CPLEX.

Imai et al. (2008)

Minimize the total service
time.

Genetic
DBAP.

Algorithm  applied to

The number of rejected vessels owing to lack
of service within the maximum time limit
was minimized. The study is useful for
the efficient management of extremely busy
container terminals in underdeveloped coun-
tries.

Theofanis et al. (2007)

Minimize the total
weighted service time of

all the vessels.

Optimization based GA heuristic
(OBGA) and GA for DBAP.

Sensitivity analysis for the parameters of the
OBGA and GA heuristics was performed.
Both heuristics proved to be efficient, with
small changes in the value of the objective
function.

Mauri et al. (2008b)

Minimization of the num-
ber of rejected vessels due
to the
within the maximum time

lack of service

limit established.

Minimization of the number of re-
jected vessels due to the lack of ser-
vice within the maximum time limit
established.

Population Training Algorithm (PAT) in
combination with Linear Programming (LP)
for Column Generation for DBAP.

The results demonstrated the potential of the
proposed approach, where high quality solu-
tions were obtained for relatively large prob-
lems, in significantly short processing time.

Buhrkal et al. (2011)

Minimize the total waiting
and handling times of ev-
ery ship.

Generalized set-partitioning
(GSPP) applied to DBAP.

The performance of five formulations of
DBAPs was compared. It was claimed that
the model proposed by Cordeau et al. (2005)
The re-
sults obtained with GSPP were superior to
those obtained by (Cordeau et al. 2005).

is computationally advantageous.

Hu (2015)

Minimize the work of
cargo operated at night-
time.

The multi-objective GA (moGA)
for the bi-objective DBAP.

The importance of the preference for day-
time operations was demonstrated. Owing
to the lack of research on the optimization of
daytime shift allocation, the optimal perfor-
mance of the algorithm should be studied in
future work.
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Lalla-Ruiz et al. (2014) Biased Random Key Genetic Algo- | The required computational time showed
rithm (BRKGA) for DBAP. that, even in small-scale instances, the prob-
lem is difficult to solve by CPLEX. The use
of BRKGA was justified for the solution of
the tactical berth Allocation problem in real-

Maximize the sum of
the values of the chosen
quay crane profiles and
minimize the yard-related . . .
. world contexts; particularly, in those inte-
housekeeping cost. . .
grated designs where this problem frequently

appears as a sub-problem. Therefore, the
use of efficient procedures that provide near-
optimal solutions within short computational

time is preferable.

Lalla-Ruiz et al. (2016b) Simulated Annealing for the Wa- | Computational experiments showed that the

L . terway Ship Scheduling Problem | problem is difficult to solve, even in small-
Minimize the total time re- . .
. (WSSP) for (BAP). scale instances, using a general-purpose
quired for the vessels to
solver. Nevertheless, the proposed S ap-
pass through the water- i . .
proaches may provide high-quality solutions

ways. in short computational time. Moreover, the
tests showed that the SA approaches are suit-
able for contemporary problems.

Hsu (2016) Hybrid Particle Swarm Optimiza- | The proposed HPSO was compared with the

tion (HPSO) for BAP. two GA-based approaches. Among the three

Minimize the total cost .
.. approaches, HPSO required the longest, al-
consisting of the sub-costs . . . .
.. beit reasonable, computational time. Thus, it
of waiting, delay and oper- .

remains acceptable.

ation.

Mauri et al. (2016) Adaptive Large The computational tests indicated the rela-

Minimi h ¢ th Neighborhood Search (ALNS) tive superiority of the ALNS heuristic for
fnimize the sum ob e | rpAp and CBAP. solving DBAP and CBAP. It determined all

service times while the . . L
. known optimal solutions for DBAP within
vessels stay into the port. . . .

shorter computational time. Better solutions

were obtained for CBAP.
Venturini (2017) CPLEX A novel formulation was presented by inte-

. . grating the BAP with vessel speed optimiza-
Minimize the cost of idle- . . .
. tion for multiple ports under environmental
ness, delay, handling and . . . . . .
. considerations, in particular ship air emis-
the fuel consumption. sions

The literature review demonstrates the importance of algorithms for the solution of BAP in port
operations. Even though they do not ensure that an optimal solution will be obtained, the heuris-
tic methods described in Chart 1 are effective and suitable for real-world applications (Imai et
al., 2001). Particularly, the methods studied by Nishimura et al. (2001), Kim & Moon (2003),
Cordeau (2005), Theofanis et al. (2007), Imai et al. (2008), and Lalla-Ruiz et al. (2016b) require
decisions as generation mechanisms for initial solutions, evaluation functions for discriminating
solutions found during the search, disturbance operators for constructing solutions starting from
the current solution, and definition of stop parameters and criteria. Lalla-Ruiz et al. (2016b),
Buhrkal et al. (2011), Mauri et al. (2008), and Cordeau et al. (2005) studied BAP as a multi-
depot vehicle routing problem (MDVRP). BAP variations can be found in Lalla-Ruiz (2014)
and Hsu (2016), where the berth allocation and the quay crane assignment (QCAP) were stud-
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ied. Moreover, in Hu (2015), berth allocation in daytime shift allocation was considered, and in
Venturini (2017), the vessel’s speed and fuel consumption were studied.

This study, by considering a characteristic problem in ports in Brazil, is well-aligned with the
studies performed with real data from the port of Kobe in Japan (Imai et al., 2001; Nishimura
et al., 2001), the port of Gioia Tauro in Italy (Cordeau et al., 2005), and the port of the Yangtze
River Delta in China (Lalla-Ruiz et al., 2016b). In particular, this study aims at identifying the
behavior of the SA and GA interactive algorithms in a port terminal in Brazil.

2.1 Modeling for BAP

The mathematical model of BAP that motivated various studies was formulated by Legato et
al. (2001) as a Multi-Depot Vehicle Routing Problem with Time Window. However, Mauri et
al. (2008) reformulated the model as a Multi-Depot Vehicle Routing Problem WITHOUT Time
Windows that is more tractable compared with the model described by Cordeau et al. (2005).

Formally, the classical vehicle routing problem (VRP), is defined using a graph G = (V, A),
where V = {vy, v2, ..., v} U Vg is a vertex set and A = {ey, €3, ..., e,} is a set of arcs. Each
vertex v; € V — Vj represents a client to be served, where vg € V| represents a berth. Moreover,
each arc (i, j) € A is associated with a non-negative cost ¢;;, usually the distance between two
vertices.

It is important to note that all routes have berths (vg) as start and arrival points and include
a subset of A. Each client has a demand ¢ = 0 to be met by one of the r vehicles initially
berthed in the berth and it can only be visited once. VRP consists in determining a set of routes
for minimizing the sum of the costs attributed to the arcs of A. Moreover, special attention is
drawn to the fact that the capacity Q of the associated vehicle for each route should be respected.
The multi-depot vehicle routing problem (MDVRP) is a generalization of VRP, where the set
of vertices V is defined by V = {v1, v2, ..., vy} U Vo, where Vo = {vo1, vo2, ..., vog} are the
depots. The route i is defined as R; = {g, vi, v2, ..., vy, g} with g € Vg and n = m. The cost
of a route can be calculated as in the classic VRP.

Therefore, in the BAP model, the vessels are regarded as clients and the berths as garages or
depots (each with its own specific vehicle). There are m vehicles (one for each depot) and each
vehicle starts and finishes its route in its own depot. The vessels are modeled as vertices in
a multigraph, where each depot (berth) is still divided into an origin vertex and a destination
vertex. These vertices are constructed to correspond to the operating period of the berths.

The model proposed by Cordeau et al. (2005) is discrete and can be represented by a multigraph
G* = (Vk, A%), Vk € M, where V¥ = N U {o(k), d(k)}, A¥ € V¥ x V¥ and M and N are the
set of berths and vessels, respectively.

Each berth k£ can be represented by a super vertex that contains two elementary vertices o(k)
and d (k) that correspond to the operating period of berth k. The route R to berth k is the set
Ry = {o(k), v1,va,...,v,,d(k)}, where vessel v is the first vessel to be served in berth k,
whereas vessel v, is the last vessel to be served in berth k. In the berth allocation problem, the
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following sets of variables and constants are considered:
N = setof vessels;
M = setof berths;

k . . k k _ . . .
Xxj; € {0, 1}, Vk € M,V(i, j) € A", X = 1 = if vessel j is served by berth k

after vessel i;

Tik, Vk € M,i € N = time at which vessel i berthed in berth k;
Tok(k), Vk € M = time at which the first vessel berthed in berth k;

Té‘(k), Vk € M = time at which the last vessel berthed in berth k;
tik = duration of the service of vessel i in berth k;

a; = time of arrival for vessel i;

b; = time at which the time window ends for vessel i;

v; = value (cost) of the service time for vessel i;

sk = opening time for berth k;

ek = closing time for berth k;

M;; = max{b; +tf —a;,0}, Yk € M and ¥(, j) € N.

Minimize Z* = Z Z Ui<Tik —a; +1f Z xlkj) M

ieN keM JeNU{d(k)}

Subject to: Z Z xl{‘jzl,

keM jeNU{d(k)}

Do T, =L

JENUId(K))
k
> Maw =1
ieNU{o(k)}
k k
> = 2. %i=0
jeNU{d(k)} jeNU{o(k)}
T} if = TF = (1 — xj)M};,
T} = a;
Tik + tik Z xlkj —b;
JENUId(K))
k k
To(k) > s
k k
Td(k) <e

xf; € {0, 1,
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Equation (1) represents the objective function (OF) that minimizes the time elapsed since vessel
arrival, berthing, and service, with respect to the total allocation cost. Restriction (2) ensures
that each vessel is allocated to a single berth, where vessel j is served after vessel i in berth k.
Restriction (3) ensures that only one vessel will be the first to be served by each berth, i.e., there
is only one vessel j that will be joined to the origin vertex o(k). Similarly, restriction (4) ensures
that a single vessel will be the last to be served by each berth; this vessel i will be joined to the
destination vertex d (k). Restriction (5) ensures the conservation of flow for the other vessels,
i.e., the service for the vessels allocated to berth k, which will enter and exit the respective berth.
Restriction (6) determines the calculation of the berthing time of the vessels that can be served
by the berths. Restrictions (7) and (8) ensure that the berthing time will be after the arrival of the
vessel, and that the time at which the service ends for a vessel will be prior to the limit time of the
vessel (within the time window). Restrictions (9) and (10) ensure the non-violation of the time
windows in the berths. Finally, restriction (11) ensures that the decision variables are binary.

2.2 Reformulation of the BAP Model
The reformulation of the model by Mauri et al. (2008) is as follows:
Minimize Z* = wy Z Z vi (le —a; +1} Z xlkj> (12)
ieN keM FENU{d(K)}

+wi Yy > Y xbmax©0.a — T + max 0. TF +¢f = b)) (13)
ieN keM jeNU[d(k))

+wy Y (max(0, s* — 7)) + max (0, T, + €) (14)
keM
Subjectto: Y Y xf =1, VieN (15)
keM jeNU{d(k)}
Yo X =1 Vke M (16)
JENU{d(k)}
o =1 Vke M (17)
ieNU{o(k)}
Yoooxh= Y xh=o0 Vke M, VieN (18)
JENU{d(k)} JENU{d(k)}
TF 4 1f - T;‘ =(1- xfj)Ml?‘j, Vk e M,Y(i, j)e AX  (19)
xf e 0.1}, Vk e M, ¥, j) €AY (20)

The objective function is represented by the sums (12), (13), and (14). Restrictions (7) and (8)
are weakened, being transferred to expression (13). Similarly, restrictions (9) and (10) are trans-
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ferred to expression (14). The other restrictions are retained; however, in the objective function,
penalization factors w = [wg, wi, wa] are added.

In this model, according to observations, the service time (with its associated cost value) is
represented in expression (12). Expression (13) minimizes the violations of the time windows
of the vessels. Likewise, expression (14) minimizes the violations of the time windows of the
berths.

Analyzing the restrictions of the model above, we note that it relates to a Multi-Depot Vehicle
Routing Problem WITHOUT Time Windows. The model could result in impracticable solutions
for the BAP; however, these are eliminated through the penalization imposed by the factors
w = [wop, wi, wa] added to the objective function.

3 METHODOLOGY

A metaheuristic is a set of concepts that can be used to define heuristic methods applicable to an
extensive set of different problems. A metaheuristic can be seen as a general algorithmic structure
that can be applied to different optimization problems, with relatively few changes required for
adaption to specific problems.

According to Pureza & Morabito (2003), one concept of metaheuristics is that they represent
techniques that, when applied to local search methods, exceed local optimality and yield a solu-
tion of the highest quality.

The SA and GA algorithms were designed to determine the minimum of a function that repre-
sents some characteristic of the modeled process. The evolution of these algorithms in time is
completely different. In its search process, SA uses a single point, always generating a new so-
lution from it, which is tested and may be accepted or not. By contrast, GA uses a set of points
called a population, from which another population is generated and is always accepted. The
common characteristic of these two algorithms is that the next point or the next population are
generated obeying the stochastic properties.

3.1 Initial Solution and Neighborhood Structure

The initial solution for the problem is obtained using two heuristics: the berth distribution heuris-
tic and the vessel programming heuristic. The distribution heuristic is responsible for allocating
the vessels to the berths and the programming heuristic determines the service time of the vessels
in the berths.

As neighborhood structure, three swap movements were used, following Mauri (2008): reorder-
ing of vessels (one vessel is selected to swap position with another vessel in the same berth),
reallocation of vessels (one vessel is selected and allocated to another berth, where this ves-
sel meets the berth restrictions), and swap of vessels (selected vessels in different berths are
swapped, where the vessels must respect the restrictions imposed by the berths). All details
about the heuristics and the neighborhood structure can be found in Rodrigues (2013).
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3.2 Simulated Annealing Applied to BAP

The SA algorithm originated from an algorithm called Metropolis (1953), and Kirkpatrick et
al. (1983) suggested its use in a computational environment. The basic principle of the algorithm
is to allow selected solutions worse than the current solution to explore the neighborhood, thereby
escaping the local minimum and enabling the search to reach regions that are more promising.
The SA algorithm is described as follows:

GIVEN (o, S Amax, TpeT:) DO

GENERATE (a solution S using the distribution heuristic);
EVALUATE (solution S using the programming heuristic);
S§* < §; {Optimal solution obtained so far}

IterT < 0; {Number of iterations at temperature 7'}

T < Tj; {Current temperature}

WHILE (T > T,) DO

WHILE (IterT < SAmax) DO

IterT <« IterT +1;

GENERATE (a random neighbor S’ through one of the swap mov);
EVALUATE (solution S’ using the programming heuristic);
12 A< f(S—f(S)

13. IF(<0)S < S

14.  TIF (f(S") < f(§*)S* < S’; END IF

15. ELSE

16. TAKE (x € [0, 1]);

17. IF(x <e 2/T)S < S'; END IF

18. ENDIF

19. END WHILE

20. T < o*T; IterT < 0;

21. END WHILE

22, S <« 8%

23.  RETURN (S).

D A o

—_ =
—_ O

In line 1, the algorithm is started with the parameters used by Mauri et al. (2008). In line 2, there
is an initial solution through the distribution heuristic. Initially, m empty berths are generated.
The n vessels are organized in order of arrival at the port and are sequentially and randomly
distributed in the berths; however, it is always verified whether the selected berth can serve that
particular vessel.

In line 3, the initial solution is evaluated using the programming heuristic. The calculations of
the berthing time of each vessel and the objective function are performed. In this heuristic, the
superposition of times is eliminated with the calculation of the berthing time of the vessels.

In line 4, Sx is assigned to the value of the initial solution §, provided that it is the optimal
solution at this step. In line 5, the iteration counter is initiated.
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In line 6, the initial temperature value (7p) is assigned to 7. The parameter Ty should be large
enough for all transitions to be initially accepted.

Lines 7 and 8 establish the stopping criteria. While the temperature is higher than the current
temperature and the number of iterations is smaller than the maximum number of iterations,
execute the step of line 10.

Line 9 represents the increase of iterations. Line 10 generates a random neighbor solution S’
through one of the swap movements (reordering, reallocation, and swapping of vessels).

In line 11, the neighbor solution S’ is evaluated using the programming heuristic.

In line 12, the variation of the objective function (cost) is tested, i.e., A = f(§’) — f(S). In
line 13, if A < 0, the method accepts the solution and S’ becomes the new current solution.

In line 14, the current value is tested whether it is smaller than the stored value S*. If positive,
the value of S’ is accepted.

From line 15 to line 19, if A > 0, the neighbor candidate solution can also be accepted; however,
in this case, with probability of e=2/7
of accepting worse cost solutions.

, where T is the parameter that regulates the probability

In line 20, after a fixed number of iterations (the number of iterations required by the system
to reach thermal equilibrium at a given temperature), the temperature gradually decreases at a
cooling rate of «. In this procedure, at the beginning, there is greater chance to escape the local
minima, and as 7 approaches zero, the algorithm behaves similarly to a descending method
because the probability of accepting worsening movements decreases.

The procedure terminates when the temperature reaches a value close to zero (freezing tempera-
ture: 7;) and solutions that worsen the value of the optimal solution are no longer accepted, i.e.,
when the system is stable. The solution obtained when the system is in this state indicates a local
minimum, which, in some cases, is also a global minimum.

The reheating technique was also implemented to further improve the solutions obtained by SA.
This technique consists in, after executing SA, applying it once again, using the optimal solu-
tion obtained so far as the initial solution. Different parameter values are used in the reheating.
The initial temperature is reduced, compared with “normal” SA, and the maximum number of
iterations increases. Hence, the search for better solutions intensifies in the spatial search region
close to the initial solution, i.e., the reheating refines the solution obtained by SA.

3.3 Genetic Algorithm (GA) applied to the BAP

The GA algorithm attempts to simulate the natural evolutionary process of speciation and ge-
netics, as shown in Figure 1. According to Michalewics (1992), the algorithm applies random
choices to guide the search towards spatial regions with likely improvements, maintaining a set
of potential solutions (a population of individuals). However, the probabilistic aspect of GA is
distinguished from sheer random search.
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Figure 1 — Flowchart for the execution of GA.

As in SA, the initial population for BAP is generated through the vessel distribution heuristic.
The population size should range between 50 and 100 individuals because, depending on the pop-
ulation size, the performance of the algorithm could be affected. Overly small populations have
lower diversity than that required for convergence to a satisfactory solution, with the possibility
of premature convergence. Furthermore, overly large populations can affect the computational
cost of the problem, as the search space could become excessively large. In the present study, the
path representation was selected, where the individual is represented by a numeric vector; thus,
the sequence represents vessels N; to be allocated to a specific berth By, as shown in Figure 2.

By |N1|N2|N3| | | | | |Ni|

Figure 2 — Chromosome Representation.
Therefore, each individual (chromosome) determines one solution for BAP, representing the

berth allocation of the vessels. The cost of this programming is the value of the objective func-
tion, or aptitude of the individual from the population.
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Evaluation of the Individuals

In this step, the same programming heuristic is used as in the SA algorithm, for determining
the least costly programming of vessels, objective function, or aptitude (which minimizes the
function). For each individual, the value of the objective function is calculated, and the best indi-
viduals are selected to reproduce in the current generation. The individuals are ordered according
to their aptitude, i.e., their adaptation level with respect to the population where they belong.

According to Whitley (1994), the calculation of the aptitude function in GA could require a
considerable amount of time, as for each iteration it is necessary to evaluate an entire popula-
tion of potential solutions (individuals), rather than only one solution, as compared with other
optimization techniques.

Selection

The selection process of individuals from the population for reproduction is performed by the
evaluation of the aptitude function of the individuals. The most apt individuals form an interme-
diary population to which the crossover operators will be applied.

According to Beasley et al. (1993), the selection process has great influence on the behavior of
GA, as the type of selection could cause premature convergence or unacceptably slow conver-
gence. Hence, there is no definitive method, and there is a need for appropriate selections to
address problem classes.

The selection operator used here was the roulette method, where the individuals to be selected are
represented in a roulette according to their aptitude. In this method, the individuals are selected
to be part of an intermediary population using the drawing roulette. The aptitude level of each
individual is related to the portion occupied by the individual in the roulette, i.e., individuals of
higher aptitude will have a larger section in the roulette. The present study also included the use
of elitist selection, i.e., the most apt individual of a population automatically proceeds to the next
population.

Crossover Operators

The crossover operator is the most significant part of GA. The operator performs the swap of parts
of pairs of individuals in an attempt to obtain better individuals from the selected individuals.
The probability ranges between 40% and 95%. In the implemented algorithm, the crossover rate
was fixated at 85% for all operators.

In the present study, the main operators were selected to adequately represent the individuals
from the population along pathways. According to Potvin (1996), they are classified as follows:
operators that preserve the absolute position as the Partially-mapped Crossover (PMX) and the
Cycle Crossover (CX), and the operator that preserves the relative order as the Order Crossover
(OX). In addition to these crossover operators, a heuristic crossover (HX) version was used. We
now explain the handling of BAP solutions by these operators. Many problems for which the GA
metaheuristic could be used have a typical issue in relation to the crossover operation. Namely,
the elements of a chromosome may appear in a different order; however, the set of elements
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should be the same. The same occurs in the allocation problem: Although the order in which the
vessels are served could vary, all vessels must be served. The recombination of two points selects
two locations for the parent chromosomes to be sectioned. The entire section between these two
points is changed, resulting in two different chromosomes. In this case, the offspring generated
by each set of parents could often result in offspring with duplicated vessels, while some vessels
may not appear on the list. Figure 3 illustrates this situation.

Py [Ny [Ny [N, | Ng [N [N, [ N| NG [ N |
P, [Ny [N [Ng| N [Ng [ Ng [NAIN,IN, |
Oy [Ny [Ny [N Ny [ No | Ng[Ng|Ng [N |
0, [Ny |Ng[Nsf Ny [Ng [Ny [Na|N, [N, ]|

Figure 3 — Multipoint crossover — GA.

In the example above, the offspring O is missing vessels N3, Ns, and N7, and has the duplicates
of vessels Ni, Ng, and Ng. Likewise, O> has vessels N3, N5, and N7 duplicated and is missing
vessels N1, Ng, and No.

Partially-Mapped Crossover (PMX)

To solve the abovementioned problem, other types of crossover have been studied, for instance,
Partially-Mapped Crossover (PMX). In PMX, a tournament subsequence of one of the parents is
selected, preserving the order and position of as many positions as possible from the other parent.

A subsequence is first demarked by two sectional points. Then, the segments between the sec-
tional points are swapped. A series of mappings is extracted from the swapped segment. In the
example below: Ni <> Ng, N9 <> N5, N3 <> N7, and Ng <> N3. The second step is to fill all
positions where there is no conflict; in the example shown in Figure 4, this corresponds to posi-
tions N4 and N> in both chromosomes. The last step is to use the mappings to fill the remaining
positions, previously marked with X. Using the N1 <> Ng, mapping in vector O; there is, once
again, a conflict; therefore, the mapping N3 <> N7 should be used to obtain an unrepeated gene.
The positions in O and O> relative to the duplicated elements are shown in Figure 4.

Order Crossover (0OX)

OX creates an offspring by selecting a subsequence of a tournament from one of the parents,
preserving the relative order of positions of the other parent. Using the previous crossover ex-
ample, the sequence is sectioned in two points. From the second point of one of the parents,
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Py [Ny [Ny [N, | Ng [Ns [N, [Ns|[ N6 | Ng |

P, [Ny [ Ns [N N [N [N [N [Ny [N, |

Oy [ X [Ny [N Ny [N [N [N] X [X | N; < Ng Ng < N5

Ng‘—' N5 N6<—> A]3

0, LX [ X [ X Ng [Ns [Ny [Nz Ny [ N, |

01 [Ny [Ny [N I Ny [ Ng [ Ng | Ng [ N5 [ N5 |

Oz | Ny [No [Ns| Ng|Ns [N, [Ny Ny [N, |

Figure 4 — Partially-Mapped Crossover — PMX.

the positions of the other parent are copied in the same order, disregarding the symbols that are
already present. Reaching the end of the chain, it moves to the beginning of the chain. In the
example shown in Figure 5, chromosome O3 is filled according to the sequence Ny — N9 —
N1y — N4 — Ny - Ng — N5 — N7 — N3 in the positions that are still not present. Positions
N4, N2, N5, N7, and N3 are filled. The same procedure is followed for chromosome O1, follow-
ing the list Ny - N —- N7 - N5 — N3 — Ny — N9 — Ng — Ng. Hence, the following
positions are filled: N4, N2, N1, Ny, and Ng.

Cycle Crossover (CX)

The CX operator preserves the absolute position of the vessels in the parent chromosomes. The
first offspring is obtained with the repetition of the first vessel from Pj, the position correspond-
ing to this vessel is searched in P, and the vessel will be inherited, preserving the position oc-
cupied in P;. The procedure continues until the chromosome is filled. In case a cycle is formed,
the positions will be occupied by individuals from P». Figure 6 shows the scheme of CX. The
first vessel of Pp is repeated in Oj, the corresponding vessel in P, is N7, which is copied in
O1, preserving the position occupied in P;. The same is repeated for Ng, N4, and N5 when the
corresponding vessel in P> finishes one cycle. Henceforth, the offspring O is filled with the
individuals from P,, preserving the order occupied in the chromosome.

Heuristic Crossover (HX)

This operator applies heuristic information unexplored by other operators, uses the path rep-
resentation, and considers the smallest allocation cost. The HX operator can be described as
follows:
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Py [Ny [Ny [N Ng [ Ns | Ny [ No| Ng [N ]

P, | Ny [Ns [N Ny [No[Ng [N Ny [N, |

0y [ X x x| N [Ns[N [N XX ]

0, [ X1 XTXxIN [N [Ng[Ne| X[X]|

0y | Ny | No|NelNe|[Ns|[N;[Na|Ny [N, ]

Q
N

|N5|N7|N3|N1|N9|N8|N6 Ng | N |

Figure 5 — Order Crossover — OX.

Py [N, [Ny [Ny [Ny [Ng [N, [Ny [Ng [N |

P, [N, [Ns| Ny [Ny [N, [Ng [N |No[N,]

y AR AR

Oy [Ny |Ny|Ny|Ng|Ns|Ng|Ng|No|N, ]|

Figure 6 — Cycle Crossover — CX.

1. Select a random vessel from one of the parent chromosomes.
2. Compare the allocation costs for the next vessel in both parents and select the smallest.

3. If the lowest cost selected forms a cycle in the partial route, then choose a random cost that
does not introduce a cycle.

4. Repeat steps 1 and 3 until all vessels are included in the berth.

Figure 7 shows an example of the HX crossover where vessel Ng was randomly selected; there-
fore, the allocation cost for Ns and Ng is analyzed, which are the next vessels in P; and P»,
respectively. Assuming that the lowest cost corresponds to the sequence N3 — Njs, the cost
analysis is performed for the next allocation. With regard to vessel N7, there is a cycle; hence,
any vessel that does not introduce a cycle is randomly selected. In this example, vessel N4 was
selected, leaving only vessel Nj to conclude the chromosome.
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V% N

Py [Ny [Ny [Ny [Ny [Ns [Ny [N; | N |No]

P, [N;|Ns[Ns[Ny [N [Ng|[No[Ng|N, ]|

Oy [ Ng|[Ns|Ny[Ng [Ny [N, [N, [N,[N, |

Figure 7 — Heuristic Crossover — HX.

Mutation

From the selected individuals, the mutation operator performs random swaps of some genes
of the individuals, enabling the study of new areas in the search space. Therefore, it avoids
premature convergence of the population, maintaining the population diversity, and avoiding
local minima.

In the reviewed literature, the mutation rate should be predicted within a range of 1% to 5%.

The implemented mutation operator was that of simple inversion proposed by Michalewicz
(1992), where two points are randomly selected in the chromosome and the subsequence be-
tween them is inverted.

In this study, the operator was applied to each chromosome in the population with a probability
of 2%.

Stop Criterion

Several criteria can be chosen to terminate the execution of GA: after a given number of gener-
ations (total evolutionary cycles), when there is no further improvement of the average aptitude
or the best individual, when the aptitudes of the individuals from a population become similar,
or when the diversity in the population is lost.

In this study, the selected stop criterion was the maximum number of generations, which was set
at 150.000.

4 COMPUTATIONAL TOOL DEVELOPMENT

Recently, optimization tools have been increasingly used in simulators (Pureza & Morabito,
2003; Cherri et al., 2013). Moreover, approximation or heuristic algorithms as well as simulation
tools have been combined with optimization tools.

Thus, a computational tool was developed with the aim of solving BAP using the SA and GA
algorithms. The user is able to simulate different scenarios to find the optimal berth allocation
for vessels, and therefore reduce (minimize) the waiting time in line and calculate the optimal
berthing time to be offered.
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The computational tool is fed by data about the date and time of arrival of the vessels, the duration
of the time window (time period offered by the terminal to the ship-owner in order that the vessel,
on a specific day, have the guarantee of space reserved for its berthing or the payment of penalties
by the terminal if the time window is reached and the vessel cannot be berthed owing to lack of
available berth). The computational tool offers some flexibility to the user with respect to the
use of the algorithms. In the GA simulation, the crossover operators, the number of iterations
(generations), and the mutation rate can be selected. These alternatives are used for adjusting the
parameters in the algorithm, affecting the simulation of the problem. In the SA simulation, the
initial solution can be obtained by four methods: user definition, movement swap, setting vessels
in berths, and rejecting vessels; all these options are detailed in Rodrigues (2013). Moreover, the
SA algorithm can be executed with or without the reheating procedure. The operational cost for
each day of berth allocation is provided by GA and SA, which allow the daily follow-up of the
solutions.

The interface of the developed tool allows the generation of a report on the data of the vessels, that
is, a list of vessel arrivals and a list of berths (capacity, opening and closing times). Furthermore,
all the results obtained in the process, the optimal solutions obtained, and the parameters in the
application of the SA and GA metaheuristics are recorded. Moreover, in the case of SA, the total
reallocation, reordering, and swap movements of the vessels are recorded. This allows for better
evaluation of the neighborhood structure that uses the three movements, and the choice is made
in a random but uniformly distributed manner. It should be emphasized that the application offers
the option of securing vessels to the berths, as, in real situations, it may happen that a vessel can
only be allocated in a berth appropriate to its type of cargo.

4.1 Computational Tests

The computational tests were performed on a PC with an Intel Pentium R Dual-Core T4400
2.20 GHz CPU and 4 GB of RAM. The implementation was developed in the Delphi language
based on Object Pascal (Pascal with object-oriented extensions) because it allows the inclusion
of different simulation tools and the representation of dynamic aspects, increasing the model’s
accuracy.

The first computational tests were performed to measure computational time and the quality of
the solution in regard to the crossover operators used in GA and the randomly applied swap
movements in SA. The performance of these tests was used to demonstrate the quality of the
solution obtained by the HX crossover operator, which used in the comparison of the SA and
GA algorithms, in the allocation of 62 vessels to 3 berths of a container terminal. Hence, 6 test
problems with real data were run 10 times each, involving 35, 55, and 62 vessels allocated to 5
and 10 berths. The mean results are presented in Tables 1, 2, 3,4, 5, and 6, as follows:

It can be seen that GA yielded superior solution and computational time compared with SA, in all
tests. The problems involving 35 vessels did not show improvement in the objective function for
the various crossover operators used. The HX and PMX operators yielded the optimal solutions;
however, the computational time of the HX operator was significantly longer compared with
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Table 1 — 35 vessels and 5 berths.

Genetic Algorithm Simulated Annealing Slmulate-:d Anneal?ng *
Reheating Technique
Crossover operation OF Time | O.F. 55,842.80 OF 55,212.83
(0):¢ 55,212.83 4 Time 11°25” Time 43°09”
CX 55,212.83 | 3°58”
PMX 55,212.83 | 3’157
HX 55,212.83 | 9’127

Table 2 — 35 vessels and 10 berths.

. . . . Simulated Annealing +
Genetic Algorithm Simulated Annealing . .
Reheating Technique
Crossover operation OF Time | O.F. 55,292.80 OF 54,672.83
(0):¢ 54,672.83 | 4°08” | Time 827 Time 22°40”
CX 54,672.83 | 3°24”
PMX 54,672.83 | 3°22”
HX 54,672.83 | 7°06”
Table 3 — 55 vessels and 5 berths.
Genetic Algorithm Simulated Annealing
Crossover operation OF Time OF 134,334.70
(0):¢ 129,489.00 | 6’30” | Time 20’35~
CX 129,489.00 | 6°26”
PMX 129,489.00 | 6’30
HX 129,489.00 | 16°27”
Table 4 — 55 vessels and 10 berths.
Genetic Algorithm Simulated Annealing
Crossover operation OF Time OF 127,149.80
(0):¢ 128,137.83 | 6’44” | Time 14°25”
CX 127,689.81 | 6’50”
PMX 126,534.83 | 5’43~
HX 126,534.83 | 11°45”
Table 5 — 62 vessels and 5 berths.
Genetic Algorithm Simulated Annealing
Crossover operation O.F. Time O.F. 149,324.40
(0):¢ 147,539.67 | 6’40” | Time 22°52”
CcX 148,759.67 | 6°25”
PMX 147,539.67 | 6’07
HX 147,539.67 | 15°23”
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Table 6 — 62 vessels and 10 berths.

Genetic Algorithm Simulated Annealing
Crossover operation OF Time OF 147,160.50
OX 144,585.50 | 825" | Time 18°32”
CX 144,585.50 | 7’54
PMX 143,885.83 | 8’31~
HX 143,195.53 | 16’30~

PMX. The (SA + Reheating) combination yielded the same solution as GA, with significantly
longer computational time. In the problems involving 55 and 62 vessels, the optimal solution was
obtained with the HX operator. Some tests were performed with (SA + Reheating); however, the
computational time was longer than 45 min, yielding no better solutions than with GA. In all
instances, the HX operator yielded the optimal solutions.

Considering the performed tests and the evidence of the local search procedures used by the
SA and GA algorithms, special attention should be drawn to the qualitative evaluation of their
behavior.

The scenario of analysis was derived from real situations found in the programming of vessels
at a container terminal that uses three berths. This information is available on the website of
Terminal de Conteineres — TECON RioGrande S/A (http://www.teconline.com.br).

The tests were performed based on a terminal with three operating berths of fixed length and
a total of 62 vessels, with the following information: predicted time and date of arrival, length
(meters), service time (00:00°00"), duration of time window (00:00°00”), and value in current
currency of service time per minute. Some of these data are fictitious, for instance, the service
cost, as it was not provided by the container terminal.

The parameters used for SA, according to Mauri (2008), were: « = 0.975, T; = 40, 000,
T, = 0.01, and SAmax = 1, 000. For the reheating, the parameters were ¢« = 0.975, T; =
10, 000, T, = 0.01, and SAmax = 2, 000. The parameters used for GA were: population size of
100 individuals, 150,000 generations, crossover rate of 85%, and mutation rate set at 0.02. The
penalties used for the objective function for the reformulated model were w = [1, 10, 10].

4.1.1 Obtained Results

30 tests were performed for each metaheuristic, for the same instance (62 vessels, 03 berths).
These provided data for the final objective function as well as the run time for each metaheuristic.
For the first analysis, the graph shown in Figure 8, which compares the values of the objective
function for each test, indicates the less volatile behavior of GA, as the values obtained for the
objective function range from 185,000 to 190,000, whereas the SA exhibits greater variations.

By performing the same analysis for the run time of each metaheuristic, the graph shown in
Figure 9 was obtained. It can be seen that the GA exhibits shorter run time compared with SA.

Pesquisa Operacional, Vol. 38(2), 2018



ELIZANGELA DIAS PEREIRA etal. 267

Objective Function Values for the o GA e SA

205,000
200,000 A
§ 195,000 %W
S 190,000 |3\ v _ Y Y
o SV e v S et GA
£ 185000 [ —irrvevereesveretraeget ST el S
£ — S A
£ 180,000
o
175,000

x1 x3 x5 x7 x9 x11 x13 x15 x17 x19 x21 x23 x25 x27 x29

Performed Tests

Figure 8 — Comparative graph of the Final Objective Function.

This may be attributed to the difference between the neighborhood structures of each heuristic,
as in SA, movements are randomly performed, whereas in GA, the selected crossover operator
mandatorily performs all swap, reordering, and reallocation movements.

Running Time of the GA and SA

38:24
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Figure 9 — Comparative graph of run time.

Using the data obtained from a sample of 30 tests, the average run time and final OF were
estimated, assuming that they represent the corresponding true values of the population, which
are unknown. These and other estimations are presented in Table 7.

Table 7 — Estimations.

Estimations

Metaheuristics

Simulated Annealing

Genetic Algorithm

Average Time Xx; 29°04” 20°50”
Final OF Average X ¢ 194,073.97 185,951.42
Standard Deviation s 3,267.26 2,2023.42

Coefficient of Variation C, 1.68351 1.08814
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Based on these estimations, the GA metaheuristic is more efficient than the SA metaheuristic in
terms of the final OF and run time, as the objective of BAP is to minimize OF with the use of
computationally efficient tools.

The consistency of the solution can be determined by calculating the standard deviation and the
coefficient of variation. Both demonstrate that the values for OF and run time tend to be closer
to the average in the case of GA.

4.1.2 Discussion

An important observation related to the number of vessels that were not allocated owing to viola-
tion of the time window is that GA allows the allocation of more vessels within the time window,
which leads to a smaller cost in the objective function.

There is an apparent problem, namely, the implemented metaheuristics do not consider the possi-
bility of interruptions in the service time due to the closing/opening of the berth, i.e., each vessel
starts and concludes its operation on the same day. The vessels that are unable to conclude the
operation on the day of their arrival are allocated at the first available time after 00’00 (min/s)
on the following day.

For academic purposes, the analyses presented here are based on the results obtained using the
GA and SA metaheuristics; however, the evaluation of their efficiency would require the compar-
ison of these results with real data, which unfortunately are not available. Nevertheless, the GA
metaheuristic implemented in the present study yielded better results. This implies a reduction in
the operational costs of a terminal, the primary objective of BAP.

One of the objectives of this study was the search for instances of the proposed problem where
the similarities and differences of the implemented metaheuristics would be exhibited. In this
respect, the final results obtained according to the optimal objective function of each algorithm
were compared. Thus, the vessels allocated to each berth by date and the final daily OF were
considered. These data were obtained from the report generated by the application. The main
difference was in the value of OF when the SA algorithm was executed. On January 12, 13, and
16, the objective function obtained by SA was superior to that of GA. This is attributed to the
non-allocation of vessels.

In Table 8, on January 12, vessel CAP MELVILLE was not allocated. CAP MELVILLE arrived
on January 11, with time window until 20:00 on January 12. This caused an increase in the
objective function and forced the violation of the time window of this vessel on January 13,
adding costs to the objective function for January 13 as well.

On January 16, there was a different situation; vessel MESSOLOGI, which arrived on January
15 with time window until 21h of January 16, was allocated to berth 3, after vessel MSC ADRI-
ATIC, whose arrival was on January 16. As observed, the randomness of the neighborhood
structure of the SA algorithm may have caused this incident because berth 2 was available to
serve MESSOLOGI, which would prevent it from violating its time window.

The computational tests indicate the possibility of applying the studied metaheuristics to real
situations, even if they represent medium and large-scale problems.
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Table 8 — Differences between the programming of SA and GA.

Date Berth 1 Berth 2 Berth 3 0O.F./day
12/01/2012
SA XIN YAN TIAN AL MARACANA | ER BERLIN 24.289,50
AG ER BERLIN XIN YAN TIAN CAP MELVILLE | 22.179,50
AL MARACANA
13/01/2012
SA CAP MELVILLE | LEXA MAERSK | SANTA CLARA 1.335,00
MSC GEMMA
AG MSC GEMMA LEXA MAERSK | SANTA CLARA 0,00
16/01/2012
SA LOG IN PANT MSC ADRIATIC 14.030,33
MESSOLOGI
AG MESSOLOGI LOG IN PANT 12.695,50
MSC ADRIATIC

5 CONCLUSIONS

The present study aimed at describing the comparative application of the simulated annealing
(SA) and genetic algorithm (GA) metaheuristics to the berth allocation problem (BAP) in a port
container terminal.

The study highlighted important issues that naturally emerge when attempting to solve a berth
allocation problem in a port terminal, namely, the selection and comparison of algorithms.
In this respect, considering the performed bibliographical review, the present study can be added
to the studies of DBAP. The studied algorithms were implemented to develop a computational
tool, allowing the follow-up of the local search procedures in the determination of the optimal so-
lutions for the problem. The first computational tests indicated the selection of the HX crossover
operator for the comparison of GA and SA in the berth allocation of the port container terminal.
The tests demonstrated the dynamic balance between diversification (breadth-first search = BFS)
and intensification (depth-first search = DFES) in the applicability of the metaheuristics.

It is important to emphasize that the tests performed in this study were not intended to com-
pare the techniques competitively, but rather to show that they are complementary tools in the
decision-making process. The computational tool developed for the resolution of DBAP will en-
courage studies in research areas that aim at identifying and collecting a set of test problems for
evaluating the performance of the GA and the SA algorithms.

Great caution should be taken when generalizing the statements about the performance of the
algorithms, as it is not possible to state that an algorithmic approach is superior to another for
a given problem. However, this issue may be meaningless because many current studies aim at
hybridization and attempt to generalize the main characteristics of the studied algorithms.

Considering that BAP is a Combinatorial Optimization problem, and therefore non-polynomial,
it should be emphasized that the computational time required for its solution is not deterministi-
cally calculated as a function of the dimension of the problem.

Pesquisa Operacional, Vol. 38(2), 2018



270 METAHEURISTIC ANALYSIS APPLIED TO THE BERTH ALLOCATION PROBLEM

This study does not exhaust the studies of BAP or those of the presented metaheuristics. The
results obtained are encouraging; however, there are still gaps to be filled by future studies. For
instance, continuous allocation. That is, a reformulation of the BAP modeling that allows the
exclusion of the berth opening and closing times, as, in practice, some ports do not operate with
this condition, although there is shift change (dockers, machine operators, etc.)

Another key point would be a review of the restrictions and programming of algorithms, avoiding
the interruption of service time owing to the closing/opening of the berth; although there could
be a break in the berth service, in real situations, the vessel could start operating immediately
after its arrival as long as there is an available berth, regardless of the break in the operational
service, and as long as it does not generate costs for the terminal owing to, e.g., the violation of
the time window of the vessel.
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