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ABSTRACT. In this paper we develop a generic mixed bi-parametric barrier-penalty method based upon
barrier and penalty generic algorithms for constrained nonlinear programming problems. When the feasible
set is defined by equality and inequality functional constraints, it is possible to provide an explicit barrier and
penalty functions. If such case, the continuity and differentiable properties of the restrictions and objective
functions could be inherited to the penalized function.

The main contribution of this work is a constructive proof for the global convergence of the sequence
generated by the proposed mixed method. The proof uses separately the main results of global convergence
of barrier and penalty methods. Finally, for some simple nonlinear problem, we deduce explicitly the mixed
barrier–penalty function and illustrate all functions defined in this work. Also we implement MATLAB
code for generate iterative points for the mixed method.

Keywords: nonlinear programming, mixed barrier–penalty methods, convergence of mixed algorithm.

1 INTRODUCTION

The mathematical optimization is one of the concepts widely used to analyze many complex
decision or allocation problems. In order to better use available resources, optimization tech-
niques allow the selection of values for a certain number of interrelated variables, and with them
we could measure the performance and quality of a decision by focusing on some objective
functions.

Specifically, a mathematical optimization problem consists of minimizing or maximizing an ob-
jective function f (x) subject to restrictions x ∈ Ω, where f is a real valued continuous function
defined on Ω⊂Rn. In this work, we consider the feasible set Ω having three types of restrictions

x ∈Ω1, x ∈Ω2, x ∈Ω3 (1)
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2 A CONSTRUCTIVE GLOBAL CONVERGENCE OF THE MIXED BARRIER-PENALTY METHOD

where Ω1 can be whatever restriction set that is difficult to handle, Ω2 is a robust set and Ω3

could be a simple set such as signal or boundary restrictions. The robust set means that it has
a dense nonempty interior subset. In other words, the set has an interior, and it is possible to
get any boundary point by approaching it from a sequence of interior points, Luenberger & Ye
(2008).

According to specifications above, we consider the following optimization problem,

min f (x)

s. t. x ∈Ω1,x ∈Ω2,x ∈Ω3.
(2)

One of the most common nonlinear programming problems formulation is when the restrictions
are characterized by equality and inequality functional constraints, Bazaraa et al. (2013), Luen-
berger & Ye (2008), Wright & Nocedal (1999), Griva et al. (2009). In which given the continuous
functions f : Rn→ R, h : Rn→ Rm, g : Rn→ Rp, the classical nonlinear optimization problem
is

min f (x)

s. t. h(x) = 0

g(x)≤ 0,

(3)

where the restriction sets are given by Ω1 = {x ∈ Rn : h(x) = 0}, Ω2 = {x ∈ Rn : g(x)≤ 0} and
Ω3 = Rn.

For many decades, many authors proved some theoretical results and proposed several algorithms
in order to solve nonlinear optimization problems considering penalty or barrier function meth-
ods. Luenberger & Ye (2008), Fiacco & McCormick (1990) state convergence for both methods,
Polyak Polyak (1971) showed convergence rate for penalty function method within Hilbert space,
Bertsekas (1976) obtained convergence and rate of convergence results for the sequences of pri-
mal and dual variables generated on penalty and Lagrange multiplier methods, he showed that the
multiplier method is faster than the pure penalty method. Fiacco & McCormick (1990) demon-
strate by contradiction the global convergence for mixed penalty-barrier method, also Breitfeld
& Shanno (1995) proposed composite algorithm of augmented Lagrangian, modified log-barrier,
and classical log-barrier methods for that they demonstrated global convergence to a first-order
stationary point for the constrained problem which was based on Breitfeld & Shanno (1994).

In this work, we develop the mixed barrier-penalty method for solving a general nonlinear prob-
lem (2); and we provide a generic bi-parametric algorithm. The main contribution is a construc-
tive proof of global convergence of sequence generated by that mixed method as an alternative
proof to existing ones with slightly different assumptions. Suñagua & Oliveira (2017) showed
that computational experiments for NETLIB problems work successfully for large scale linear
optimization problems.
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2 BARRIER METHODS OVERVIEW

Barrier methods are also called interior point or internal penalty methods. Some theoretical re-
sults of them were developed by Martınez & Santos (1995), Luenberger & Ye (2008), Nash &
Sofer (1993), and Wright (1992). These methods are applicable to problems of the form

min f (x)

s. t. x ∈Ω
(4)

where f is a continuous function and Ω is a robust restriction set. This kind of set often arises
from the inequality constraints, that is, Ω = {x ∈ Rn : g(x)≤ 0}, for which there is a point x ∈Ω

such that g(x)< 0.

Barrier methods work by establishing a barrier on the boundary of the restriction set that pre-
vents a search procedure from leaving the feasible region. A barrier function is a function
B(·) defined on the interior set Int(Ω) = {x : g(x) < 0} of Ω such that (i) B is continuous,
(ii) B(x) ≥ 0, (iii) B(x) → ∞ as x approaches the boundary of Ω. For inequality constraints
gi(x) ≤ 0, i = 1,2, · · · , p in many practical applications, the barrier functions commonly used
are the logarithmic or inverse barrier function. They are defined on Int(Ω) respectively by

B(x) =−
p

∑
i=1

log(−gi(x)) and B(x) =−
p

∑
i=1

1
gi(x)

.

Now, the problem (4) can be transformed into a penalized subproblem

(Pµ) min f (x)+µB(x)

s. t. x ∈ Int(Ω)
(5)

where µ > 0 is called barrier parameter and we take µ small (going to zero). In this approach,
the main assumption is that the original problem (4) has a global solution x∗. Let x(µ) be a global
solution of subproblem (5). When µk→ 0, we hope x(µk) converges to x∗.

Given φ(x,µ) = f (x)+µB(x), we have a generic barrier algorithm given in Algorithm 1.

Algorithm 1 Barrier Algorithm
Given x0 ∈ Int(Ω), µ0 > 0, and k = 0

1. Test the optimality xk for (4) and stop if it’s satisfied.

2. Compute x(µk) as global solution of

(Pk) min φ(x,µk)

s. t. x ∈ Int(Ω).
(6)

3. Take xk+1 = x(µk), 0 < µk+1 < µk, k = k+1 and return to step 1.
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The following Lemma gives a set of inequalities that follow directly from Algorithm 1 steps. A
proof is based from Luenberger & Ye (2008) and Martınez & Santos (1995).

Lemma 2.1. Let {xk} be a sequence generated by Algorithm 1, then

1. φ(xk+1,µk)≤ φ(xk,µk−1)

2. B(xk+1)≥ B(xk)

3. f (xk+1)≤ f (xk).

Proof. Since {µk} is a monotone decreasing sequence, xk+1 is a global minimizer of (6) and
recalling (ii) of barrier condition, B is non-negative function, then

φ(xk+1,µk) = f (xk+1)+µkB(xk+1)

≤ f (xk)+µkB(xk)

≤ f (xk)+µk−1B(xk) = φ(xk,µk−1).

For establishes the second inequality, we also have

φ(xk+1,µk) = f (xk+1)+µkB(xk+1)≤ f (xk)+µkB(xk) (7)

φ(xk,µk−1) = f (xk)+µk−1B(xk)≤ f (xk+1)+µk−1B(xk+1), (8)

now, using (8) and (7), we get

(µk−µk−1)B(xk+1)≤ (µk−µk−1)B(xk)

eliminating the common factor µk−µk−1 < 0, we prove the item 2.

Finally, by previous inequality,

f (xk+1)+µkB(xk+1)≤ f (xk)+µkB(xk)≤ f (xk)+µkB(xk+1),

hence f (xk+1)≤ f (xk). �

The global convergence of the barrier method, in the sense that any limit point of the sequence is
a solution of problem (4), can be verified from the previous Lemma.

Theorem 2.1. Let {xk} be a sequence generated by Algorithm 1, in which µk → 0. Then, any
limit point of the sequence is a global minimizer of problem (4).

Proof. Let fk = min{φ(x,µk) : x ∈ Int(Ω)} be global minimum value of φ(·,µk) on Int(Ω),
whose solution is xk+1. By Lemma 2.1, fk ≥ fk+1 for all k. If f ∗ = min{ f (x) : x ∈Ω}, then

f0 ≥ f1 ≥ ·· · ≥ fk ≥ fk+1 ≥ ·· · ≥ f ∗.
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First of all, we prove only the sequence { fk} converges to f ∗, next we continue with the
demonstration of convergence of some subsequence that will converge to some global minimizer.

Indeed, { fk} is a bounded below monotone decreasing sequence, hence it converges to its infi-
mum, we say f̄ . If f̄ 6= f ∗, then f̄ > f ∗. Recalling x∗ the global minimizer of (4) and since f is a
continuous function, then there is an open ball B centered at x∗ such that, for all x ∈B∩ Int(Ω)

we have,

f (x)< f̄ − 1
2
( f̄ − f ∗). (9)

Since B(x) ≥ 0 for all x ∈ Int(Ω), and 0 < µk+1 < µk, we have 0 < µk+1B(x) < µkB(x), ∀x ∈
Int(Ω). Therefore,

lim
k→∞

µkB(x) = 0,∀x ∈ Int(Ω). (10)

Thus, for any x′ ∈B∩ Int(Ω), and k large enough, we get

µkB(x′)<
1
4
( f̄ − f ∗). (11)

Then, from (9) and (11), we have

φ(x′,µk)< f̄ − 1
2
( f̄ − f ∗)+

1
4
( f̄ − f ∗) = f̄ − 1

4
( f̄ − f ∗)< f̄ ,

which contradicts to fk→ f̄ . Therefore, f̄ = f ∗. That is

fk+1 = φ(xk+1,µk)→ f ∗. (12)

Now, let x̄ ∈ Ω be any subsequential limit of {xk}, more precisely, there is a subsequence {xkl}
such that xkl → x̄. If x̄ 6= x∗ with f (x̄) > f (x∗), then by continuity of f a subsequence { f (xkl )−
f (x∗)+µkl B(xkl )} cannot converge to zero, which contradicts fk− f ∗→ 0. Therefore, x̄ = x∗ or
x̄ 6= x∗, but f (x̄) = f (x∗). Thus, every limit point generated by Algorithm 1 is a global solution
of the problem (4). �

3 PENALTY METHODS OVERVIEW

Given f : Rn→ R a continuous function, we consider the problem

(GP) min f (x)

s. t. x ∈Ω1

x ∈Ω2.

(13)

where Ω1 and Ω2 are any arbitrary subsets of Rn. In most applications Ω1 is defined implicitly by
functional restrictions as h(x) = 0, where h :Rn→Rm. In some cases, we assume that f and h are
twice differentiable functions. A basic assumption is that problem (GP) admits global minimizer,
some theoretical results were established by Polyak (1971), Breitfeld & Shanno (1995), Nash
(2010), and Luenberger & Ye (2008).
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Given a restriction set Ω1, a penalty function is defined as a function P : Rn→ R satisfying (i)
P is continuous, (ii) P(x) = 0 if x ∈Ω1, and (iii) P(x)> 0 if x /∈Ω1.

In order to solve the problem (13), the penalty function method solves the following penalized
subproblem

(Qρ) min f (x)+ρP(x)

s. t. x ∈Ω2,
(14)

where ρ > 0 is a constant called penalty parameter. For ρ large, is clear that a solution of (14)
will be in a region where P is small. Thus, when ρ → ∞ is expected that the corresponding
optimal points will approach the feasible set Ω1.

For C2 class functions, h : Rn→ Rm and g : Rn→ Rp, some useful penalty functions P based
on the type of restrictions h(x) = 0 or g(x)≤ 0 may be

1. P(x) = 1
2‖h(x)‖

2
2, quadratic penalty,

2. P(x) = ‖h(x)‖1,

3. P(x) =
p
∑

i=1
[max{0,gi(x)}]2,

4. P(x) = 1
2‖h(x)‖

2
2 +

p
∑

i=1
[max{0,gi(x)}]2,

in the first item the quadratic penalty function preserves C2 property, but in the last three items
P is only C1.

Given ψ(x,ρ) = f (x)+ρP(x), we have a generic penalty algorithm given in Algorithm 2 for
solving the problem (13), that works iteratively updating the parameter ρ before solving the
penalized subproblem (14)

Algorithm 2 Penalty Algorithm
Given x0 ∈ Rn, ρ0 > 0, and k = 0.

1. Test the optimality of xk for (13) and stop if it’s satisfied.

2. Compute x(ρk) as global minimizer of

(Qk) min ψ(x,ρk)

s. t. x ∈Ω2.
(15)

3. Take xk+1 = x(ρk), ρk+1 > ρk, k = k+1 and return to step 1.

In general, one of the suggestions to compute ρk is taking ρ0 = 1 and ρk+1 = 10ρk, Fletcher
(2013). However, when Ω1 is the set of equality constraints h(x) = 0, a basic rule that works in
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practice is that if ‖h(xk)‖ ≥ 0.1‖h(xk−1)‖, then ρk+1 = 10ρk, otherwise ρ does not change. That
approach was successfully tested for linear programming problems, Suñagua & Oliveira (2017).

The following Lemma gives a set of inequalities that follow directly from Algorithm 2 steps. A
proof is based in Martınez & Santos (1995) and Luenberger & Ye (2008).

Lemma 3.1. Let {xk} be a sequence generated by Algorithm 2, which xk+1 is global solution of
problem (Qk). Then

1. ψ(xk,ρk−1)≤ ψ(xk+1,ρk)

2. P(xk+1)≤P(xk)

3. f (xk)≤ f (xk+1).

Proof. Since {ρk} is a monotone increasing sequence and xk is a global minimizer of
subproblem (15), then

ψ(xk,ρk−1) = f (xk)+ρk−1P(xk)

≤ f (xk+1)+ρk−1P(xk+1)

≤ f (xk+1)+ρkP(xk+1) = ψ(xk+1,ρk).

To establish the second inequality, recalling the optimalities of xk and xk+1, we have

ψ(xk,ρk−1) = f (xk)+ρk−1P(xk)≤ f (xk+1)+ρk−1P(xk+1) (16)

ψ(xk+1,ρk) = f (xk+1)+ρkP(xk+1)≤ f (xk)+ρkP(xk) (17)

using (17) and (16), we get

(ρk−1−ρk)P(xk)≤ (ρk−1−ρk)P(xk+1),

as ρk−1 < ρk, then P(xk)≥P(xk+1). Finally, using this inequality

f (xk)+ρk−1P(xk)≤ f (xk+1)+ρk−1P(xk+1)≤ f (xk+1)+ρk−1P(xk)

hence f (xk)≤ f (xk+1). �

Lemma 3.2. If x∗ is a global minimizer of (GP) then for k = 0,1,2, · · ·

f (xk)≤ ψ(xk,ρk−1)≤ f (x∗).

Consequently, xk ∈Ω1, if and only if, xk is the global solution of (GP).

Pesquisa Operacional, Vol. 40, 2020: e217467
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Proof. Since ρk > 0 and P(x)≥ 0 ∀x ∈ Rn and xk is the global minimizer of (Qk−1), then

f (xk)≤ f (xk)+ρk−1P(xk)≤ f (x∗)+ρk−1P(x∗) = f (x∗),

where P(x∗) = 0. �

The global convergence of the penalty method, in the sense any limit point of the sequence is a
solution, can be verified from the two previous Lemmas.

Theorem 3.1 (Global convergence for penalty method). Let {xk} be a sequence of global
minimizers of (Qk) generated by Algorithm 2 in which ρk → +∞. Then, any limit point of the
sequence is a global minimizer of problem (13).

Proof. With a slight change of notation, the proof is based on Martı́nez & Santos’ demonstra-
tion. Indeed, let {xkl} be a subsequence of {xk} such that xkl → x̄. By the continuity of f , we
have

f (xkl )→ f (x̄). (18)

Let f ∗ be an optimal value of problem (GP). By Lemma 3.1 and Lemma 3.2, the sequence
{ψ(xk,ρk−1)} is nondecreasing and bounded above by f ∗, then

lim
l→∞

ψ(xkl ,ρkl−1) = sup
l≥1

ψ(xkl ,ρkl−1) = p∗ ≤ f ∗. (19)

Thus, using (18) and (19), yields

lim
l→∞

ρkl−1P(xkl ) = lim
l→∞

[( f (xkl )+ρkl−1P(xkl ))− f (xkl )]

= lim
l→∞

( f (xkl )+ρkl−1P(xkl ))− lim
l→∞

f (xkl ) = p∗− f (x̄).

Since P(xkl ) ≥ 0 and ρkl → ∞, we conclude that lim
l→∞

P(xkl ) = 0. Using the continuity of P ,

P(x̄) = 0, thereby x̄∈Ω1. To prove the optimality of x̄, just note that by Lemma 3.2, f (xkl )≤ f ∗,
then

f (x̄) = lim
l→∞

f (xkl )≤ f ∗,

which completes the proof, because obviously f ∗ ≤ f (x), and then f (x) = f ∗. �

Furthermore, by definition of ψ and (19)

f (xxl )≤ ψ(xxl ,ρkl−1)≤ p∗⇒ f (x)≤ p∗ ≤ f ∗.

Therefore f (x) = p∗ = f ∗, then
lim
l→∞

ρkl−1P(xkl ) = 0. (20)

And using (19)
lim
l→∞

ψ(xkl ,ρkl−1) = f ∗. (21)
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4 MIXED BARRIER-PENALTY METHOD

For continuous function f : Rn→ R, we consider the general programming problem

(NLP) min f (x)

s. t. x ∈Ω1,x ∈Ω2,x ∈Ω3.
(22)

where Ω1, Ω2 and Ω3 are restriction sets that are defined in (1).

As in the previous sections, we assume that problem (22) admits a global minimizer. Now, let P

a penalty function related to Ω1 and B a barrier function related to Ω2. Then, taking the penalty
parameter ρ > 0 and the barrier parameter µ > 0, we have the associate mixed barrier-penalty
subproblem,

(BPρ,µ) min f (x)+ρP(x)+µB(x)

s. t. x ∈ Int(Ω2),x ∈Ω3.
(23)

Since the general problem (NLP) admits global minimizer, then the problem (BPρ,µ) in (23) also
admits a global solution for any feasible parameter values. Therefore, we define

Φ(x,ρ,µ) = f (x)+ρP(x)+µB(x). (24)

In order to solve the general problem (22), we provide a generic algorithm given in Algorithm 3,
that works iteratively updating ρ and µ parameters before solving the penalized subproblem (23).

Algorithm 3 Mixed barrier-penalty algorithm
Given x0 ∈ Rn, ρ0 > 0, µ0 > 0, and k = 0

1. Test the optimality of xk for (22) and stop if it’s satisfied

2. Compute x(ρk,µk) as global minimizer of

(BPk) min Φ(x,ρk,µk)

s. t. x ∈ Int(Ω2),x ∈Ω3.
(25)

3. Take xk+1 = x(ρk,µk), ρk+1 > ρk, 0 < µk+1 < µk, k = k+1 and return to step 1.

To establish the global convergence of the Algorithm 3, firstly we can associate the additive terms
in two convenient ways

Φ(x,ρ,µ) = [ f (x)+ρP(x)]+µB(x)

= [ f (x)+µB(x)]+ρP(x).
(26)

Therefore, fixing respectively ρ and µ , we define Fρ(x) = f (x)+ρP(x) and Gµ(x) = f (x)+
µB(x), then we associate to (NLP) the following two problems

Pesquisa Operacional, Vol. 40, 2020: e217467
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(GPρ) min Fρ(x) (GPµ) min Gµ(x)

s. t. x ∈Ω2 s. t. x ∈Ω1,x ∈ Int(Ω2) (27)

x ∈Ω3 x ∈Ω3.

Since the problem (NLP) admits a global minimizer, both (GPρ) and (GPµ) in (27) also admit
global minimizers. Therefore, defining

φρ(x,µ) = Fρ(x)+µB(x) and ψµ(x,ρ) = Gµ(x)+ρP(x).

We have respectively the barrier and penalty subproblems

(BPρ) min φρ(x,µ) (PPµ) min ψµ(x,ρ)

s. t. x ∈ Int(Ω2) s. t. x ∈ Int(Ω2) (28)

x ∈Ω3, x ∈Ω3

By fixing one of the parameters according to (27), the two problems in (28) are equivalent to
(BPρ,µ). In fact

φρ(x,µ) = Φ(x,ρ,µ) = ψµ(x,ρ), (29)

therefore, we can apply the results obtained in the preceding two sections.

In order to understand more clearly the ideas of the mixed problem, we consider the following
particular quadratic problem

min x2
1 + x2

2

s. t. x2 = 2

1− x1 ≤ 0

−1− x2 ≤ 0.

(30)

According to the contours of the objective function and graph of restrictions in Figure 1, the
optimal point is x∗ = (1,2). First, if we consider the Lagrangian function L (x1,x2,λ ,u1,u2) =

x2
1 + x2

2 + λ (x2− 1) + u1(1− x1) + u2(−1− x2), the Karush–Kuhn-Tuker conditions (Kuhn &
Tucker, 1951) are

Lx1 = 2x1−u1 = 0,Lx2 = 2x2 +λ −u2 = 0

x2−2 = 0, 1− x1 ≤ 0, −1− x2 ≤ 0

u1(1− x1) = 0, u2(−1− x2) = 0

u1 ≥ 0, u2 ≥ 0

whose unique solutions for variables and Lagrangian parameters are x∗1 = 1, x∗2 = 2, u∗1 = 2,
u∗2 = 0, λ ∗ =−4.
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Figure 1 – Convex Problem.

Now, we associate to (30) the mixed barrier-penalty subproblem

(QPρ,µ) min Φ(x,ρ,µ)

s. t. 1− x1 < 0

−1− x2 < 0.

(31)

where the penalized objective function is

Φ(x,ρ,µ) = x2
1 + x2

2 +
ρ

2
(x2−2)2−µ[log(x1−1)+ log(x2 +1)− logM]

where M is a large enough positive number such that x1 > 1, x2 >−1 and (x1−1)(x2 +1)< M,
surely this region lies within inequality constraints 1− x1 < 0 and −1− x2 < 0. This condition
ensures that the barrier function is non-negative in the region that contains optimal point.

It is easy to see that Φ is a smooth function, thereby from first-order necessary conditions for
optimal points, we have

2x1−
µ

x1−1
= 0,

2x2 +ρ(x2−2)− µ

x2 +1
= 0.

(32)

Pesquisa Operacional, Vol. 40, 2020: e217467
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Solving this nonlinear system, subject to x1 > 1 and x2 > −1, by the substitution method, we
obtain

x1 =
1+
√

1+2µ

2
µ→0→ 1 = x∗1

x2 =
ρ−2+

√
(2−ρ)2 +4(2+ρ)(2ρ +µ)

2(2+ρ)

µ → 0
ρ → ∞

→ 2 = x∗2.

(33)

Thus, for each optimal point in (33), the optimal values of problem (QPρ,µ) in (31) is θ(ρ,µ) =

Φ(x1,x2,ρ,µ), whose graph is shown in Figure 2 with M = 2.

Figure 2 – θ(ρ,µ), 0 < µ < 2.5, 0 < ρ < 20.

We can see that for fixed µ , θ(ρ,µ) is an increasing function and for fixed ρ , θ(ρ,µ) is a
decreasing function. This fact will be showed theoretically in Theorem 4.1.

Furthermore, using (33), when µ → 0 and ρ → ∞, the following gradient’s coefficients in (32)
converge to optimal Lagrangian parameters

u1 =
µ

x1−1
= 1+

√
1+2µ → 2 = u∗1

u2 =
µ

x2 +1
=

2µ(2+ρ)

2+3ρ +A
→ 0 = u∗2

λ = ρ(x2−2) =
ρ(−10−3ρ +A)

2(2+ρ)
→−4 = λ

∗

Pesquisa Operacional, Vol. 40, 2020: e217467
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where A =
√

4µ(2+ρ)+(2+3ρ)2. In addition, the Hessian matrix for Φ is

∇
2
Φ =

2+
µ

(x1−1)2 0

0 2+ρ +
µ

(x2 +1)2



=

2+
u2

1
µ

0

0 2+ρ +
u2

2
µ

∼
2+

4
µ

0

0 2+ρ

 .

Then ∇2Φ is a positive definite matrix, that guarantees the minimality of x1 and x2 in (33).
Moreover, the approximate condition number of this matrix is

κ(∇2
Φ)≈

2+ 4
µ

2+ρ
,

hence ∇2Φ is ill-conditioned for very small µ and small ρ , however for large ρ , that condition
number could be reduced.

Next, we have the global convergence theorem for the mixed barrier-penalty algorithm.

Theorem 4.1 (Global convergence for mixed method). Let {xk} be a sequence of global mini-
mizers of (BPk) problem in (25) generated by mixed Algorithm 3 in which ρk→+∞ and µk→ 0.
Then any limit point of sequence is a global minimizer of the (NLP) problem.

Proof. In order to apply the results of the preceding sections, the idea is to fix, one of the
parameters in the (BPρ,µ) subproblem in (23) one at a time, and apply the corresponding results
for each subproblems in (27).

Firstly, to fix ρ , let {xρ

k } be the sequence generated by Algorithm 1 for solving the (GPρ)

subproblem in (27). By applying Lemma 2.1, we get

φρ(x
ρ

k+1,µk)≤ φρ(x
ρ

k ,µk−1),

Fρ(x
ρ

k+1)≤ Fρ(x
ρ

k ).
(34)

By the monotonicity in (34) and by (12) the sequence {φρ(x
ρ

k ,µk−1)} converges to global optimal
value of the problem (GPρ) in (27), that is,

φρ(x
ρ

k ,µk−1)−→ inf
k≥1

φρ(x
ρ

k ,µk−1) = Fρ(x
ρ
∗ ). (35)

In addition, from Theorem 2.1 all convergent subsequence of {xρ

k } converges to a global
minimizer of the problem (GPρ) in (27).

Similarly, to fix µ , let {xµ

k } be the sequence generated by the associated Algorithm 2 for solving
the (GPµ) subproblem in (27). By applying Lemma 3.1, we get

ψµ(x
µ

k ,ρk−1)≤ ψµ(x
µ

k+1,ρk),

Gµ(x
µ

k )≤ Gµ(x
µ

k+1).
(36)
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By the monotonicity in (36) and by (21), the sequence {ψµ(x
µ

k ,ρk−1)} converges to global
optimal value of the (GPµ) problem of (27), that is,

ψµ(x
µ

k ,ρk−1)−→ sup
k≥1

ψµ(x
µ

k ,ρk−1) = Gµ(x
µ
∗ ). (37)

In addition, from Theorem 3.1 all convergent subsequence of {xµ

k } converges to a global
minimizer of the problem (GPµ) in (27). And by Lemma 3.2, we get Gµ(x

µ

k )≤ Gµ(x
µ
∗ ), ∀k.

Now let {xk} be a sequence of minimizers obtained by Algorithm 3 for a mixed problem. More
precisely, let xk+1 = x(ρk,µk) which also minimizes (28), because according to (29), we have

Φ(xk+1,ρk,µk) = f (xk+1)+ρkP(xk+1)+µkB(xk+1) = φρk(xk+1,µk) = ψµk(xk+1,ρk)

Since (35) and (37), we have

Fρk(x
ρk
∗ )≤ φρk(xk+1,µk) = Φ(xk+1,ρk,µk)

= ψµk(xk+1,ρk)≤ Gµk(x
µk
∗ ).

(38)

Giving x(ρk,µk) the solution of (BPρ,µ) for µ = µk and ρ = ρk. For µk < µk−1, additionally we
solve (BPρ,µ) for µ = µk−1 and ρ = ρk, which solution is called x(ρk,µk−1). Using (34)

φρk(x(ρk,µk),µk)≤ φρk(x(ρk,µk−1),µk−1) (39)

and by (29), for x = x(ρk,µk) and y = x(ρk,µk−1), we have

φρk(x,µk) = f (x)+ρkP(x)+µkB(x) = ψµk(x,ρk)

φρk(y,µk−1) = Fρk(y)+µk−1B(y) = f (y)+ρkP(y)+µk−1B(y)

= f (y)+µk−1B(y)+ρkP(y) = Gµk−1(y)+ρkP(y)

= ψµk−1(y,ρk)

(40)

Using (39) and (40), we get

ψµk(x(ρk,µk),ρk)≤ ψµk−1(x(ρk,µk−1),ρk)

⇒ Gµk(x
µk
∗ )≤ Gµk−1(x

µk−1
∗ ).

Similarly, for ρk > ρk−1, additionally we consider a solution of (BPρ,µ) for ρ = ρk−1 and µ = µk,
which solution is called x(ρk−1,µk). Using (36)

ψµk(x(ρk−1,µk),ρk−1)≤ ψµk(x(ρk,µk),ρk) (41)

and by (29) for x = x(ρk,µk) and z = x(ρk−1,µk), we have

ψµk(x,ρk) = f (x)+µkB(x)+ρkP(x) = φρk(x,µk)

ψµk(z,ρk−1) = Gµk(z)+ρk−1P(z) = f (z)+µkB(z)+ρk−1P(z)

= f (z)+ρk−1P(z)+µkB(z) = Fρk−1(z)+µkB(z)

= φρk−1(z,µk)

(42)
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Using (41) and (42), we get

φρk−1(x(ρk−1,µk),µk)≤ φρk(x(ρk,µk),µk)

⇒ Fρk−1(x
ρk−1
∗ )≤ Fρk(x

ρk
∗ ).

Let x∗ be a global minimizer of (NLP). Recalling xµk
∗ a solution of the problem (GPµk) in (27),

with the additional assumption xµk
∗ ∈ Int(Ω2), we can conclude that f (x∗)≤Gµk(x

µk
∗ ). Moreover

x∗ is a feasible point of the problem (GPρ), then Fρk(x
ρk
∗ ) ≤ f (x∗). Therefore, {Gµk(x

µk
∗ )} is a

monotone nonincreasing sequence that is bounded below by f (x∗) and using (12) this sequence
converges to its infimum f (x∗). Also, {Fρk(x

ρk
∗ )} is monotone nondecreasing sequence that is

bounded above by f (x∗) and by (21) that sequence converges to its supremum f (x∗), that is,

Fρk(x
ρk
∗ )−→ sup

k≥1
Fρk(x

ρk
∗ ) = f (x∗),

Gµk(x
µk
∗ )−→ inf

k≥1
Gµk(x

µk
∗ ) = f (x∗).

(43)

By applying squeeze theorem1 to (38) and (43), we show

lim
k→∞

Φ(xk,ρk−1,µk−1) = f (x∗). (44)

Let {xkl} be any subsequence of {xk} such that xkl → x̄. By the continuity of f , we get f (xkl )→
f (x̄). The final demonstration will be done by contradiction under the assumption x̄ 6= x∗ with
f (x̄) > f (x∗). Using (10) for the problem (GPρ), we have µkl−1B(x)→ 0, for any x ∈ Int(Ω2).
Furthermore, using (20) for the problem (GPµ), also we have ρkl−1P(xkl )→ 0, and by continuity
of f , the sequence { f (xkl )− f (x∗) + ρkl P(xkl ) + µkl B(xkl )} cannot converge to zero, which
contradicts (44). �

5 APPLICATIONS

5.1 Barrier-Penalty applied to convex problem

The Algorithm 4 is an algorithm based on generic Algorithm 3 in order to solve the nonlinear
problem (30).

For ρ0 = 1, µ0 = 1 and x0 = (1.5,1) we write a MATLAB script for Algorithm 4 in order to
compute a sequence of optimal points that approach to x∗ = (1,2). The iterative results is shown
in Table 1.

The path following points is shown in Figure 3, where last points are close to x∗. The exact results
also solved by MATLAB are x∗ = (1.000000,2.000000) and f (x∗) = 5.000000.

1formulated in modern terms by Carl Friedrich Gauss
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Algorithm 4 Mixed barrier-penalty algorithm
Given x0 ∈ Rn, ρ0 > 0, µ0 > 0, and k = 0

1. Test the optimality of xk for (30). Stop if it’s satisfied

2. Compute x(ρk,µk) as global minimizer of

min Φ(x,ρk,µk) = x2
1 + x2

2 +
ρk

2
(x2−2)2−µk[log(x1−1)+ log(x2 +1)]

s. t. 1− x1 < 0

−1− x2 < 0.

(45)

3. Take xk+1 = x(ρk,µk), ρk+1 = 10ρk, µk+1 =
µk

10
, k = k+1 and return to step 1.

Table 1 – Iterative results.

k xk Φ(xk,ρk,µk) ρk µk

0 (1.500000,1.000000) 3.25000000 1 1
1 (1.366025,0.847127) 3.63962871 10 0.1
2 (1.047723,1.669788) 4.63714955 100 0.01
3 (1.004975,1.960817) 4.97372208 103 0.001
4 (1.000500,1.996008) 4.99951984 104 0.0001
5 (1.000054,1.999600) 5.00018097 105 1e-05
6 (1.000009,1.999960) 5.00004320 106 1e-06
7 (1.000101,1.999996) 5.00020113 107 1e-07
8 (1.000020,2.000000) 5.00004029 108 1e-08
9 (1.000001,2.000000) 5.00000209 109 1e-09

5.2 Penalized standard linear programming problem

We consider the standard linear programming problem where several variables are upper bounded

(LP) min cT x

s. t. Ax = b (46)

Ex≤ u

x≥ 0,

where A is m× n matrix, c,x ∈ Rn, b ∈ Rm, and E is formed by rows of n× n identity matrix
corresponding to bounded variables, thereby Ex is the vector of bounded variables for which u is
the vector of upper bounds. In this case is usual to add the slack variable v such that Ex+ v = u,
where v≥ 0.
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Figure 3 – Points generated by Algorithm 4.

In the most computational packages that implement Interior Point Methods for solving linear
programming problems only barrier parameter is considered.

In order to solve the LP problem (46), by using the quadratic penalty and logarithmic barrier
functions, the objective function is penalized as follow

Φ(x,v,ρ,µ) =cT x+
ρ

2
‖b−Ax‖2−µ

n

∑
j=1

logx j−µ

nb

∑
j=1

logv j, (47)

where µ and ρ are respectively the barrier and penalty parameters and nb is the number of
bounded variables. Then the associated mixed barrier-penalty subproblem is

(LPPρ,µ) min Φ(x,v,ρ,µ) (48)

s. t. (x,v)> 0.

Since Φ(x,v,ρ,µ) is a smooth function on open set (x,v) > 0. By applying the first-order
necessary condition, we have

c−AT
ρ(b−Ax)−µX−1e+µETV−1e = 0,

Defining y = ρ(b−Ax), z = µX−1e, w = µV−1e, we get

c−AT y+ET w− z = 0, Ex+ v = u,

XZe = µe, VWe = µe, y = ρ(b−Ax).

Taking δ = 1/ρ , we rewrite δy = b−Ax. Thus Ax+δy = b.

Therefore, the optimality conditions for subproblem (LPPρ,µ) on (x,v)> 0 and (z,w)> 0 are

Ax+δy = b

Ex+ v = u

AT y+ z−ET w = c (49)

XZe = µe

VWe = µe.
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In Interior Point Methods reviewed on Suñagua & Oliveira (2017), we find a search direction by
applying Newton’s Method for solving nonlinear system (49). In fact, the Newton’s directions
satisfy 

A 0 δ I 0 0
E I 0 0 0
0 0 AT I −ET

Z 0 0 X 0
0 W 0 0 V




dx
dv
dy
dz
dw

=


rp

ru

rd

rc

rs


rp = b−Ax−δy
ru = u−Ex
rd = c−AT y− z+ET w
rc = µe−XZe
rs = µe−VWe,

(50)

solving this block linear equations, we find up

dz = X−1(rc−Zdx), dw =V−1(rs−Wdw), dv = ru−Edx (51)

replacing this on third group of equations

AT dy−D−1dx = rd−X−1rc +ETV−1rs−ETV−1Wru

where D−1 = X−1Z +ETV−1WE, then

dx = D(AT dy− rd +X−1rc−ETV−1rs +ETV−1Wru) (52)

using (52) and first group of equations of (50), we get the normal equations

(ADAT +δ I)dy = AD(rd−X−1rc +ETV−1rs−ETV−1Wru) (53)

close to optimal point, D matrix is very bad scaled and then ADAT is also very ill-conditioned. In
this case, the penalty parameter δ improves that condition number, which is helpful for solving
the symmetric positive definite system by applying conjugate gradient method for instance.

Alternatively to (52) and (53), dx and dy also obtain by solving the following augmented system(
−D−1 AT

A δ I

)(
dx
dy

)
=

(
r1

rp

)
(54)

where r1 = rd −X−1rc +ETV−1rs−ETV−1Wru. This system is also symmetric, indefinite and
better condition number due to penalty parameter.

For computational experiments, we use the open source package PCx (Czyzyk et al., 1997), that
implements the Mehrotra’s Predictor–Corrector algorithm in which the barrier parameter µ is
already incorporated in order to solve linear programming problems. By adding an appropriate
code to PCx, we achieve to incorporate the penalty parameter δ , thus, we obtain the modified
PCx called the Predictor–Corrector mixed algorithm with barrier and penalty parameters. The
numerical results for several NETLIB LP problems were computed for approaches proposed in
Suñagua & Oliveira (2017), where the goodness of the approaches were compared according to
Dolan & More (2002) performance profile criteria.
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6 CONCLUSIONS

Firstly, we present a brief summary of the main concepts and results upon the barrier and penalty
methods, where for each method we show the global convergence theorems in order to use these
strategies in the proof of the global convergence theorem for mixed algorithm.

In the Section 4, we provide a mixed algorithm for solving mixed barrier-penalty subproblem
(23), and we provide a constructive proof on global convergence theorem for mixed barrier-
penalty methods as an alternative showed in Fiacco & McCormick (1990) and Breitfeld &
Shanno (1995). For simple convex nonlinear problems we write MATLAB code in order to
generate iterative points that illustrate penalty and barrier functions.

Finally, we develop an application for nonlinear programming problems with equality and in-
equality functional constraints, such as, quadratic programming problem, and a standard linear
programming problem. Since the functions involved have the smooth property on an open set,
then the optimality conditions for each class of problems are stated, those can be solved by
applying interior point methods.
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