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ABSTRACT. The generalized additive model (GAM) has been used in many epidemiological studies where
frequently the response variable is a nonnegative integer-valued time series. However, GAM assume that
the observations are independent, which is generally not the case in time series. In this paper, an autoregres-
sive moving average (ARMA) component is incorporated to the GAM. The resulting GAM-ARMA model
is based on the generalized linear autoregressive moving average (GLARMA) model where some linear
components are replaced by natural splines. Numerical simulations are presented and show that the ARMA
component influences the estimation. In a real data analysis of the effects of air pollution on respiratory
disease in the metropolitan area of Belo Horizonte, Brazil, it is shown that the proposed model presents a
better fit when compared to the classical GAM approach, that does not take into account the autocorrelation
of the data.

Keywords: GAM, ARMA model, semiparametric model, Poisson-valued time series.

1 INTRODUCTION

Epidemiological data are frequently treated as time series of counts because they record the
relative frequency of certain events that occur in successive time intervals and the observations
are correlated.
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2 GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES

Many epidemiological studies have been carried out to investigate the impact of ambient air
pollution concentrations and meteorological conditions on human health. Kelsall et al. (1997),
Ostro et al. (1999), Goldberg et al. (2003) and other authors found significant association be-
tween daily pollutant concentration levels and mortality. Alonso et al. (2010) studied the impact
of atmosphere pressure, air humidity, and temperature on the number of hospitalizations. Besides
that, Roberts (2004), Stafoggia et al. (2008) and other authors found the evidence of interactive
effects between temperature and air pollution (e.g., particulate matter and ozone) on mortal-
ity and adverse health outcomes. Such studies are an alert about the importance of controlling
and reducing air pollutant emissions, and provide support for health departments in resource
allocation.

Nevertheless, most of these studies try to model the relation between the occurrence of a disease
and the air pollutants using procedures that are not able to capture the dependence inherent to
the observations, such as the generalized linear model (GLM) (Nelder and Wederburn, 1972)
and GAM (Hastie and Tibishirani, 1990). New methodologies were then proposed to model time
series of counts. Shephard (1995) introduced the GLARMA model, then generalized by Davis
et al. (2003). This methodology adds an ARMA structure to the GLM and is able to model
time series belonging to the exponential family. In the same vain, Benjamin et al. (2003) pro-
posed the generalized ARMA model. Mckenzie (1985) and Al-Osh and Alzaid (1987) introduced
the integer-valued autoregressive model. Heinen (2003) proposed the autoregressive conditional
Poisson model for counting data with time dependency and over-dispersion. Gamerman et al.
(2013) proposed a family of non-gaussian state space models that allows the marginal likelihood
to be calculated in an exact way.

The above models assume that the relation between the response variable and the covariates
is linear. The GAM offers more flexibility and has been used by many authors to solve real
problems in the environmental context, see e.g. Schwartz (2000), Aldrin and Haff (2005), and
Belusic et al. (2015). Despite its widespread use, care is required when GAM is used in time
series due to the serial correlation present in the data. Very few works are concerned with this
issue, in particular Yang et al. (2012) who proposed GAM with autoregressive terms. Souza et
al. (2018) have also proposed a hybrid model, including GAM, principal component analysis,
and vector autoregression to address the multicolinearity problems that can occur when including
several air pollutants in the analysis.

In this work a more general model for count data is proposed, which is able to handle both
the autocorrelation structure of the time series and the nonlinearity existing in the covariates.
This model is composed of a GAM with an ARMA component and is called a GAM-ARMA
model. The non-parametric components are estimated through some smoothed functions, such
as splines. Numerical simulations are performed to access the accuracy of parameter estimation
in small sample size series following a Poisson distribution. Finally, a real-time series is analyzed
without taking and taking into account the autocorrelation of the data. The example includes the
fit of a GAM-ARMA model to evaluate the impact of air pollutants and meteorological variables
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on the number of chronic obstructive pulmonary disease cases in the metropolitan area of Belo
Horizonte, Brazil.

The paper is organized as follows. Section 2 presents the GAM-ARMA model, detailing some
properties and the inference procedure. Section 3 shows the simulation study. Section 4 presents
the analysis of a real series of pulmonary disease counts. Section 5 concludes the work.

2 THE GAM-ARMA MODEL

2.1 Presentation of the model

We combine the GAM with the ARMA model proposed by Box and Jenkins (1976) to model lin-
ear and nonlinear relations between the response variable and the covariates, and the time correla-
tion of the response. The advantage of this methodology is the possibility to adjust semiparamet-
ric and non-parametric models to the data, capturing either linear and non-linear relationships,
and thus obtaining better estimates.

As in the GLARMA model, the conditional distribution of the observation yt given the past
information F y

t−1 = σ{ys,s≤ t−1} follows a Poisson distribution, i.e.,

yt |F y
t−1 ∼ Poi(µt), (1)

where µt = E(yt |F y
t−1). Here, the predictor ηt = ln(µt) follows the model

ηt = β0 +
k

∑
j=1

β jxt, j +
l

∑
j=1

s j(wt, j)+Zt , (2)

where (xt,1, . . . ,xt,k) denotes the covariates related linearly to ηt , (wt,1, . . . ,wt,l) denotes the
covariates related to ηt via smooth functions s1, . . . ,sl , and Zt modelises the time correlation.
Following Davis et al. (2003),

Zt =
∞

∑
i=1

τiεt−i, (3)

where, for some λ ∈ (0,1],

εt = (yt −µt)µ
−λ
t = (yt − eηt )e−ληt , (4)

and the parameters τi’s are the coefficients in the power series expansion

∞

∑
i=1

τizi =

(
1−

p

∑
i=1

φizi

)−1(
1+

q

∑
i=1

θizi

)
−1, |z| ≤ 1, (5)

where the polynomials φ(z) = 1−φ1z−·· ·φpzp and θ(z) = 1+θ1z+ · · ·θqzq have no common
zeroes and have all their zeros outside the unit circle. It follows from (3) and (5) that Zt can be
calculated recursively with the difference equation

Zt = φ1(Zt−1 + εt−1)+ · · ·+φp(Zt−p + εt−p)+θ1εt−1 + · · ·+θqεt−q. (6)
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4 GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES

According to (4), E(εt |F y
t−1) = µ

−λ
t (E(yt |F y

t−1)−µt) = 0. Now, let F ε
t−1 = σ{εs,s≤ t−1},

(4) implies that F ε
t−1 ⊂F y

t−1. Therefore,

E(εt |F ε
t−1) = E[E(εt |F y

t−1) |F
ε
t−1] = 0,

which shows that (εt) is a martingale difference sequence. Hence, cov(εs,εt) = 0 for s 6= t, and
the variance of εt is

var(εt) = E(ε2
t ) = E[E(ε2

t |F
y
t−1)] = E(µ−2λ

t E[(yt −µt)
2 |F y

t−1]) = E(µ1−2λ
t ). (7)

Now, (2), (6) and (7) imply that

E(ηt) = β0 +
k

∑
j=1

β jxt, j +
l

∑
j=1

s j(wt, j),

var(ηt) =
∞

∑
i=1

τ
2
i E(µ1−2λ

t−i ),

and

cov(ηt ,ηt+h) =

{
∑

∞
i=1 τiτi+h E(µ1−2λ

t−i ), if h≥ 0,

∑
∞
i=1 τiτi−h E(µ1−2λ

t+h−i), if h < 0,

When λ = 0.5, (εt) are the Pearson residuals and the covariances of (ηt) do not depend on t,
even if (ηt) is not strictly stationary.

2.2 Parameter estimation

There are several approaches in the literature to estimate functions s j’s. Recent studies have
used reduced rank approaches due to the low computational cost and facilities to obtain good
estimators of the s j’s. Wood (2006) presents a review of methods for choosing the s j’s using
the GAM methodology and some approaches as thin plate regression splines (Wood, 2003),
B-splines and basis splines (De Boor, 1978; Dierckx, 1993), among others.

In this work, the B-spline curves were used given their simplicity to obtain flexible smooth-
ing. B-splines are constructed from polynomial pieces, joined at control points called knots. By
definition, the B-spline Bi,d depends on the knots ti ≤ ·· · ≤ ti+d+1, where d is the order of the
polynomial. If the knot vector is (t1, t2, . . . , tm+d+1) for some positive integer number m, it is pos-
sible to form m B-splines B1,d , . . . ,Bm,d of degree d associated with this knot vector. A spline
function s j is a linear combination of B-splines, i.e.,

s j =
m

∑
i=1

αi, jBi,d , (8)

where the reals α1, j, . . . ,αm, j are called the B-spline coefficients of s j. For more properties, see
De Boor (1978). Here, we take d = 3 and we use natural cubic splines. In this case, the poly-
nomials before the first knot and after the last knot are modeled through linear functions, which
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means that the second derivative at the two end points are zero. General accounts about splines
can be found in the books by Hastie et al. (2008), and Ahlberg et al. (1967). The choice of
the optimal number of knots is based on the work of Harrell (2004) and depends on the sample
size n. Typically, when n≤ 100, three or four knots usually generate good fitting and a balanced
model in relation to flexibility and loss of accuracy. For large n, five knots is a good starting
point. The Akaike’s information criterion (AIC) can be used to choose the number of knots, see
Akaike (1973).

Combining (2) and (8), and dropping d = 3 in the notation, the model of the predictor can be
written as

ηt = β0 +
k

∑
j=1

β jxt, j +
l

∑
j=1

m

∑
i=1

αi, jBi(wt, j)+Zt , (9)

where Zt is given by (6). Thus, for a fixed integer m and fixed knots (t1, t2, . . . , tm+4), the parameter
vector of the GAM-ARMA model is defined by

δ = (β0, . . . ,βk,α1,1, . . . ,αm,l ,φ1, . . . ,φp,θ1, . . . ,θq).

According to (1), the conditional log-likelihood function is

Ln(δ ) =
n

∑
t=1

(ytηt(δ )− eηt (δ )),

where ηt(δ ) is given by (9) and Zt(δ ) is obtained by (6). The maximization of Ln(δ ) can be
performed by Newton’s method initialized with zero values for all parameters. In practice, the
convergence occurs approximately within 10 iterations.

Goodness-of-fit measures for the proposed methodology can be calculated with the AIC and the
bayesian information criterion (BIC) defined by

BIC =−2ln(Ln(δ̂n))+ r ln(n),

where δ̂n are the parameter values that maximize Ln(δ ) and r is the number of parameters
estimated by the model.

The relative risk (RR) is widely used to measure the impact of air pollution on human health,
see Baxter et al. (1997). RR for the pollutant covariate x j = (xt, j) in (9) is the relative change in
the expected count of respiratory disease event per ξ -unit change in x j while keeping the other
covariates fixed, and is given by

R̂Rx j(ξ ) = exp(β̂ jξ ).

RR and its confidence interval (CI) of level 1−α are estimated as follows,

R̂Rx j(ξ ) = exp(β̂ jξ ), (10)

ĈI{RRx j(ξ )}= exp(β̂ jξ ± zα/2 se(β̂i)ξ ), (11)

where β̂ j is the conditional maximum likelihood estimator β̂ j,n of β j, se(β̂ j) is the estimated
standard deviation (s.d.) of β̂ j, and zα/2 denotes the (1−α/2)-quantile of the standard normal
distribution.
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6 GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES

3 SIMULATION STUDY

In our numerical experiment, the sample size is n = 100, the number of replications is N = 1000,
λ = 0.5 in (4), (p,q) = (1,0) in (6) and (k, l,m) = (2,1,3) in (9). The predictor model is given
by

ηt = β0 +β1xt,1 +β2xt,2 +α1B1(wt)+α2B2(wt)+α3B3(wt)+Zt , (12)

where the Bi’s compose the B-spline basis for natural cubic splines and

Zt = φ [Zt−1 +(yt−1− eηt−1)e−ηt−1/2]. (13)

The covariates (xt,1,xt,2) are simulated (one time) with the ARMA models, xt,1 = 0.42xt−1,1 +

ut + 0.13ut−1 and xt,2 = 0.30xt−1,2 + vt − 0.76vt−1 − 0.17vt−2 where (ut ,vt) is a sequence of
independent Gaussian random variables with zero-mean and unit variance. The covariate (wt) is
the real time series of daily minimum temperature in Vitória, Brazil, between April 10, 2005 and
July 19, 2005. The parameter values are

β0 = 0.8, β1 = 0.1, β2 =−0.2, α1 = 0.5, α2 =−1.0, α3 = 0.8,

and three different values of φ are considered, φ = 0.1,0.4,0.6 corresponding respectively to
increasing values of the autocorrelation in the response variable.

In Table 1, µ̂
δ̂ j

represents the average of the N estimates of the parameter δ j and the correspond-
ing mean squared errors (MSE) in parenthesis for φ = 0.1,0.4,0.6. We see that the estimates are
close to the true values of the parameters. In general, the values of MSE are small, but increase
as φ increases.

Figure 1 presents the histograms of the N estimates of φ and the β j’s for φ = 0.1,0.4,0.6. While
the empirical distribution of the estimates of φ is approximately symmetric about the true value
when φ = 0.1,0.4, this distribution is asymmetric when φ = 0.6. The empirical distribution of
the estimates of β0 is asymmetric about the true value for all values of φ . Concerning β1 and β2,
the distributions are approximately symmetric about their true values, even when φ = 0.6.

Table 1 – Parameter estimates in Model (12)–(13) with MSE in parenthesis.

µ̂
φ̂

µ̂
β̂0

µ̂
β̂1

µ̂
β̂2

µ̂α̂1
µ̂α̂2

µ̂α̂3

φ = 0.1
0.0845 0.7637 0.0986 -0.1953 0.5455 -0.9812 0.8134

(0.0074) (0.1795) (0.0078) (0.0036) (0.1264) (0.9071) (0.0917)

φ = 0.4
0.3927 0.6907 0.0945 -0.1956 0.5332 -0.8401 0.9035

(0.0055) (0.1852) (0.0067) (0.0028) (0.1236) (0.7623) (0.0985)

φ = 0.6
0.5311 0.7078 0.0362 -0.2443 0.2491 -0.6168 0.9289

(0.0128) (0.2084) (0.0145) (0.0049) (0.2183) (0.9690) (0.1587)
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Figure 1 – Histograms of parameter estimates of φ and the β j’s in Model (12)–(13).

4 RESULTS

Here, we fit a GAM-ARMA model to the monthly number of chronic obstructive pulmonary
disease (COPD) cases, popularly known as acute bronchitis, in the metropolitan area of Belo
Horizonte, Brazil, between January 2007 and December 2013 (n = 84). According to the depart-
ment of information technology of the Brazilian public health system, each hour three Brazilian
citizens die as a result of this disease. The objective of this analysis is to evaluate the associa-
tion among the concentration of atmospheric pollutants and meteorological conditions with the
occurrence of COPD in Belo Horizonte.

Studies concerning air pollution in Belo Horizonte are relatively rare, even rarer regarding the
relation between pollutant series and respiratory diseases. Information about the concentration

Pesquisa Operacional, Vol. 41, 2021: e241120



8 GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES

of pollutants in this region is very limited, with all the series presenting missing observations.
Among the pollutants measured at the state environment and water resources institute, we se-
lect the nitrogen monoxide (NO) as the explanatory variable in this study since it presents the
largest significative correlation coefficient ρ = 0.3 related to COPD. Some data imputations are
performed before fitting the model, in order to handle the missing observations. We use a robust
procedure for imputation in time series using Kalman smoothing and state space model (Harvey,
1989) and the package “imputeTS” from software R (Moritz, S., Package “imputeTS” - Time
series missing value imputation).

Figure 2 presents the time series of COPD cases, NO concentration, minimum temperature (Tmin)
and relative humidity (RH) of the air. A positive trend can be detected in the number of COPD
cases and NO concentration. Furthermore, all time series present a seasonal behaviour. Table 2
contains some descriptive statistics of the data, where Q1 and Q3 denote the first and third
quartile, respectively.

Table 2 – Descriptive statistics of the data.

Min Max Q1 Q3 Mean Median s.d.

Cases 10 196 27 66 54.93 41 42.3
NO (µg/m3) 0.57 33.11 9.05 15.52 12.97 12.01 5.80
Tmin(◦C) 13.87 21.15 16.43 19.62 17.89 18.27 1.90
RH (%) 45.83 77.63 56.17 67.55 61.60 61.60 7.48

In our model, NO concentration is related linearly to ηt , while Tmin and RH have a non-linear
relation with ηt . Besides these explanatory variables, a trend component and sine and cosine
functions are also incorporated in the model. The trend is included to modelise the slight positive
trend in the cases of COPD. The sine and cosine functions are necessary to handle the annual
and semi-annual seasonality in the response variable. Therefore, the model writes

ηt = β1xt,1 +β2 sin(2πt/12)+β3 cos(2πt/12)+β4 sin(2πt/6)+β5 cos(2πt/6)+β6t+

+α1,1B1(wt,1)+α2,1B2(wt,1)+α3,1B3(wt,1)+

+α1,2B1(wt,2)+α2,2B2(wt,2)+α3,2B3(wt,2)+Zt ,

(14)

where t is the month number, xt,1 is the NO concentration, (wt,1) is Tmin and (wt,2) is RH. A
simple GAM model where Zt is removed in (14) is also adjusted, to show the benefict of modeling
the data autocorrelation through Zt in the GAM-ARMA model. The choice of the optimal number
of knots is based on the sample size. Thus, as recommended in Section 2, three and four knots
are tested, and comparing the AIC, the best model is obtained with three knots.

Table 3 presents the estimates β̂i’s of the parameters βi’s in the fitted GAM model with the
corresponding standard errors given by the software R. All estimates are significant at 5% level
of significiance. On the other hand, the value of BIC is 1297.514 and the in-sample MSE between
the fitted values and the observed values of COPD cases (see figure 4) is 531.642.

Pesquisa Operacional, Vol. 41, 2021: e241120



ANA JULIA A. CAMARA, GLAURA C. FRANCO, VALDERIO A. REISEN and PASCAL BONDON 9

Figure 2 – Number of COPD cases, concentration of NO, minimum temperature and relative humidity of
the air in the metropolitan area of Belo Horizonte, Brazil, between January 2007 and December 2013.

Table 3 – Parameter estimates of a GAM model (14) (Zt = 0) fitted to the COPD cases.

Parameter β1 β2 β3 β4 β5 β6

Estimate 0.0545 0.2470 -0.5562 -0.3137 -0.2522 0.0096
Standard error 0.0032 0.0415 0.0611 0.0306 0.0326 0.0007

Figure 3(a) plots the sample autocorrelation function (ACF) and sample partial autocorrelation
function (PACF) of the residuals in the GAM model. Some correlation is still present in these
residuals, indicating the need for a more elaborated model.

Pesquisa Operacional, Vol. 41, 2021: e241120



10 GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES

a) GAM model. b) GAM-AR(1) model.

Figure 3 – Sample ACF and PACF of the residuals in the GAM and GAM-AR(1) models.

Applying the GAM-ARMA methodology, the best fit is obtained with a GAM-AR(1) model.
Table 4 shows the estimates β̂i’s and φ̂ of the parameters βi’s and φ in the fitted GAM-AR(1)
model with the corresponding standard errors given by the software R. Again, all estimates are
significant at 5% level of significiance. The value of BIC is 1155.059 and the in-sample MSE
between the fitted values and the observed values of COPD cases (see figure 4) is 356.169. Both
values are smaller than the corresponding values obtained with the GAM model. Furthermore,
the sample ACF and PACF plots in figure 3(b) show no difference with a white noise which
reveals a good adjustment of the GAM-AR(1) model.

Table 4 – Parameter estimates of a GAM-AR(1) model (14) fitted to the COPD cases.

Parameter β1 β2 β3 β4 β5 β6 φ

Estimate 0.0515 0.3271 -0.5221 -0.3068 -0.2324 0.0127 0.0700
Standard error 0.0029 0.0499 0.0615 0.0349 0.0362 0.0010 0.0053

Figure 4 shows that the GAM-AR(1) model fits better the observed number of COPD cases than
the GAM model.

The RR for the NO is an important information for the regulatory agencies to quantify the impact
of this pollutant on the population health. Table 5 presents the estimated RR and CI for the
NO, R̂R and ĈI given by (10) and (11) where α = 5%, respectively, obtained with the GAM
and GAM-AR(1) models. In both cases, R̂R is significant which means that NO contributes
significantly to the increase in the number of COPD cases; R̂R is slightly smaller for the GAM-
AR(1) model. Although R̂R are comparable in the two models, the adjustment with the GAM-
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Figure 4 – Fits of GAM and GAM-AR(1) models to the number of COPD cases.

AR(1) model is the best in view of the measures of BIC and MSE, and the correlation of the
residuals.

Table 5 – Estimated RR and 95% CI for the NO in the GAM and GAM-AR(1) models.

NO GAM GAM-AR(1)

R̂R 1.0627 1.0591
ĈI [1.0553;1.0702] [1.0524;1.0658]

5 CONCLUSIONS

In this work, a new methodology called GAM-ARMA was proposed, based on the GLARMA
model introduced by Davis et al. (2003). The GAM-ARMA model allows the fitting of semipara-
metric models, accommodating covariates with linear and non-linear relation with the response
variable in count data with time correlation.

A numerical simulation study showed that the estimates of the parameters are close to the true
values for a moderate sample size of n = 100, and that the preciseness of the estimation degrades
as the correlation in the data increases.

The model was applied to the monthly number of COPD cases in Belo Horizonte, Brazil, to
quantify the impact of NO concentrations and meteorological variables on the occurrence of
this disease. The best fit was obtained with a GAM-AR(1) model. This model presented white
noise residuals and smaller measures of BIC and MSE compared to the GAM. The RR analysis
revealed that NO contributed significantly to the increase of COPD cases.
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