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ABSTRACT. In this paper, we propose a new heuristic strategy to solve linear integer mathematical prob-
lems. The strategy begins by finding the optimal solution of the continuous associated problem and the
simplex directions from that optimal solution. A total of n−m problems are generated and solved by the
strategy, where m is the number of constraints and n is the number of variables of the problem. The best
solution to those problems is the solution to the original problem. Several instance problems were randomly
generated to validate the strategy, and our strategy finds good solutions in 80% of the instances. We also
tested the proposed strategy with instances of the MIPLIB 2017. We compare a total of 39 instances and
on average our strategy performed 47% fewer iterations than the solver, in 34 of 39 instances, the strategy
found good solutions.

Keywords: mixed integer linear programming, algorithms, heuristic.

1 INTRODUCTION

Many practical problems can be formulated using integer programming. An Integer Linear
Program (ILP) can be written as (1).

max z = ctx

sub ject to

{
Ax≤ b
x≥ 0 and integer.

(1)
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2 A NEW STRATEGY TO SOLVE LINEAR INTEGER PROBLEMS WITH SIMPLEX DIRECTIONS

Where A is a m× n matrix, b is a m× 1 vector, c is a n× 1 vector and x is a n× 1 vector of
variables. If some, but not all, variables of the problem are continuous we have a Mixed Integer
Linear Program (MILP), it can be written as (2).

max z = ctx+dty

sub ject to


Ax+Gy≤ b
y≥ 0
x≥ 0 and integer.

(2)

Where G is a m× p matrix, d is a p× 1 vector and y is a p× 1 vector of variables. It could
be challenging to solve general MILP or ILP problems efficiently, therefore, several strategies
and methods are proposed in the literature to solve those problems. In this paper, we propose a
new strategy to solve integer linear problems. Given an ILP and its LP relaxation solution, the
heuristic solves one or more external MILP that aims at finding an integer solution closer to an
edge of the LP relaxation solution. The strategy starts from an LP relaxation optimal solution x∗

and the associated simplex directions di, i = 1,2, ...,m− n. Using x∗ and di, the method defines
a MILP that aims to find an integer solution closer to an edge, and since we have m−n simplex
directions, we can define m− n MILP problems, therefore, the strategy performs at most n−m
iterations. Each iteration solves a MILP that is much easier than the original, and some of those
can be infeasible. At the end of the strategy, we will have at most n−m integer solutions. The
solution with the best objective function value is selected. In most tests, the MILP problems take
fewer iterations to be solved and generate a good integer solution to the original problem. The
difference between our strategy and the strategies found in the literature is mainly in the use of
the simplex directions for determining integers solutions.

2 BIBLIOGRAPHY REVIEW

The conventional exact strategies to solve ILP and MILP problems are the branch and bound,
cutting plane and its variations, those methods are found in Nemhauser & Wolsey (1988) and
Wolsey (2007). In problems with many constraints and variables, apart from special structured
or well-solved problems, such as the problems described in Wolsey (2007), it needs several it-
erations to find a solution. To overcome this, we have non-exact methods, such as heuristics,
metaheuristics, and matheuristics methods, the one did not guarantee the optimum solution, but
they need significantly fewer iterations to converge. Table 1 was mainly elaborated with infor-
mation from Genova & Guliashki (2011) and Fischetti & Lodi (2010) and, summarizes some of
those strategies and methods.

The feasibility pump, described in Fischetti et al. (2005) and Berthold et al. (2019), is a heuristic
strategy to efficiently solve mixed-integer problems. The one with any feasible solution of the
set P = {Ax ≤ b}, and defines its rounding. Each iteration searches for a point x∗ ∈ P that is as
close as possible to the current x̄ by solving the problem minδ (x, x̄) : x ∈ P. Assuming δ (x, x̄) is
chosen properly, they claim that linear problems can be easily solved. When δ (x∗, x̄) = 0, then x∗

is a feasible MIP solution and the feasibility pump ends. Otherwise, x̄ is replaced by the rounding
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Table 1 – Strategies and Methods.

Strategy Summary
Rounding methods Fractional components of the LP solution are rounded.
Diving methods Also known as Relax-and-Fix. Sequentially fix some integer-valued

variables that assume a fractional value in the solution of the
current LP relaxation. The sequence can be viewed as “diving” on a
branch-and-bound tree.

Pivoting Methods It is based on the observation that a feasible pure 0–1 ILP solution
is just a basic solution of the LP relaxation where all 0–1 variables
are nonbasic. See Eckstein & Nediak (2007) for an example.

Line Search Methods Starts from an LP relaxation optimal solution and draws a line
toward a second point and move in that line in a discretized way.
An example of a line search method can be seen in Yuan & Wei
(2009).

Feasibility Pump It is based on the observation that a feasible MILP solution is a
point that is close with its rounding. See Fischetti et al. (2005) and
Berthold et al. (2019) for an example of the Feasibility Pump.

Local Branching Given x, a feasible reference solution of a MILP, Local Branching
aims at finding an improved solution that is in the neighborhood of
x. See Fischetti & Lodi (2003) for an example of Local Branching.

Relaxation Induced
Neighborhood
Search (RINS)

Uses the solutions of simplified MILP and LP problems to find a
heuristic solution to the original problem. See Danna et al. (2005)
for an example of RINS.

Evolutionary
Algorithms

Evolutionary Algorithms are metaheuristics. In general, they have a
Population, Combination, Mutation, and Selection of solutions. See
Rothberg (2007) for an example of Evolutionary Algorithms to
solve MILP problems.

of x∗, and the step is repeated until δ (x∗, x̄) = 0. In Achterberg & Berthold (2007) the feasibility
pump was improved, and they can obtain better solutions for MILP instances.

According to Danna et al. (2005) the RINS uses solutions of simplified external MILPs and LPs
to find the solution of the original MILP problem. At specified nodes of the branch-and-bound
tree, the current LP relaxation solution x∗ and the incumbent x̄ are compared and all integer
variables that agree in value are fixed and removed from the MILP. In this way, the MILP is
simplified, and it is also reduced in size.

The work of Eisenbrand & Weismantel (2019) describes the Proximity search as an alternative to
Large-Neighborhood Search and RINS heuristics, which are aimed at improving a given feasible
solution. The one modifies the objective function to make the search easier. More specifically,
proximity search replaces the objective function with a proximity one, to enhancing the heuristic
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4 A NEW STRATEGY TO SOLVE LINEAR INTEGER PROBLEMS WITH SIMPLEX DIRECTIONS

behavior of the MIP black-box solver. The one starts with a feasible solution x̄, and adds an
explicit cutoff constraint f (x)≤ f (x̄)−θ to the MIP, where θ is a given cutoff tolerance.

In Richard et al. (2003), the authors present a simplex-based algorithm for mixed-integer prob-
lems. The algorithm uses a hybrid cutting plane, based on a strong cutting plane and Gomory-
type. The cuts are obtained from the relaxation of the simplex tableau and used on the origi-
nal problem. The authors show that the cuts can be computed in polynomial time and can be
embedded in a finitely convergent algorithm.

Some Lagrangian relaxation strategies, such as Fisher (2004), can be used to improve the bounds
of the branch and bound method faster. Metaheuristics methods like particle swarm (see Laskari
et al. (2002)), Simulated Annealing, Genetic Algorithm (see Arenales et al. (2007)) are usually
used to solve complex and large MILP instances.

Some strategies are developed for specific problems, such as Park & Kim (2005) where the
authors present proposes a method to solve the scheduling problem of a port berth and quay
cranes and Biagio et al. (2012) which proposes a heuristic to solve capacitor allocation problems
in electric energy radial distribution networks. New applications of preexisting strategies can also
be found, like Ceschia et al. (2017) which proposes a Simulated Annealing application for the
discrete single-machine, multi-item lot-sizing scheduling problem and obtained good results.

3 DETERMINATION OF INTEGER SOLUTIONS WITH SIMPLEX DIRECTIONS

Given an integer problem, such as (1) and x∗ the LP relaxation solution, an integer solution of
the problem will be generated with the simplex directions associated with x∗. That is, we start
with an LP relaxation solution of the ILP and search for integer solutions on the adjacent edges
of x∗. If the edges do not contain any integer solutions, we search for the feasible integer solution
closer to an edge.

3.1 Simplex Direction

According to Bazaraa et al. (2011), the simplex direction d∗ of an LP is defined as the direction
that starts at a basic solution xB and walks on an edge of the polytope generated by the constraints.
This generates the line w∗ = xB +λd∗, Figure 1 shows the simplex direction and the line w∗ =
xB +λd∗.

Figure 1 shows the xB on the intersection of lines 1 and 2 and the direction d∗ which is the
simplex direction that leaves xB and generates the line segment w∗ = xB + λd∗ where λ ≥ 0.
Definition 1 formalizes the simplex direction concept.

Definition 1. (Simplex Direction) The simplex direction d∗ is defined by the direction which
starts at a basic solution xB and walks on the edge of the polytope generated by the constraints.

Mathematically d∗ =

[
B−1aNk

−ek

]
where Nk is the index of the non-basic variable which is entering

on the basis, aNk is the Nk-th column of the A matrix.
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c

xB

line1

line2

w∗ = xB +λd∗

x1

x2

Figure 1 – Simplex Direction.

3.2 Generalization of the Strategy

Given an ILP problem, such as Problem (1), the first step is to define and solve the LP relaxation,
given by Problem (3).

max z = ctx

sub ject to

{
Ax≤ b
x≥ 0.

(3)

With the LP relaxation solution x∗ of the Problem (3), we calculate the simplex directions in x∗.
There are n−m simplex directions in x∗ and those directions are decent if it is a maximization
problem or ascent if it is a minimization problem. To obtain those simplex directions, we solve
the linear systems given by (4).

yk = B−1aNk k = 1,2, ...,n−m. (4)

Where N is the non-basic matrix and Nk is the k-th column of N. The simplex direction dk, where
k = 1,2, ...,n−m, is given by (5).

Pesquisa Operacional, Vol. 42, 2022: e255132



6 A NEW STRATEGY TO SOLVE LINEAR INTEGER PROBLEMS WITH SIMPLEX DIRECTIONS

dk =

[
yk

−ek

]
. (5)

The next step is to find integer solutions in the lines x∗+λdk. To do that we need to select a k in
1,2, ...,n−m, and solve the ILP given by (6).

max z = ctx

sub ject to


Ax≤ b
x = x∗−λdk

x≥ 0 and integer.

(6)

Where k= 1,2, ...,n−m. After solving the problems, we will have at most n−m integer solutions.
We select the solution with the best object function value.

This strategy is for an ILP problem. For a MILP problem, the continuous variables should not be
included in the step of searching for an integer solution on the adjacent edges. There are cases
when the problem has no integer solution on the adjacent edges of the continuous solution. In
those cases, we need to find the integer solution closer to an edge.

If the edges do not contain at least one good integer solution, the next step is to find the integer
solutions inside the feasible region that are closer to an edge. To find these solutions, we solve
one or more of the n−m problems given by (7).

max z = ctx−β t p

subject to



Ay≤ b
x = x∗−dkλ

y = x− p
x, p≥ 0
y≥ 0 and integer.

(7)

Where k = 1,2, ...,n−m, β is the penalization value to ensure a solution close to the edge, it
must be proportional to c, p is the distance between the integer solution and the edge, x is the
solution in the edge and y is an integer solution.

By solving the mathematical models, we obtain at most n−m integer solutions. The solution
with the best object function value is chosen. Algorithms 1 and 2 summarize the strategy of this
paper.

Algorithms 1 and 2 solve n−m integer problems, which could take many iterations and not be
a good strategy. In some problems, such as the MIPLIB problems, a selection criterion can be
applied instead of testing every simplex direction. In Section 4 we present a selection criterion
for the MIPLIB problems.
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Algorithm 1 Algorithm to find integer solutions on the edges

1: Given an ILP as the Problem 1.
2: Find the LP relaxation solution x∗ of Problem 3;
3: Define the matrix with slack variables Aext = [Am×n Im×m];
4: Find the ordered basis index indexB and the basic columns of Aext, use them to find the basis

matrix B of the solution x∗;
5: Find the ordered non-basis index indexNB and the non-basis matrix NB;
6: Initiate the values of x and f as the solution and objective function values;
7: while k ≤ n-m do
8: Solve the linear system By = NBk;
9: Define d according to equation (5);

10: Solve the Problem (6), find the solution value x̂ and the objective function value fx̂;
11: if f < fx̂ then
12: f = fx̂ and x = x̂;
13: end if
14: k = k+1
15: end while

Algorithm 2 Algorithm to find integer solutions closer to the edges of the problem

1: Given an integer linear problem as the Problem 1.
2: Find the LP relaxation solution x∗ of Problem 3;
3: Define the matrix with slack variables Aext = [Am×n Im×m];
4: Find the ordered basis index indexB and the basic columns of Aext, use them to find the basis

matrix B of the solution x∗;
5: Find the ordered non-basis index indexNB and the non-basis matrix NB;
6: Initiate the values of x and f as the solution and objective function values;
7: while k ≤ n-m do
8: Solve the linear system By = NBk;
9: Define d according to equation (5);

10: Define the value of the penalization β ;
11: Solve the Problem (7), find the solution value x̂ and the objective function value fx̂;
12: if f < fx̂ then
13: f = fx̂ and x = x̂;
14: end if
15: k = k+1
16: end while
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8 A NEW STRATEGY TO SOLVE LINEAR INTEGER PROBLEMS WITH SIMPLEX DIRECTIONS

3.3 Example Problem

Consider, as an example, the Problem (8) as our ILP.

max z = 8x1 +5x2

s.t.


1x1 +1x2 ≤ 6
9x1 +5x2 ≤ 45
x1,x2 ≥ 0 and integer

(8)

−2. −1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
−1.

1.

2.

3.

4.

5.

6.

0

( 15
4 , 9

4 )
t

x1 + x2 ≤ 6

9x1 +5x2 ≤ 45

f

g

Figure 2 – Constrains of Problem (8).

Figure 2 shows the geometric interpretation of Problem (8), in the figure we can see the LP
relaxation solution x∗ = ( 15

4 , 9
4 )

t and the adjacent edges. Consider x∗ as the initial solution and
the simplex directions d1 and d2, given by the vectors (9a) and (9b), respectively.

d1 =

 5
4

− 9
4

 (9a) d2 =

 − 1
4

1
4

 (9b)

Starting with the solution x∗ and the simplex directions d1 and d2, we search for integer solu-
tions in the line segments generated by the optimum point and the simplex directions. These line
segments must be limited by the problem constraints. Starting from x∗ we search for integer so-
lutions, if exists, in the edges defined by x∗+λd1 and x∗+λd2, which are given by the equations
(10a) and (10b), respectively.

R1

{
x1 =

15
4 + 5

4 λ

x2 =
9
4 −

9
4 λ

(10a) R2

{
x1 =

15
4 −

1
4 λ

x2 =
9
4 −

1
4 λ

(10b)
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The objective is to obtain an integer solution that satisfies the equation (10a) or (10b), the con-
straints, and maximizes the problem. The problem of finding a solution in the line (10a) which
satisfies the constraints of Problem (8) is given by Problem (11).

max z = 8x1 +5x2

subject to



1x1 +1x2 ≤ 6
9x1 +5x2 ≤ 45
x1 +0x2− 5

4 λ = 15
4

0x1 + x2 +
9
4 λ = 9

4
x1,x2 ≥ 0 and integer.

(11)

Problem (11) is an ILP with a feasible region given by one edge of the original problem. The
feasible region has only a fraction of the number of integer solutions of the problem and, may
not have integer solutions. With some mathematical manipulations, the Problem (11) can be
written as the Problem (12).

max z = 8x1 +5x2

subject to


x1 =

15
4 + 5

4 λ

x2 =
9
4 −

9
4 λ

0≤ λ ≤ 1
x1,x2 ≥ 0 and integer.

(12)

The solution of Problem (12) is an integer solution that tends to be closer to the LP relaxation
solution that is in line (10a), given that the direction d1 is descending on a maximization problem.
Solving Problem (12), we find the solution (5,0)t with the objective function value of 40.

We also need to obtain the best integer solution in line (10b). Similarly, the problem of finding
the integer solution in line (10b) and satisfies the constraints of Problem (8) is given by (13).

max z = 8x1 +5x2

subject to



1x1 +1x2 ≤ 6
9x1 +5x2 ≤ 45
x1 +0x2 +

1
4 λ = 15

4
0x1 + x2− 1

4 λ = 9
4

x1,x2 ≥ 0 and integer.

(13)

Problem (13) is an ILP with line (10b) as the feasible region. With some mathematical
manipulations, Problem (13) can be written as Problem (14).

max z = 8x1 +5x2

subject to


x1 =

15
4 −

1
4 λ

x2 =
9
4 +

1
4 λ

0≤ λ ≤ 15
x1,x2 ≥ 0 and integer.

(14)
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10 A NEW STRATEGY TO SOLVE LINEAR INTEGER PROBLEMS WITH SIMPLEX DIRECTIONS

Solving Problem (14) we find the solution (3,3)t with the objective function value of 39.

Comparing the solutions of Problems (12) and (14) we have the best integer solution on the
adjacent edges as (5,0)t with the objective function value of 40.

3.4 Example Problem 2

The problem may not have a feasible integer solution on the adjacent edges. In that case, we need
to find integer solutions inside the feasible region. As an example, Problem (15) has no integer
solution in the adjacent edges.

max z = 8x1 +5x2

s.t.


1x1 +1x2 ≤ 6.5
9x1 +5x2 ≤ 44
x1,x2 ≥ 0 and integer.

(15)

Figure (3) shows the feasible region of Problem (15). The LP relaxation solution of Problem (15)
is given by x∗ = (2.875,3.625)t and neither of the adjacent edges has integer solutions.

−1. 1. 2. 3. 4. 5. 6. 7. 8. 9.

−1.

1.

2.

3.

4.

5.

6.

7.

0

(2.875,3.625)t

x1 + x2 ≤ 6.5

9x1 +5x2 ≤ 44

f g

Figure 3 – Feasible Region of Problem (15)
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Problem (16) can be used to find the integer solution that tends to be closer to the adjacent edge
d1.

max z = 8y1 +5y2−β1 p1−β2 p2

subject to



y1 + y2 ≤ 6.5
9y1 +5y2 ≤ 44
x1 = 2.875+ 5

4 λ

x2 = 3.625− 9
4 λ

y1 = x1− p1

y2 = x2− p2

0≤ λ ≤ 1.6
x1,x2, p1, p2 ≥ 0
y1,y2 ≥ 0 and integer.

(16)

Where x = (x1,x2)
t is a solution in the edge x = x∗+λd1 with d1 given by the equation (9a), p1

is the distance between x1 and y1, p2 is the distance between x2 and y2, given p = (p1, p2)
t we

have y = x− p as the integer solution closer to the edge defined by the line x = x∗+λd1. We
recommend that the value of β = (β1,β2) be proportional to the value of c.

Solving Problem (16), we have the solutions x = (3.2,3)t and y = (3,3)t . The integer solution is
given by y and has the objective function value of 39. Figure 4 shows the solution.

−3. −2. −1. 1. 2. 3. 4. 5. 6. 7. 8. 9.

−2.

−1.

1.

2.

3.

4.

5.

6.

7.

0

(2.875,3.625)t

x1 + x2 ≤ 6.5

9x1 +5x2 ≤ 44

f g

Figure 4 – Graphical Representation of Problem (16)
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12 A NEW STRATEGY TO SOLVE LINEAR INTEGER PROBLEMS WITH SIMPLEX DIRECTIONS

To find the solution that tends to be closer to the other adjacent edge, we use Problem (17).

max z = 8y1 +5y2−β1 p1−β2 p2

subject to



y1 + y2 ≤ 6.5
9y1 +5y2 ≤ 44
x1 = 2.875− 1

4 λ

x2 = 3.625+ 1
4 λ

y1 = x1− p1

y2 = x2− p2

0≤ λ ≤ 11.5
x1,x2, p1, p2 ≥ 0
y1,y2 ≥ 0 and integer.

(17)

Where x = (x1,x2)
t is a solution in the edge x = x∗+λd2 with d2 given by equation (9b), p1 is

the distance between x1 and y1, p2 is the distance between x2 and y2, given p = (p1, p2)
t we have

y = x− p as the integer solution closer to the edge define by the line x = x∗+λd2.

Solving Problem (17), we find x = (2.5,4)t and y = (2,4)t . The integer solution is given by y and
has the objective function value of 36. Figure 5 shows the solution.

−3. −2. −1. 1. 2. 3. 4. 5. 6. 7. 8. 9.

−2.

−1.

1.

2.

3.

4.

5.

6.

7.

0

(2.875,3.625)t

x1 + x2 ≤ 6.5

9x1 +5x2 ≤ 44

f g

Figure 5 – Graphical Representation of the Problem (17).

To find the best integer solution we compare the solutions of Problems (16) and (17), therefore
we have y = (3,3)t with the objective function value of 39.

4 RESULTS

To test the strategy, we initially made a thousand instances. Those instances are randomly gen-
erated, considering A a matrix m× n, where 1 ≤ m ≤ 200 and 200 ≤ n ≤ 500. The values are

Pesquisa Operacional, Vol. 42, 2022: e255132
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generated by a normal distribution. Each value of the vector c is an integer between 0 and n, each
value of the matrix A is an integer between 0 and mn and each value of the vector b is an integer
between 1 and 30mn. We implemented the instances in the solver and compare the results with
our strategy, the solver used was the IBM Cplex.

Algorithm 1 finds a solution in 34 instances. For comparison purposes, given z∗ the optimal
value, we consider solutions with z≥ 0.7z∗ as good solutions, therefore, Algorithm 1 finds good
solutions in 16 instances. Besides the low convergence rate, every instance problem took one
iteration to find the solution or determine infeasibility. Figure 6 shows the solution quality.

Figure 6 – Quality of the solutions of Algorithm 1.

Algorithm 2 found a solution in all instances, of which 783 are good solutions. The algorithm
found a trivial solution in 93 instances. The algorithm took an average of 334 iterations to find
the solution while the solver took 1019 iterations, which represents a reduction of 67%. Each
MILP took an average of 1.8 iterations to converge, due to the number of MILP problems solved
in each instance, the number of iterations reaches 334. It was observed that the instances with the
largest number of variables generated the largest reductions in the number of iterations. Table 3
shows some of those instances.

Figure 7 shows the solution quality obtained by Algorithm 2 and Table 2 details the quality of
the solutions found by Algorithm 2.

In Table 3 the column Instance shows the number of the instance, m shows the number of con-
straints, n shows the number of variables, Algorithm 2 Solution shows the objective value ob-
tained by Algorithm 2, Algorithm 2 Iterations shows the total number of iterations performed by
the Cplex to solve the n−m MILP problems of Algorithm 2, Cplex Solution shows the objective
value obtained by Cplex, Cplex Iterations shows the number of iterations performed by Cplex,
Solution Quality shows the quality of the algorithm solution relative to the Cplex solution, for

Pesquisa Operacional, Vol. 42, 2022: e255132



14 A NEW STRATEGY TO SOLVE LINEAR INTEGER PROBLEMS WITH SIMPLEX DIRECTIONS

Figure 7 – Quality of the solutions of Algorithm 2.

Table 2 – Quality of the solutions.

Range Number of solutions
Greater than 85% 670

Between 70% and 85% 113
Between 50% and 70% 88

Less than 50% 129

example, instance 149 has a Cplex solution of 1954 and an Algorithm 2 solution of 1163, which
represents 60% of the Cplex solution. The column Relative Number of Iterations is the number
of iteration performed by Algorithm 2 relative to the number performed by Cplex, for example,
Algorithm 2 performed less than 1% of the number of iterations performed by Cplex.

Table 3 – Results of instances.

Instance m n Algorithm 2
Solution

Algorithm 2
Iterations

Cplex
Solution

Cplex
Iterations

Solution
Quality

Relative
Number of
Iterations

149 136 399 1163 295 1954 35490 60% <1%
307 17 269 8522 1098 8992 41718 95% 3%
498 90 349 2621 274 3156 42464 83% <1%
570 45 468 6720 3316 7298 488955 92% <1%
601 80 409 3099 195 3635 25133 85% <1%
766 20 398 7737 3411 8086 40257 96% 8%
895 27 381 4220 3664 4748 69798 89% 5%

In most of the instances of Table 3, Algorithm 2 found a good solution. The variation of the
solution quality tends to increase according to the value of m. The increase of the value of n,

Pesquisa Operacional, Vol. 42, 2022: e255132
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which represents the number of variables, does not show an increasing tendency on the variation
of the solution quality. Figure 8 shows the average solution quality by the number of constraints,
and Figure 9 shows the average solution quality by the number of variables.

We also tested our strategy on MIPLIB 2017 instances with integer or binary variables, we se-
lected instances that can be solved by solvers such as Cplex or Gurobi. Instead of testing every
edge in Algorithm 2, we first try the edge argmax(cB−NB′ ∗ y). If the problem generated by

Figure 8 – Average solution quality by the number of constraints.

Figure 9 – Average solution quality by the number of variables.
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that edge is infeasible, then we try other edges, in order, until a solution is found. Table 4 brings
results of MIPLIB 2017 instances, those instances can be found in MIPLIB (2018).

In Table 4 the column Instance shows the name of the instance, Algorithm 2 Solution shows
the objective value obtained by Algorithm 2, Algorithm 2 Iterations shows the total number
of iterations performed by the Cplex to solve the MILP problems generated by Algorithm 2,
Solver Solution shows the objective value obtained by the solver, Solver Iterations shows the
number of iterations performed by the solver. The solver used in the tests was the Cplex, except
Chromaticindex32-8, Neos-555343, neos18, and acc-tight5. In those instances, the Gurobi solver
was used.

In all 39 instances of Table 4, the solver performed a total of 13280128 iterations, and Algo-
rithm 2 performed 7125257 iterations, therefore, Algorithm 2 perform 53% of the iterations per-
formed by Cplex. In 28 instances, Algorithm 2 performs less or equal iterations than the solver.
In 34 instances, Algorithm 2 obtains a good solution, with a gap lower than 18%, of which 22
instances, the solution of the algorithm is the same solution found by the solver, with a gap lower
than 10−8.

The Cplex had issues solving the MILP generated by Algorithm 2 in the instances
Chromaticindex32-8, Neos-555343, neos18, and acc-tight5 and did not return any solution.
Those instances were solved by the Gurobi, the process was stoped due to numerical issues and
the results are in Table 4, those solutions have a gap of up to 81%. Both Cplex and Gurobi solvers
had issues solving the MILP generated by Algorithm 2 in the instances mine-166-5, mine-90-10,
qap10, and cod105 and did not return any solution.

Different optimal solutions were found by the Cplex and Gurobi solvers for the instances App2-
2 and Neos-555424. The Cplex solver found the objective values of 212042.5 and 1331800,
respectively, and the Gurobi solver found the objective values of 212047.5 and 1286800,
respectively.

5 CONCLUSIONS

Algorithm 1 found a solution in 34 of 1000 randomly generated instances, which suggests that
few problems have an integer solution in an adjacent edge of the continuous solution. Besides the
results, the algorithm has a low cost and was able to find a solution or determine the infeasibility
in one iteration.

Algorithm 2 found a solution for all generated instances, of which 783 are good solutions. On
average, the algorithm performed 33% of the iterations performed by the solver. On larger in-
stances, like the ones in Table 3, the number of iterations was between 1% to 5% of the number
of iterations taken by Cplex and obtains solutions with objective function values close to the
optimum value.

In the MIPLIB instances, Algorithm 2 also performs well, with an average save of 47% on
iterations. In 34 of 39 instances, the algorithm found solutions close or equal to the optimal
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Table 4 – Results of MIPLIB Instances.

Instance m n Algorithm 2
Solution

Algorithm 2
Iterations

Solver Solution Solver
Iterations

sp98ir 1531 1680 268448539,2 8202 219676790,4 135277
haprp 1048 1828 3673280,7 646 3673280,7 659

enlight hard 100 200 37 2284 37 2284
App2-2 335 1226 213270,5 2 212042,5 1
App2-1 1038 3283 35109,6 1 19294,3 24
mod010 146 2655 6548 692 6548 907

RococoC10-001000 1293 3117 11460 940551 11460 1156239
f2gap201600 20 1600 76605 1322347 76453 211
f2gap401600 40 1600 82307 742 82307 421
f2gap801600 80 1600 86679 1474 86679 0

Eil33-2 32 4516 934 84096 934 109587
gt2 29 188 21166 124 21166 192

p0201 133 201 7815 1324 7615 545
supportcase14 234 304 288 150 288 157
supportcase16 130 319 288 223 288 223

Chromaticindex32-8 2111 2304 4 17891 4 17891
Neos-1516309 489 4500 36724 173 35954 251
Neos-1599274 1237 4500 32863,6 220 32075,6 186

Neos-831188 2185 4612 2,6 3650003 2,6 1184819
neos-3592146-hawea 995 4870 79435711,5 1205 15465800,7 9531675

Neos-555424 2676 3815 4808400 7760 1331800 25076
neos-3381206-awhea 479 2375 453 76493 453 60701

Neos-555343 3326 3815 5428400 29755 1512800 62177
Neos-555001 3474 3855 4725000 7946 1210625 761

neos-2624317-amur 342 524 3,5 107034 3,5 123595
neos18 11402 3312 16 68053 16 70885

manna81 6480 3321 -13164 3153 -13164 3153
mzzv11 9499 10240 -18980 4639 -21718 15466
enlight8 64 128 27 1996 27 2024

f2gap40400 40 400 20772 312 20772 313
pw-myciel4 8164 1059 10 498133 10 378876

acc-tight5 3052 1339 0 15304 0 0
opm2-z6-s1 15533 1350 -5107 3179 -6202 64407

acc-tight2 2520 1620 0 0 0 0
acc-tight4 3285 1620 0 0 0 0

opm2-z7-s8 31798 2023 -8929 3817 -11242 135078
p2756 755 2756 3640 475 3124 528
harp2 112 2993 -73896921 264854 -73897012 195290

disktom 399 10000 -5000 4 -5000 4
TOTAL 7125257 13280128

solution in fewer iterations. Instances like sp98ir and opm2-z7-s8 Algorithm 2 needs very few
iterations to find a good solution, compared with the number of iteration taken by the solver. In
28 of 39 MIPLIB instances, the algorithm performs fewer iterations than the solver.
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The usage of the strategy is recommended in instances where conventional methods require many
iterations to find a solution. The solution obtained by the strategy can be used as an initial solu-
tion for the original problem. With some modifications, the method can be used to solve MILP
problems with equality or inequality constraints.
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