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ABSTRACT. Parametric DEA models presume a functional form for the efficiency frontier and are used
for resource redistribution. Parabolic DEA is a particular case of these models used to redistribute a single
input in Variable Returns to Scale scenarios. In this study, we extend this model to redistribute multiple in-
puts simultaneously, ensuring that all DMUs will become extreme efficient after redistribution maintaining
their outputs. The proposed model is a single multi-objective Linear Programming Problem (PPL) which
provides a single optimal solution. To solve this model, two approaches are used, the Weighted Sum of
the Objective Functions and the Separation of Variables. Two numerical examples considering single and
multiple outputs are used and the results obtained are identical for the two approaches.

Keywords: parabolic DEA, resources redistribution, variable returns to scale.

1 INTRODUCTION

Classic Data Envelopment Analysis (DEA) models (Charnes et al., 1978; Banker et al., 1984)
are tools used for efficiency analysis of a set of productive units, the so-called Decision Making
Units (DMUs). Dai et al. (2016) have stated that issues regarding resources fair allocation or
redistribution are one of the main uses of DEA.

In classical models, an inefficient DMU would have freedom of production reaching the effi-
ciency frontier by modifying its inputs or outputs without affecting other DMUs. However, this
situation is not feasible in realities of competition or cooperation among DMUs and in limited
resources environment, where it is undesirable or impossible to change the total sum of some
input or output. Thus, one DMU receiving more resources would result in losses for others.

Cook and Kress (1999) have introduced the use of DEA output oriented to allocate shared fixed
costs among DMUs in constant returns to scale (CRS) scenarios in an efficiency invariance ap-
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2 REDISTRIBUTING MULTIPLE INPUTS WITH A PARABOLIC DEA MODEL

proach. Following this line, Jahanshahloo et al. (2004) have presented an alternative model for
resource distribution in constant or variable returns to scale scenarios (CRS and VRS) with no
need of Linear Programming Problem resolution. Cook and Zhu (2005) have extended the model
of Cook and Kress (1999) for cost allocation in an input-oriented CRS scenario. They have also
suggested the initial idea for developing the VRS model.

Beasley (2003) have presented a five-stage model for maximizing DMUs efficiency by resources
allocation. However, as pointed by Milioni and Bianca Alves (2013), this model presents a com-
plex formulation in which a phase requires a nonlinear optimization solution. Lins et al. (2003)
have developed the Zero Sum Gains DEA model (ZSG-DEA) to set targets for countries at
the Olympic Games considering the total sum of medals fixed. Moreover, Fonseca et al (2010)
have introduced a ZSG-DEA model with weight restrictions. Recently, Bouzidis and Karagiannis
(2022) have extended de ZSG-DEA model to the case of a reverse (undesirable) output. However,
most of its uses have been for fixed sum variables redistribution. Similar to the Beasley model,
DEA-GSZ does not assure that DMUs will become extreme efficient after redistribution.

Unlike classical DEA models, the so-called Parametric DEA model presumes a functional form
for shaping the efficiency frontier and its main use is fixed sum variables redistribution. After re-
allocation, the efficiency frontier takes the shape of a smooth functional form previously defined
by the decision maker. Parametric DEA models provide smoothed efficient frontiers. Other kind
of smooth frontiers, although with different goals, are studied in Soares de Mello et al (2002),
Nacif et al. (2009), Pereira e Soares de Mello (2015), Brandão and Soares de Mello (2017) and
Brandão et al. (2020). Smoothed DEA frontiers do not result in multiple optimal weight for
efficient DMUs and also do not present indeterminacy on the scale variation (increasing, de-
creasing or constant) in VRS models (Benicio and Soares de Mello, 2015; Benicio and Soares
de Mello, 2019). An important advantage of the parametric DEA is that after the redistribution
all DMUs will become extreme efficient, because the parametric frontier contains no weakly
efficient regions.

Avellar et al. (2007) have introduced the spherical parametric frontier to redistribute a new input
among DMUs. This redistribution considered that the allocation of inputs would be sufficiently
fair to make all DMUs efficient and arranged at the spherical frontier. Avellar et al. (2010) have
studied a global target for the input to be redistributed and, unlike the previous paper, this input
already exists in the model. In addition, they have showed that, in some cases, some DMUs would
have to increase its inputs to become efficient when using the redistribution approach, which is
contrary to classic DEA models assumptions. They have additionally presented a theorem for
redistribution using the spherical frontier without increasing any DMU’s inputs. In this specific
case, the redistributed input total sum is not constant.

Guedes et al. (2012) have presented the adjusted spherical frontier model. This new model
calculates the spherical frontier using the fraction of the total inputs and outputs of a DMU
instead of scalar values. Thus, as they have stated, the model presents results more adherent to
the coherence property. Milioni et al. (2011a) and Bianca Alves et al. (2014) have studied the
input allocation using parameterized efficiency in elliptical geometry. Milioni et al. (2011b) and
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Silva et al. (2017) have introduced the hyperbolic DEA frontier. Milioni and Bianca Alves (2013)
have made a brief overview about related studies on Parametric DEA models.

It is noteworthy that all parametric DEA models previously mentioned only deal with CRS sce-
narios which generate zero-degree homogeneous functions whenever centred at the origin (Coelli
et al., 2005). On the other hand, Silveira et al. (2019) have developed the parabolic model that
respects VRS conditions by parameterizing the frontier using a paraboloid functional form for
redistributing one input. Based on this model, Moreira et al (2021) developed an extension to
take into account integer variables. In this paper, we extend the original Parabolic DEA (Silveira
et al., 2019) to redistribute multiple fixed sum resources in VRS scenarios.

2 PARABOLIC DEA FOR ONE INPUT REDISTRIBUTION REVIEW

Parabolic DEA (Silveira et al., 2019) is a particular case of parametric models to perform input
redistribution in VRS scenarios that may have multiple inputs. However, in order to generate
the parabolic frontier, only one of the inputs is allowed to change (redistribute). In such frontier,
all DMUs become efficient without changing the total sum of the redistributed input. Thus, all
DMUs become extreme efficient without changing neither the outputs nor the other inputs.

The Parabolic DEA model developed by Silveira et al. (2019) describes the new efficiency fron-
tier by the input being a quadratic function of the output, in one input and one output scenarios.
Equation (1) describes the frontier in a set of k DMUs. The new input of a DMU k is represented
by xk and the outputs by yk in which k varies from 1 to n. Also, a, b and c are the parabola
coefficients.

xk = ay2
k +byk + c;∀k (1)

The model also ensures some inherent properties of a DEA frontier such as convexity, increasing
monotonicity, frontier in non-negative quadrants and non-negative values for inputs. Restrictions
(2), (3), (4) and (5) represent these conditions respectively.

d2xk

dy2
k
≥0;∀k (2)

dx
dyk

≥0;∀k (3)

c≥0 (4)

xk≥0; ∀k (5)

The objective function, represented by (6), minimizes the difference between the original input
of a DMUk ( xok) and the input obtained after redistribution (xk). Thus, the new frontier ensures
that the computed optimal solution is as close as possible to the original configuration.

Min
n

∑
k=1

|xok − xk| (6)
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4 REDISTRIBUTING MULTIPLE INPUTS WITH A PARABOLIC DEA MODEL

To linearize the objective function’s absolute value (or modulus), Silveira et al. (2019) have
adopted the auxiliary variable Mk. For this, they have replaced the objective function (6) by (7)
and have included restrictions (8) and (9). In addition, restriction (10) ensures the redistributed
input fixed total sum.

Min
n

∑
k=1

Mk (7)

Subject to
Mk≥xok − xk; ∀k (8)

Mk≥− xok + xk; ∀k (9)
n

∑
k=1

(xok − xk) = 0 (10)

The Linear Programme (11) describes the parabolic frontier for cases using one input and one
output. Unlike classic DEA, the redistribution by parabolic DEA requires a solution of a single
Linear Programme.

Min
n

∑
k=1

Mk (11)

Subject to
Mk≥xok − xk; ∀k

Mk≥− xok + xk; ∀k
n

∑
k=1

(xok − xk) = 0

xk = ay2
k +byk + c; ∀k

d2xk

dy2
k
≥0;∀k

dx
dyk

≥0;∀k

c≥0

xk≥0; ∀k

The bi-dimensional model described can be generalised for multiple outputs scenarios. In this
case, the frontier previously named as parabolic becomes a paraboloid and is represented by
equation (12). Moreover, restrictions to convexity and increasing monotonicity must be adapted
to the new outputs as in (13) and (14).

xk = ay2
1k +by1k + cy2

2k +dy2k + . . .+my2
sk +nysk + e;∀k (12)

d2xk

dy2
jk
≥0;∀k and ∀ j (13)
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dxk

dyjk
≥0;∀k and ∀ j (14)

Silveira et al. (2019) have also generalized the Parabolic DEA model for multiple inputs and
outputs scenarios. It is noteworthy that this model only redistributes one input. For this general-
ization, equation (15) represents the new frontier that will be determined by the redistribution of
input x1. Restrictions (16) and (17) represent the restrictions to frontier’s convexity and increasing
monotonicity.

x1 +bx2 + . . .+mxr = ny2
1 +oy1 + py2

2 +qy2 + . . .+uy2
2 + vy2 +w; b̸=0 (15)

∂ 2xik

∂y2
jk
≥0; ∀k,∀i and ∀ j (16)

∂xik

∂yjk
≥0; ∀k,∀i and ∀ j (17)

3 PARABOLIC DEA FOR MULTIPLE INPUTS REDISTRIBUTION

In this paper, we extend the Parabolic DEA model developed by Silveira et al. (2019) to redis-
tribute multiple inputs. For this, as main strategy, we have used the multi-objective approach,
that is, one objective function for each input to be redistributed. Equation (18) represents the
objective functions.

Min
n

∑
k=1

|xok − xk|,∀i (18)

Similarly to the original model (Silveira et al., 2019), the auxiliary variable Mik and its restrictions
linearize the objective functions.

Min
n

∑
k=1

Mik; ∀i (19)

Subject to

Mik≥xok − xk ;∀i and ∀k (20)

Mik≥− xok + xk ; ∀i and ∀k (21)

In this approach, we have stated that the efficiency frontier is the intersection of the paraboloid
functions that will be determined for each input by the model, as represented in (22).

x1k = ay2
k +byk + c; ∀k (22)

x2k = dy2
k + eyk + f ; ∀k

· · ·

xrk = vy2
k +wyk + z; ∀k
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6 REDISTRIBUTING MULTIPLE INPUTS WITH A PARABOLIC DEA MODEL

Therefore, restrictions (23) and (24) assure frontier’s convexity and increased monotonicity. Fur-
thermore, restrictions (25) and (26) state that the independent term of all paraboloids equations
and the new inputs must be non-negative.

dxik

dy
≥0; ∀i and ∀k (23)

d2xik

dy2 ≥0; ∀i and ∀k (24)

c, f , . . .,z≥0 (25)

xik≥0; ∀i and ∀k (26)

Combining the objective functions and restrictions presented, the Linear Programme (27)
describes the parabolic DEA model for redistributing multiple inputs in one output scenarios.

Min
n

∑
k=1

Mik;∀i (27)

Subject to

Mik≥xoik − xik; ∀i and ∀k

Mik≥− xoik + xik; ∀i and ∀k
n

∑
k=1

(xoik − xik) = 0; ∀i

x1k = ay2
k +byk + c; ∀k

x2k = dy2
k + eyk + f ; ∀k

· · ·
xrk = vy2

k +wyk + z; ∀k

dxik

dy
≥0; ∀i and ∀k

d2xik

dy2 ≥0; ∀i and ∀k

c, f , . . .,z≥0

xik≥0; ∀i and ∀k

This model can be generalised to redistribute multiple inputs in multiple outputs scenarios by
developing the paraboloid surface to consider the new variables, as represented by (28). It is
important to stress out that this model do not change outputs.
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x1k = ay2
1k +by1k + cy2

2k +dy2k + . . .+nysk +my2
sk +o; ∀k (28)

· · ·

xrk = py2
1k +qy1k + ty2

2k +uy2k + . . .+ vysk +wy2
sk + z; ∀k

This generalisation also requires the expansion of the restrictions for convexity and monotonicity
to limit all outputs as in (29) and (30).

dxik

dy j
≥0; ∀i ,∀ j and ∀k (29)

d2xik

dy2
j
≥0; ∀i ,∀ j and ∀k (30)

The Linear Programme (31) describes the parabolic DEA model for redistributing multiple inputs
in multiple outputs scenarios.

Min
n

∑
k=1

Mik;∀i (31)

Subject to

Mik≥xoik − xik; ∀i and ∀k

Mik≥− xoik + xik; ∀i and ∀k
n

∑
k=1

(xoik − xik) = 0; ∀i

x1k = ay2
1k +by1k + cy2

2k +dy2k + . . .+nysk +my2
sk +o; ∀k

· · ·
xrk = py2

1k +qy1k + ty2
2k +uy2k + . . .+ vysk +wy2

sk + z; ∀k

dxik

dy j
≥0; ∀i ,∀ j and ∀k

d2xik

dy2
j
≥0; ∀i ,∀ j and ∀k

o≥0

z≥0

xik≥0; ∀i and ∀k

The proposed model respects the characteristics of the original parabolic model developed by
Silveira et al. (2019). It constructs the efficiency frontier as a smooth and rising convex curve, in
a shape corresponding to the intersection of two or more paraboloids, which respects VRS con-
ditions. It redistributes multiple input variables keeping their sum constant, making all DMUs
extreme efficient and located at the frontier. It is noteworthy that this method results in the ab-
sence of restrictions that simultaneously contain all input variables. This condition assures the
solution’s uniqueness in multi-objective models.
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8 REDISTRIBUTING MULTIPLE INPUTS WITH A PARABOLIC DEA MODEL

4 RESOLUTION APPROACHES AND NUMERICAL EXAMPLES

We present two approaches for redistributing multiple inputs using Parabolic DEA. The first one
uses scalarizing technique for calculating nondominated solutions (Antunes et al., 2016). That is,
the r objective functions are replaced by a single function. In this approach, the single function
is represented by a weighted-sum of the objective functions with positive weights λ i, as in (32).

Max zλ =
r

∑
i=1

λi fi(x) (32)

Subject to
r

∑
i=1

λi = 1

λi > 0, i = 1, . . .,r

This approach requires the variable’s nondimensionalization since it is not possible to sum differ-
ent measure units. In addition, the variable’s divergence of scale may lead to unfeasible results.
This technique consists of dividing each variable by its largest unit with no loss in result since
DEA is invariant at scale.

The second approach is the Separation of Variables, which consists in transforming the single
Linear Programme in multiple programmes, one for each input. This is possible because there
is no restriction that simultaneously consider all input variables, so it is viable to separate each
input objective function and its related fixed sum restriction. To illustrate the model, we present
a numerical example for a set of five DMUs, one output (y) and two inputs (x1 and x2) to be
redistributed. Table 1 depicts the data set and the classical input-oriented BCC efficiency indexes.

Table 1 – Numerical example 1 – original data set and BCC efficiencies.

DMU x1 x2 y BCC eff.
A 0.90 6.00 1.00 1.00
B 4.10 5.00 2.00 1.00
C 8.80 8.00 2.50 0.82
D 16.00 10.00 3.50 0.84
E 25.20 9.00 5.40 1.00

Total 55.00 38.00 14.40

For nondimensionalization, the variables must be divided by its largest values. Thus, we divided
variables x1, x2 and y by 25.2, 10 and 5.4, respectively. Table 2 depicts the original data set
nondimensionalized.

The objective functions for this example are as shown in (33).

Min M11 +M12 +M13 +M14 +M15 (33)

Min M21 +M22 +M23 +M24 +M25

Pesquisa Operacional, Vol. 43, 2023: e267995
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Table 2 – Numerical example 1 – original data set
nondimensionalized and BCC efficiencies.

DMU x1 x2 y BCC eff.
A 0.04 0.60 0.19 1.00
B 0.16 0.50 0.37 1.00
C 0.35 0.80 0.46 0.82
D 0.63 1.00 0.65 0.84
E 1.00 0.90 1.00 1.00

Total 2.18 3.80 2.67

They minimize the auxiliary variable Mik, which represents the difference between the origi-
nal input i value of DMU k and after redistribution. The variable Mik is related to the module
restrictions, represented by (34) in this example.

M11 + x11≥0.04 (34)

M12 + x12≥0.16

M13 + x13≥0.35

M14 + x14≥0.63

M15 + x15≥1.00

M11 − x11≥−0.04

M12 − x12≥−0.16

M13 − x13≥−0.35

M14 − x14≥−0.63

M15 − x15≥−1.00

M21 + x21≥0.60

M22 + x22≥0.50

M23 + x23≥0.80

M24 + x24≥1.00

M25 + x25≥0.90

M21 − x21≥−0.60

M22 − x22≥−0.50

M23 − x23≥−0.80

M24 − x24≥−1.00

M25 − x25≥−0.90

Equations (35) and (36) represent the restrictions for inputs x1 and x2 fixed sum.

x11 + x12 + x13 + x14 + x15 = 2.18 (35)
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10 REDISTRIBUTING MULTIPLE INPUTS WITH A PARABOLIC DEA MODEL

x21 + x22 + x23 + x24 + x25 = 3.80 (36)

The set of paraboloids restrictions represented by (37) for x1 and (38) for x2 will define the new
efficiency frontier.

x11 −0.0361a−0.19b− c = 0 (37)

x12 −0.1369a−0.37b− c = 0

x13 −0.2116a−0.46b− c = 0

x14 −0.4225a−0.65b− c = 0

x15 −1.0000a−1.00b− c = 0

x21 −0.0361d −0.19e− f = 0 (38)

x22 −0.1369d −0.37e− f = 0

x23 −0.2116d −0.46e− f = 0

x24 −0.4225d −0.65e− f = 0

x25 −1.0000d −1.00e− f = 0

Restrictions (39) and (40) ensure the frontier’s positive concavity and its increasing monotonicity,
developed from the determination that the second derivative and the first derivative are non-
negative.

0.38a−1.00b≥0 (39)

0.38d −1.00e≥0

a≥0 (40)

d≥0

c≥0

f≥0

Using the Weighted Sum scalarizing technique and knowing that Minzλ = Max(−zλ ), the
objective functions in (33) become the mono-objective function represented in (41).

Max λ1

(
−

5

∑
k=1

M1k

)
+λ2

(
−

5

∑
k=1

M2k

)
(41)

The Linear Programme (42) represents the proposed solution for redistributing multiple inputs
using Parabolic DEA and Weighted Sum of the Objective Functions resolution. Table 3 depicts
the obtained results and the variations used for λ i.

Max λ1

(
−

5

∑
k=1

M1k

)
+λ2

(
−

5

∑
k=1

M2k

)
(42)
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Subject to

M11 + x11≥0.04

M12 + x12≥0.16

M13 + x13≥0.35

M14 + x14≥0.63

M15 + x15≥1.00

M11 − x11≥−0.04

M12 − x12≥−0.16

M13 − x13≥−0.35

M14 − x14≥−0.63

M15 − x15≥−1.00

M21 + x21≥0.60

M22 + x22≥0.50

M23 + x23≥0.80

M24 + x24≥1.00

M25 + x25≥0.90

M21 − x21≥−0.60

M22 − x22≥−0.50

M23 − x23≥−0.80

M24 − x24≥−1.00

M25 − x25≥−0.90

x11 + x12 + x13 + x14 + x15 = 2.18

x21 + x22 + x23 + x24 + x25 = 3.80

x11 −0.0361a−0.19b− c = 0

x12 −0.1369a−0.37b− c = 0

x13 −0.2116a−0.46b− c = 0

x14 −0.4225a−0.65b− c = 0

x15 −1.0000a−1.00b− c = 0

x21 −0.0361d −0.19e− f = 0

x22 −0.1369d −0.37e− f = 0

x23 −0.2116d −0.46e− f = 0

x24 −0.4225d −0.65e− f = 0

x25 −1.0000d −1.00e− f = 0

0.38a−1.00b≥0

0.38d −1.00e≥0

Pesquisa Operacional, Vol. 43, 2023: e267995



12 REDISTRIBUTING MULTIPLE INPUTS WITH A PARABOLIC DEA MODEL

Table 3 – Results for the Weighted Sum of the Objective Functions in one output scenario.

DMU Result 1 Result 2 Result 3
λ 1=0.5 λ 2=0.5 λ 1=0.9 λ 2=0.1 λ 1=0.3 λ 2=0.7

x1 x2 x1 x2 x1 x1

A 0.12 0.68 0.12 0.68 0.12 0.68
B 0.24 0.71 0.24 0.71 0.24 0.71
C 0.31 0.73 0.31 0.73 0.31 0.73
D 0.51 0.78 0.51 0.78 0.51 0.78
E 1.00 0.90 1.00 0.90 1.00 0.90

Total 2.18 3.80 2.18 3.80 2.18 3.80

Table 3 shows that the three situations have achieved the same results. This indicates the indepen-
dence of the weighting values for obtaining the results and that both variables represent the same
importance for the model. We expected these results since there are no simultaneous restrictions
for both input variables in the linear programme (42). This condition allows the Separation of
Variables resolution approach.

Using the Separation of Variables approach in the numerical example presented, we obtain two
linear programmes, one for input x1, described by (43) and the other one for input x2, (44). Table
4 depicts the results achieved.

• Linear Programme 1 (input x1):

Min M11 +M12 +M13 +M14 +M15 (43)

Subject to

M11 + x11≥0.04

M12 + x12≥0.16

M13 + x13≥0.35

M14 + x14≥0.63

M15 + x15≥1.00

M11 − x11≥−0.04

M12 − x12≥−0.16

M13 − x13≥−0.35

M14 − x14≥−0.63

M15 − x15≥−1.00

x11 + x12 + x13 + x14 + x15 = 2.18

x11 −0.0361a−0.19b− c = 0

x12 −0.1369a−0.37b− c = 0

Pesquisa Operacional, Vol. 43, 2023: e267995
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x13 −0.2116a−0.46b− c = 0

x14 −0.4225a−0.65b− c = 0

x15 −1.0000a−1.00b− c = 0

0.38a−1.00b≥0

a,c≥0

• Linear Programme 2 (input x2):

Min M21 +M22 +M23 +M24 +M25 (44)

Subject to

M21 + x21≥0.60

M22 + x22≥0.50

M23 + x23≥0.80

M24 + x24≥1.00

M25 + x25≥0.90

M21 − x21≥−0.60

M22 − x22≥−0.50

M23 − x23≥−0.80

M24 − x24≥−1.00

M25 − x25≥−0.90

x21 + x22 + x23 + x24 + x25 = 3.80

x21 −0.0361d −0.19e− f = 0

x22 −0.1369d −0.37e− f = 0

x23 −0.2116d −0.46e− f = 0

x24 −0.4225d −0.65e− f = 0

x25 −1.0000d −1.00e− f = 0

0.38d −1.00e≥0

d, f≥0

Table 5 depicts the results achieved by resolutions 1 and 2, Weighted Sum of the Objective
Functions and Separation of Variables, respectively, for multiple inputs and one output scenarios.
We can verify that both present equal results, which indicates that the input variables represent
the same importance for the model.

Figure 1 shows the DMU’s original and redistributed layout, represented respectively by the blue
and red dots. We can also visualize the alignment of the DMUs following the parabolic shape by
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Table 4 – Resolution 2: Separation of
Variables in one output scenario.

DMU LP 1 LP 2
x1 x2

A 0.12 0.68
B 0.24 0.71
C 0.31 0.73
D 0.51 0.78
E 1.00 0.90

Total 2.18 3.80

Table 5 – Results for the two approaches – multiples inputs and one output.

DMU Original data Resolution 1 Resolution 2 Efficiency BCC
x1 x2 x1 x2 x1 x2 Original Final

A 0.04 0.60 0.12 0.68 0.12 0.68 1.00 1.00
B 0.16 0.50 0.24 0.71 0.24 0.71 1.00 1.00
C 0.35 0.80 0.31 0.73 0.31 0.73 0.82 1.00
D 0.63 1.00 0.51 0.78 0.51 0.78 0.84 1.00
E 1.00 0.90 1.00 0.90 1.00 0.90 1.00 1.00

Total 2.18 3.80 2.18 3.80 2.18 3.80 2.18 3.80

redistributing their inputs without changing outputs. It is interesting to note that even DMUs A
and B, considered efficient in the original model, have received resources in order to make them
efficient from the perspective of the parabolic DEA. There was no change in DMU E variables.

Figure 1 – DMUs – original and redistributed inputs.
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The paraboloids defined by the model are represented by (45) and (46) for inputs x1 and x2.

x1k = 0.69y2
k +0.26yk +0.04; ∀k (45)

x2k = 0.17y2
k +0.06yk +0.66; ∀k (46)

Figures 2 and 3 show the paraboloid functions defined for input x1 and input x2 on the three-
dimensional Cartesian system, respectively.

Figure 2 – Paraboloid function x1. Figure 3 – Paraboloid function x2.

Figure 4 shows the new DMU’s input configuration determined by the model. Note that they
are arranged at the intersection of the two paraboloid functions. Figure 5 simultaneously shows
the DMUs following the original and the new input configuration determined by the model,
respectively represented by the blue and red dots.

Figure 4 – New DMU’s redistribution. Figure 5 – DMU’s original and after
redistribution configuration.
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To illustrate this approach in multiple outputs scenarios, we will present another numerical ex-
ample as shown in Table 6. In this example, we will analyse a set of 5 DMUs in which x1 and
x2 are the inputs to be redistributed. The outputs are represented by y1 and y2. The difference
between numerical examples 1 and 2 is the inclusion of y2.

Table 6 – Numerical example 2 – original data-set and BCC efficiencies.

DMU x1 x2 y1 y2 BCC ef.
A 0.90 6.00 1.00 4.00 1.00
B 4.10 5.00 2.00 3.00 1.00
C 8.80 8.00 2.50 8.00 1.00
D 16.00 10.00 3.50 6.00 0.84
E 25.20 9.00 5.40 10.00 1.00

Total 55.00 38.00 14.40 31.00

As in Example 1, the variables must be divided by its largest values for nondimensionalization.
Table 7 depicts the original data-set nondimensionalized and equation (47) represents the linear
programme for this example.

Table 7 – Numerical example 2 - original data-set nondimensionalized and BCC efficiencies.

DMU x1 x2 y1 y2

A 0.04 0.60 0.19 0.40
B 0.16 0.50 0.37 0.30
C 0.35 0.80 0.46 0.80
D 0.63 1.00 0.65 0.60
E 1.00 0.90 1.00 1.00

Total 2.18 3.80 2.67 3.10

Min M11 +M12 +M13 +M14 +M15 (47)

Min M21 +M22 +M23 +M24 +M25

Subject to

M11 + x11≥0.04

M12 + x12≥0.16

M13 + x13≥0.35

M14 + x14≥0.63

M15 + x15≥1.00

M11 − x11≥−0.04

M12 − x12≥−0.16
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M13 − x13≥−0.35

M14 − x14≥−0.63

M15 − x15≥−1.00

M21 + x21≥0.60

M22 + x22≥0.50

M23 + x23≥0.80

M24 + x24≥1.00

M25 + x25≥0.90

M21 − x21≥−0.60

M22 − x22≥−0.50

M23 − x23≥−0.80

M24 − x24≥−1.00

M25 − x25≥−0.90

x11 + x12 + x13 + x14 + x15 = 2.18

x21 + x22 + x23 + x24 + x25 = 3.80

x11 −0.0361a−0.19b−0.16c−0.4d − e = 0

x12 −0.1369a−0.37b−0.09c−0.3d − e = 0

x13 −0.2116a−0.46b−0.64c−0.8d − e = 0

x14 −0.4225a−0.65b−0.36c−0.6d − e = 0

x15 −1.0000a−1.00b−1.00c−1.0d − e = 0

x21 −0.0361 f −0.19g−0.16h−0.4i− j = 0

x22 −0.1369 f −0.37g−0.09h−0.3i− j = 0

x23 −0.2116 f −0.46g−0.64h−0.8i− j = 0

x24 −0.4225 f −0.65g−0.36h−0.6i− j = 0

x25 −1.0000 f −1.00g−1.00h−1.0i− j = 0

0.38a−1.00b≥0

0.60c−1.00d≥0

0.38 f −1.00g≥0

0.60h−1.00i≥0

a,c, f ,h,e, j≥0

Using the Weighted Sum of the Objective Functions resolution, Table 8 depicts the obtained re-
sults and the variations used for λ i. As in numerical example 1, the three situations have achieved
the same results. This indicates the independence of the weighting values for obtaining the results
and that both variables represent the same importance for the model.
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Table 8 – Resolution 1: Weighted Sum of the Objective Functions in multiple output scenario.

DMU Results 1 Results 2 Results 3
λ 1=0.5 λ 2=0.5 λ 1=0.1 λ 2=0.9 λ 1=0.7 λ 2=0.3

x1 x2 x1 x2 x1 x2

A 0.11 0.60 0.11 0.60 0.11 0.60
B 0.20 0.60 0.20 0.60 0.20 0.60
C 0.35 0.80 0.35 0.80 0.35 0.80
D 0.49 0.75 0.49 0.75 0.49 0.75
E 1.03 1.05 1.03 1.05 1.03 1.05

The Separation of Variables approach segregates the objective functions and restrictions of
each input variable and calculates the PPLs individually. Thus, using this method in numerical
example 2 we have achieved the results shown in Table 9.

Table 9 – Resolution 2: Separation of Variables
in multiple outputs scenario.

DMU PPL 1 PPL 2
x1 x2

A 0.11 0.60
B 0.20 0.60
C 0.35 0.80
D 0.49 0.75
E 1.03 1.05

Equations (48) and (49) represent the paraboloids defined for inputs x1 and x2.

x1k = 0.64y2
1k +0.24y1k +0.09y2

2k +0.06y2k +0; ∀k (48)

x2k = 0.14y2
1k +0.06y1k +0.22y2

2k +0.13y2k +0.49; ∀k (49)

Table 10 depicts the results achieved by resolutions 1 and 2, Weighted Sum of the Objective
Functions and Separation of Variables respectively, for multiple inputs and outputs scenarios. As
in numerical example 2, both approaches have achieved the same results.

Comparing the results obtained for inputs x1 and x2 for both numerical examples, Tables 5 and
10, which have as only difference output y2 in the second one, it is possible to observe that the
results obtained are different. This proves that the output variable’s choice as well as the number
of variables considered directly interfere in the result, although the inputs do not influence the
results of redistribution between them.
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Table 10 – Resolutions 1 and 2 – multiples inputs and outputs.

DMU Original Data Resolution 1 Resolution 2 Efficiency BCC
x1 x2 x1 x2 x1 x2 Original Final

A 0.04 0.60 0.11 0.60 0.11 0.60 1.00 1.00
B 0.16 0.50 0.20 0.60 0.20 0.60 1.00 1.00
C 0.35 0.80 0.35 0.80 0.35 0.80 1.00 1.00
D 0.63 1.00 0.49 0.75 0.49 0.75 0.84 1.00
E 1.00 0.90 1.03 1.05 1.03 1.05 1.00 1.00

5 FINAL COMMENTS

In this paper, we have extended the parabolic DEA model (Silveira et al., 2019) to redistribute
multiple inputs simultaneously. For this, we have made an overview about parametric DEA mod-
els and other DEA-based models for variable redistribution. In addition, we have detailed the
original parabolic DEA model (Silveira et al., 2019), which is the main literature source of our
research. The solution for multiple inputs redistribution that we have presented in this study guar-
antees that all DMUs will become extreme efficient and arranged in the new efficiency frontier
without changing the outputs. In addition, the model returns the efficiency frontier as a rising
convex curve, of a shape corresponding to the intersection of multiple paraboloids defined for
each input variable, which meets the VRS conditions.

To define the parabolic efficiency frontier, the model defines a paraboloid function for each in-
put variable, resulting in the absence of restrictions that simultaneously contemplate all the in-
put variables. In addition, an only multi-objective Linear Programming Problem represents this
model.

We have presented two resolutions approaches named Weighted Sum of the Objective Functions
and Separation of Variables, which were used in two numerical examples in scenarios of one
output and multiple outputs. The results achieved were identical for each scenario, showing the
independence between the input variables.

We also have observed that the parabolic model for multiple inputs redistribution assures the
solution’s uniqueness, unlike classic multi-objective models, which are able to determine only
a set of non-dominated solutions. This characteristic is valid regardless the number of inputs
analysed, as long as no restrictions simultaneously consider all inputs, that is, as long as the
resolution by Separation of Variables is feasible.

In futures studies, we intend to search for a solution that redistributes multiple inputs considering
dependence between variables. Moreover, we also intend to study the extension of the model to
redistribute multiple outputs. In such case, we believe that the main difficulty will be non-linear
nature of the models.
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ANTUNES CH, ALVES MJ & CLÍMACO J. 2016. Multiobjective Linear and Integer
Programming. New York: Springer.

AVELLAR JG, MILIONI AZ & RABELLO TN. 2007. Spherical frontier DEA model based on a
constant sum of inputs. Journal of the Operational Research Society, 58(9): 1246-1251.
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determinação de pesos únicos em modelos DEA CCR. Production, 25(3): 585-597.

SOARES DE MELLO JCCB, LINS MPE & GOMES EG. 2002. Construction of a smoothed DEA
frontier. Pesquisa Operacional, 22(2): 183-201.

SILVA RC, MILIONI AZ & TEIXEIRA JE. 2017. The general hyperbolic frontier model: estab-
lishing fair output levels via parametric DEA. Journal of the Operational Research Society, 1(1):
946-958.

SILVEIRA JQ, SOARES DE MELLO JCCB, & ANGULO-MEZA L. 2019. Input redistribution
using a parametrica DEA frontier and variable returns to scale: The parabolic efficient frontier.
Journal of the Operational Research Society, 70(5): 751-759.

Pesquisa Operacional, Vol. 43, 2023: e267995



22 REDISTRIBUTING MULTIPLE INPUTS WITH A PARABOLIC DEA MODEL

How to cite
MOREIRA LS, SOARES DE MELLO JCCB & ANGULO MEZA L. 2023. Redistributing multiple inputs with

a parabolic DEA model. Pesquisa Operacional, 43: e267995. doi: 10.1590/0101-7438.2023.043.00267995.

Pesquisa Operacional, Vol. 43, 2023: e267995


