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ABSTRACT. In this paper, we propose a math-heuristic that combines mathematical programming tech-
niques with a heuristic approach based on the Simulated Annealing metaheuristic to solve the Two-Echelon
Capacitated Vehicle Routing Problem (2E-CVRP). This problem arises in the context of a distribution
network that is divided in two levels: satellite facilities that connect customers to fulfilment centers where
freight originates. As it is an NP-hard problem, the proposed approach combines a cluster-first route-second
math-heuristic in which approaches are more appropriate, particularly for problem sizes that are more com-
monly found in practice. The results of the experiments with benchmark instances show that such cluster-
first route-second math-heuristic approach utilizing package solvers (CPLEX and TSP CONCORDE) can
effectively help solving the CVRP for small instances when compared to an exact method. The exper-
iments conducted on benchmark instances demonstrated the effectiveness of the proposed “cluster-first,
route-second” math-heuristic approach, which utilizes package solvers such as CPLEX and TSP CON-
CORDE, in solving the CVRP for small instances, outperforming exact methods. This research contributes
to demonstrating the potential applications of package solvers on heuristic structures for solving the CVRP.
Although the presented math-heuristic has limitations, mainly due to the extensive usage of mathemati-
cal programming and the chosen characteristics of the implemented local search operators, it can quickly
generate high-quality initial solutions for medium and large instances. By showcasing the “cluster-first,
route-second” approach, this paper provides a framework that can be further improved by local search or
embedded in other metaheuristics, such as GRASP or tabu search, and has practical implications for various
industries.
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1 INTRODUCTION

This article addresses the two-echelon capacitated vehicle routing problem (2E-CVRP). In this
problem, the distribution network is divided in two levels or layers (echelons), as can be seen in
Figure 1.

Figure 1 – Example of a 2E-CVRP problem solution.

Source: Sluijk et al. (2022).

The main depot and the intermediate facilities (satellite terminals) correspond to the main distri-
bution structure, from where loads originate, and are usually located away from the large urban
centers, configuring the first echelon or tier, denoted by – FE or 1E - with customers are serviced
in the second echelon – SE or 2E - as described by Sluijk et al. (2022). The satellites, located
at the edges or borders between layers, allow the consolidation and transshipment of products
between the vehicles utilized on either echelon. This makes it possible to use larger vehicles in
the first tier, which can transfer the loads from the depot to be delivered to the intermediate instal-
lations (satellite terminals) at times of lower traffic or that allow the traffic of larger vehicles (for
example, in the evening or night), which are then distributed to the delivery points using smaller
vehicles, usually more suitable for driving and parking in the most central and congested areas.

As highlighted by Crainic et al. (2009), two-tier systems are increasingly being used in large
cities that face serious problems related to vehicle traffic. Examples of two-tier distribution sys-
tems include home delivery of e-commerce, distribution of supermarket products, multimodal
cargo transport, among others (Sluijk et al., 2022). Solutions described in the literature present
exact methods (or algorithms) and heuristic methods. State-of-the-art algorithms can solve only
relatively small instances to optimality in reasonable computational time since the 2E-CVRP
is of the NP-hard class (Arnold and Sorensen, 2019; Cuda et al., 2015). Heuristic approaches
do not necessarily provide the optimal solution to the problem but allow obtaining near-optimal
results for a NP-hard problem usually in very short times (Arnold and Sorensen, 2019). A math-

Pesquisa Operacional, Vol. 43, 2023: e270829
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heuristic combines heuristic techniques with operations research methods and tools to obtain
effective solutions (Boschetti and Maniezzo, 2022).

This paper proposes the development of a math-heuristic based on the Simulated Annealing
metaheuristic for the 2E-CVRP that derives from formulation developed by Sluijk et al. (2022).

The 2E-CVRP formulation proposed by the authors allows solving both the first and the sec-
ond echelons of the routing problem. In this work, we propose a model that comprises a math-
heuristic for solving the 2E-CVRP by applying a “cluster-First, route-Second” approach, com-
monly utilized in constructive heuristics to the CVRP (Prins et. al., 2014). With this approach,
customers are first allocated to the satellites thus decomposing the problem into several Capac-
itated VRPs and it provides the main benefit of being computationally cheaper. However, the
routes obtained later can be suboptimal (Singh et al., 2023). In the proposed math–heuristic two
CVRP problems are solved after the clustering process (which defines the customers and load
assigned to each satellite): the capacitated vehicle routing problem from the central depot to the
satellites and the capacitated routing problem within each satellite.

Our motivation stems from the importance of demonstrating possible applications of package
solvers in combination with heuristic approach to solve the CVRP. Although our proposed math-
heuristic has limitations due to the usage of mathematical programming and chosen specific char-
acteristics of the implemented local search operators, it aims to illustrate how the “cluster-first,
route-second” approach can be used to quickly generate good-quality initial solutions that can be
further improved by local search. Additionally, our approach can be integrated into a multi-start
constructive heuristic such as GRASP (Feo and Resende, 1995) or even in a metaheuristic such
as tabu search (Glover, 1990) or VNS (Hansen and Mladenović, 2001).

This article is organized as follows: in the next section the literature review of the problem is
presented. The proposed heuristic is described in Section 3 and the results of computational
experiments are reported in Section 4. Finally, the conclusions are in Section 5.

2 LITERATURE REVIEW

In the classic vehicle routing problem (VRP), the goal is to determine the route(s) to visit a set
of service demand nodes, seeking to minimize the distance or the total cost and ensuring that
each node is visited exactly once and the total demand on any route does not exceed the capacity
of the respective vehicle. In other words, demands - pickups, deliveries, or service visits - must
be allocated to each vehicle of an available fleet, and the routes (or sequence of stops) of each
vehicle must minimize the total cost of the service, usually composed of the weighted sum of
fixed costs and costs proportional to the distance traveled by vehicles and travel time, subject to
constraints such as time windows (time periods in which the deliveries can be made), maximum
distance or maximum duration of routes, among others (Cunha, 2006). It is a widely explored
problem in the literature. Good recent references that provide a broad view of the state-of-the-art
of this problem can be found, for example, in Vidal et al. (2014), Lahyani et al. (2015), Braekers
et al. (2016) and Vidal et al. (2020).
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The first formal definition of a 2E-VRP appeared in Crainic et al. (2009), where the authors
study a rich variant of a 2E-VRP problem with various products and depots, time dependencies
and vehicle synchronization, in a broader context of city logistics. More specifically, the prob-
lem studied included the selection of routes and the scheduling of the dispatched vehicles, as
well as the selection of demand routes from the main terminals, via satellite terminals, to the
final customers. The coordination and time-based synchronization of the vehicles at both lev-
els were central elements of the problem. The authors investigated main aspects of the problem
and proposed a mathematical formulation and a general methodology for its resolution based
on a hierarchical decomposition approach. No computational experiments or application to any
practical case have been reported.

Perboli et al. (2011) were the first authors to formally define the term 2E-VRP and propose a
mathematical model for the problem with a single deposit from which vehicles depart at the first
level. Cuts derived from VRP formulations were proposed to improve the linear relaxation of the
mathematical model. Two problem decomposition heuristics that seek to optimally determine
the allocation of clients to satellite terminals - allowing the resolution of each of the scripting
problems independently - based on the mathematical model (math-based heuristics) were also
presented. Computational experiments comprised four sets of test instances with up to 50 cus-
tomers and a single warehouse. The results showed that the gap of the mathematical model is
small up to 32 customers, increasing in problems with 50 customers and particularly in those
with four satellites. The two heuristics based on mixed-integer programming presented good
performance both from the computational point of view and from the quality of the solutions
obtained.

Jepsen et al. (2013) proposed an arc-flow-based formulation for 2E-VRP, while Baldacci et al.
(2013) presented a route-based formulation. Both can resolve small problem instances. Marujo
et al. (2018) proposed a method to identify the economic (on costs and service levels) and en-
vironmental impacts of using motorized cargo tricycles in combination with conventional trucks
– acting as mobile depots - as a solution to address the constraints imposed on access of con-
ventional cargo vehicles in densely populated areas. The analytical method in conjunction with
Monte Carlo simulation for eco-efficiency evaluation was applied to the megacity of Rio de
Janeiro. The results showed that the use of cargo tricycles that replenish from parked trucks serv-
ing as mobile warehouses does not result in a significant increase in the time or distance traveled
or decrease in the level of service experienced by customers, while greenhouse gas emissions and
local air quality pollutants can be significantly reduced using load tricycles and mobile deposits
in the last mile distribution.

Li et al. (2021) addressed the problem of route optimization in a series of synchronized express
service steps (line haul, pickup and delivery), in which satellite terminals are classified in two
types: satellite terminals for cargo pickup, called source satellites, which serve only senders; and
satellite terminals for cargo deliveries, so-called destination satellites, serve only the receivers.
At the second level, a heterogeneous fleet of small-capacity trucks meets senders’ requests and
collects cargo for transport to a source satellite. Upon arriving at the destination satellite termi-
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nal – connected to a source satellite through the intercity line haul - the loads are transshipped
and loaded into trucks scheduled to arrive on time to the recipients. In the first level, the loads
are loaded in large capacity trucks and transported between the satellite terminals. To ensure
the on time express services, synchronization constraints on the source satellites and destination
satellites must be assured. The goal is to find the set of routes that minimizes the sum of costs.
The authors proposed a mixed-integer programming model in which satellite bi-synchronization
constraints provide an innovative method for formulating two-level network routing problems. A
strategy was also developed based on the ALNS meta-heuristic (“adaptive large neighborhood
search”) that uses different operators of destruction and repair of solutions. The experiments
involved small (three source satellite terminals, three destination and up to 9 pickup or deliv-
ery points) and large (17 source and destination satellite terminals and 120 pickup and delivery
points). The exact method was able to solve only part of the small instances, whereas ALNS
was able to obtain quality solutions (deviations of less than 0.5% for those instances) in reduced
processing times. In a related subsequent work, Li et al. (2022) addressed the 2E-CVRP with
constraints on simultaneous grouping and simultaneous pickup and delivery, a new variant of the
classic 2E-VRP problem in which customers from the same administrative region are served by
vehicles from the same satellite, to ensure service consistency, and the pickup and delivery are
carried out simultaneously at the second level. To optimally solve the problem, a path-based for-
mulation was proposed, and a specialized branch-and-cut-and-price algorithm was developed,
which also allows to solve two related variants: the 2E-VRP with grouping constraints and
the 2E-VRP with simultaneous collection and delivery. Computational experiments with three
groups of test instances were conducted to evaluate the performance of the algorithm proposed
in the problems. The results show that the proposed dominance rule can significantly reduce the
number of labels generated and all valid inequalities have a major impact on the robustness of
the path-based model, making it competitive when compared to existing exact algorithms.

Liu and Jiang (2021) describe a variable neighborhood search (VNS) algorithm to solve the 2E-
VRPSDP, a variant of the two-echelon vehicle routing problem with simultaneous pickups and
deliveries in which both feasible and infeasible solutions can be explored. Arnold and Sorensen,
2019 demonstrate the importance of well-implemented local search and how they are sufficient
to create heuristics to obtain high-quality solutions in short processing time.

Good reviews on the 2E-VRP can be found in Cuda et al. (2015) and Sluijk et al. (2022). The
latter comprises 40 new articles that have been published in a relatively short time frame since
the previous review; additionally, it includes variants of problems, inspired by real world ap-
plications, which have been studied to fill the gap between theoretical and canonical models
and practical applications. The authors identified several challenging extensions of the 2E-VRP,
including multiple warehouses, time windows, simultaneous pickup and delivery operations, het-
erogeneous fleet of vehicles at each of the two levels, and the inclusion of delivery alternatives
such as direct warehouse deliveries, without going through any satellite, for customers located
near the origin of the cargo. The synchronization of routes between the two levels and split deliv-
eries at the first level are important aspects highlighted by the authors, especially for distribution
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systems for e-commerce. Finally, it is also important to highlight that the literature on the sub-
ject also comprises the multi-level distribution network design problem, which also considers
decisions regarding the location of the facilities. Among them, in Winkenbach et al (2015), the
total distance covered in the itineraries is made through a simplified analytical method derived
from Daganzo (2004) to reduce the overall complexity of the problem. The work of Janjevic
et al. (2021) is a good reference on the state-of-the-art models of localization and routing in
multi-layered networks.

3 PROPOSED MODEL

The proposed model comprises a math-heuristic for solving the 2E-CVRP by applying a “cluster-
first route-second” method. With this approach, customers are first allocated to the satellites, thus
decomposing the problem into several Capacitated VRPs. Two CVRP problems are solved after
the clustering process (which defines the customers and load assigned to each satellite): the
capacitated vehicle routing problem from the central depot to the satellites and the capacitated
routing problem within each satellite. The math-heuristic steps (Figure 2) are:

• Step 1: builds an initial cluster of demand nodes around the existing satellites respecting
the existing capacity constraints.

• Step 2: solves the first echelon CVRP based on the clusters obtained in Step 1.

• Step 3: solves the second echelon CVRP from clusters formed in Step 1.

• Step 4: and Step 5 solve the 2E-CVRP by grouping all demand nodes in each single satel-
lite if capacity constraints allow. These two steps are intended to tackle scenarios where
the optimal solution is located within a single satellite, and Step 1 fails to detect a unique
cluster..

• Steps 6 and 7 aim to determine the solution with the lowest cost among the results obtained
in Step 3 for each individual satellite, as well as the results obtained in Step 5 (FE and SE)
for each single satellite

• In Step 8, the chosen solution from Step 7 is subjected to the Simulated Annealing
metaheuristic with the aim to improve it...

3.1 Math-heuristic model

The model comprises eight steps and aims to solve the 2E-CVRP using a “cluster-first, route-
second” approach. Figure 2 depicts all the steps of the math-heuristic, while its variables and
parameters are defined in Table 1.
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Table 1 – Math-heuristic parameters and variables.

Variable Definition From Input to
C Set of demand nodes. problem All steps

S Set of satellites. problem All steps

hs Handling cost at satellite s. problem Step 2

ms Maximum number of city freighters per satellite. problem Step 3

dij Distance (or cost) to cover the arc from i to j. problem All steps

xij Binary decision variable, xij = 1 if demand node i is assigned
to satellite cluster j, 0 otherwise.

Step 1 Step 2

city freighters Number of city freighters required per each satellite cluster
s∈ S.

Step 1 -

zj Binary decision variable, zj = 1 if satellite j has 1 or more
demand nodes assigned to its cluster (satellite j is active), 0
otherwise.

Step 1 Step 2

load depots Load assigned to depot s∈ S. Step 1 Step 2

demandi Demand required by i. problem Steps 1,3

M1 Maximum number of vehicles available in the first echelon. problem Step 2

M2 Maximum number of vehicles available in the second echelon. problem Step 3

A1 A1={(i, j) | i, j ∈ {0} ∪ S, i ̸= j } = set of the first echelon
arcs connecting the main depot {0} to satellite j ∈ S.

problem Step 2

A2 A2 = {(i, j) | i, j ∈ S ∪ C, i ̸= j } = set of the second
echelon arcs, connecting satellite i ∈ S with demand node
j ∈ C.

problem Step 3

K1 Set of first echelon vehicles problem Step 2

K2 Set of second echelon vehicles problem Step 3

Q1 Capacity of first echelon vehicles problem Step 2

Q2 Capacity of second echelon vehicles problem Steps 1,3

xijk Binary decision variable, xi jk = 1 indicates if vehicle k ∈ K1
uses arc (i, j) ∈ A1, 0 otherwise.

Step 2 Step 6

usk Subtour elimination variable in Step 1 - -

wsk Load transported from main depot {0} to satellite s ∈ S by
vehicle k ∈ K1.

Step 2 Step 6

yijs Binary variable, yi js = 1 if vehicle dispatched from s ∈ S uses
arc(i, j) ∈ A2, 0 otherwise.

- Step 6

fijs Load transported from s∈ S using arc(i, j) ∈ A2. - Step 6
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Figure 2 – Description of proposed model.

3.1.1 Step 1 – Build initial satellite clusters

This step attempts to cluster the demand nodes around each satellite by applying a k-medoids
approach (Kaufman and Rousseeuw, 2005). It will split the demand nodes into s satellite clusters,
where the number s is the number of satellites. Step 1 consists of an implementation in CPLEX
solver of the following mathematical model:

Ob jective Function = min ∑
i∈C

∑
j∈S

d2
i j ∗ xi j (1)

Model constraints:

∑
j∈S

xi j = 1, ∀ i ∈C (2)

∑
i∈C

demandi ∗ xis ≤ Q2∗ ms, ∀s ∈ S (3)

city f reighters −1 ≤
(∑i∈C demandi ∗ xis)

Q2
,∀s ∈ S (4)

(∑i∈C demandi ∗ xis)

Q2
≤ city f reighters , ∀s ∈ S (5)

∑
s∈S

city f reighters ≤ M2 (6)
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xi j ≤ z j, ∀ i ∈C, ∀ j ∈ S (7)

z j ∈ {0,1} , ∀ j ∈ S (8)

xi j ∈ {0,1} , ∀ i ∈C, ∀ j ∈ S (9)

city f reighters∈ N, ∀ s ∈ S (10)

The objective function (1) minimizes the sum of the square of the distances from each demand
node to the satellites (the square of the distance is used to increase the penalty and reduce the
sensibility of the formulation when applied on the solver if a node has approximately the same
distance from the satellites). Constraints (2) ensure that all demand nodes must be assigned to
only one satellite cluster, while constraints (3) impose that the total satellite cluster demand must
respect satellite capacity. Constraints (4), (5) and (6) bound the total number of city freighters
at the second echelon. Constraint (7) states that a satellite cluster j is opened if there is at least
one demand node assigned to it. Expressions (8), (9) and (10) correspond to the non-negativity
constraints.

3.1.2 Step 2 – Solve the CVRP for the first echelon

The objective of this step is to solve the first echelon routes - given the demand clusters around
the satellites from Step 1 - so that the satellites can be loaded from the main depot with the
required demand at minimum cost. The formulation of Step 2 is based on Sluijk et al. (2022),
being the main difference the inclusion on the constraint (18) to allow finding a solution to
the FE before the SE is solved by constraining the total demand in each satellite according to
the clusters obtained in Step 1. Step 2 consists of an implementation in CPLEX solver of the
following mathematical model:

Objective function = min ∑
k∈K1

∑
(i, j)∈A1

di jxi jk + ∑
k∈K1

∑
s∈S

hs ∗wsk (11)

Model constraints:

∑
k∈K1

∑
i∈{S}

x0ik ≤ M1, ∀ i ∈ S (12)

∑
(i, j)∈A1

xi jk = ∑
(i, j)∈A1

x jik, ∀ i ∈ {0}∪S, ∀ k ∈ K1 (13)

∑
(i, j)∈A1

xi jk ≤ 1, ∀ i ∈ {0}∪S, ∀ k ∈ K1 (14)

uik − u jk + |S| xi jk ≤ |S|−1, ∀ i, j ∈ S, i ̸= j, ∀ k ∈ K1 (15)

wsk ≤ Q1 ∑
( j,s)∈A1

x jsk, ∀ s ∈ S, ∀ k ∈ K1 (16)

∑
s∈S

wsk ≤ Q1, ∀ k ∈ K1 (17)
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∑
k∈K1

wsk = load depots, ∀ s ∈ opened satellites (18)

usk ∈ Z+, ∀ s ∈ S, ∀ k ∈ K1 (19)

wsk ≥ 0, ∀ s ∈ S, ∀ k ∈ K1 (20)

xi jk ∈ {0,1} , ∀ (i, j) ∈ A1, ∀k ∈ K1 (21)

The objective function (11) aims to minimize the route costs from the main depot to the satellites
and the handling costs. Constraints (12) limit the number of available vehicles at the first echelon.
Constraints (13) assure the flow of conservation at the first echelon. Constraints (14) impose that
each satellite can be visited at most once by a first echelon vehicle. Constraints (15) are the
subtour elimination constraints. Constraints (16) and (17) establish the first echelon vehicles
capacity constraints, while constraints (18) assure that Step 1 cluster demands must be respected.
Equations (19), (20) and (21) are the non-negativity constraints.

3.1.3 Step 3 – Solve the CVRP for the second echelon

The objective of this step is to solve the second echelon routes - given the demand clusters
around the satellites from Step 1 - so that the demand nodes can be serviced from each satellite
at minimum cost. The formulation of Step 3 is based on Sluijk et al. (2022) being the main
difference the inclusion on the constraint (23) to allow finding a solution to the SE after the FE
is solved by constraining the total demand in each satellite according to the clusters obtained in
Step 1. Step 3 consists of an implementation in CPLEX of the following mathematical model
(this step solves the second echelon as a monolithic block):

Objective function = min ∑
s∈S

∑
(i, j)∈A2

di jyi js (22)

Model constraints:

∑
c∈C

fscs = load depots , ∀ s ∈ S (23)

fs js2 = 0, ∀ (s, j) ∈ A2, ∀s, s2 ∈ S,s 2 ̸= s (24)

yi js2 = 0, fi js2 = 0 , ∀(i, j) ∈ A2, ∀s2 ∈ S, s2 ̸= s, ∀s ∈ current opened satellites,∀ i and j assigned to s (25)

∑
(i, j)∈A2

yi js = ∑
(i, j)∈A2

y jis, ∀ i ∈ S∪C, ∀ s ∈ S (26)

∑
(s, j)∈A2

ys js ≤ ms, ∀ s ∈ S (27)

∑
(s, j)∈A2

ys js ≤ M2 (28)

∑
s∈S

∑
(i, j)∈A2

yi js = 1, ∀ j ∈C (29)
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∑
s∈S

∑
( j,i)∈A2

f jis − ∑
s∈S

∑
(i, j)∈A2

fi js = demandi, ∀ i ∈C (30)

fi js ≤ Q2 yi js , ∀ (i, j) ∈ A2, ∀ s ∈ S (31)

fi js ≥ 0, ∀ (i, j) ∈ A2, ∀ s ∈ S (32)

xi jk ∈ {0,1} , ∀ (i, j) ∈ A1, ∀k ∈ K1 (33)

yi js ∈ {0,1} , ∀ (i, j) ∈ A2, ∀s ∈ S (34)

The objective function (22) aims to minimize the route costs from the satellites to the demand
nodes. Constraints (23) assure that the total load from each satellite must respect the satellite
cluster load from Step 1. Constraints (24) and (25) impose that there is no flow between satellites.
Constraints (26) assure the flow conservation in the second echelon. Constraints (27) limit the
number of vehicles per satellite. Constraints (28) limit the number of vehicles in the second
echelon. Constraints (29) assure that each demand node is visited exactly once. Constraints (30)
establish that the net flow at each demand node is equal to its demand. Constraints (31) assure that
the flow from each satellite must comply with the second echelon vehicle capacity constraints.
Equations (32), (33) and (34) are the non-negativity constraints.

3.1.4 Steps 4 and 5 – Group demand in single cluster

In Step 4, if capacity constraints allow – second echelon freighters capacity, total number of sec-
ond echelon freighters available, number of freighters allowed per satellite and satellite capacity
– the demand is assigned for every single satellite. Then Step 5 applies Step 2 and Step 3 for
every single cluster identified in Step 4. These two steps are designed to address the situation
where the optimum solution resides within a single satellite and Step 1 does not find a single
cluster.

3.1.5 Steps 6 and 7 – Build solution set and obtain initial feasible solution

Step 6 and Step 7 identify the minimum cost solution between the solution (FE and SE) obtained
in Step 3 and each solution (FE and SE) obtained in Step 5 for each different satellite.

3.1.6 Step 8 – Simulated Annealing

This step executes the Simulated Annealing (SA) metaheuristic to the chosen solution in Step 7
as detailed in the pseudocode depicted in Figure 3.

S0 is the initial feasible solution obtained from Step 7. S* is the best solution and S is the in-
cumbent solution during the SA iterations. T is the temperature parameter and Ti the initial
process temperature. L(T) is the SA iterations parameter and alpha the temperature reduction
rate. The neighborhood solution (S’) is obtained by either two local search operators applied on
the incumbent solution S: move or swap.

Pesquisa Operacional, Vol. 43, 2023: e270829



12 MATH-HEURISTIC FOR THE CAPACITATED TWO-ECHELON VEHICLE ROUTING PROBLEM

The move operator relocates a demand node from its cluster to another different cluster if capacity
constraints allow (total number of vehicles available and vehicle capacities at the second echelon,
maximum number of vehicles per satellite and satellite capacity).

The swap operator exchanges the satellites of two demand nodes in different satellites if capacity
constraints allow (total number of vehicles available at the second echelon, maximum number of
vehicles per satellite and satellite capacity).

Figure 3 – Simulated Annealing algorithm.

Operators move and swap are selected randomly with probability of 50% as described by the
pseudocode in Figure 4. The local search operators (move or swap) perform as described by the
pseudocode in Figure 5.

Figure 4 – Local search operator selection.

Pesquisa Operacional, Vol. 43, 2023: e270829
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Figure 5 – Local search.

Inside the local search routine, the new solution - after either the move or swap operations - is
obtained by applying Step 2 (3.2.2) and Step 3 (3.2.3) as shown by the pseudocode presented by
Step 3 and Step 4 in Figure 6.

Figure 6 – Obtain new solution after local search operators.

3.2 Second echelon math-heuristic variation

An alternative math-heuristic to solve the second echelon (Step 3) was also developed using the
TSP Concorde algorithm libraries (Applegate et al., 2003) as described by the pseudocode in
Figure 7.

In this math-heuristic, set V corresponds to the set of satellite vehicles, whose cardinality |V| is
equal to the round up to the nearest integer of the division of the total satellite demand by the

Pesquisa Operacional, Vol. 43, 2023: e270829
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Figure 7 – Alternative math-heuristic for Step 3.

freighter capacity parameter. The mathematical modeling of the cluster vans step of the math-
heuristic is:

Objective Function = min ∑
j∈V

z j (35)

Model constraints:

∑
j∈V

xi j = 1, ∀ i ∈C (36)

xi j ≤ z j, ∀ i ∈C, ∀ i ∈ S (37)

∑
i∈C

demandi ∗ xi j ≤ freighter capacity, ∀ j ∈V (38)

z j ∈ {0,1} , ∀ j ∈ S (39)

xi j ∈ {0,1} , ∀ i ∈C , ∀ j ∈V (40)

The objective function (35) aims to cluster the demand nodes in the minimum required set of ve-
hicles. Constraints (36) state that each demand node must be allocated to a single second echelon
vehicle. Constraints (37) assure that a route (vehicle) cluster j is opened if there is at least one
demand node assigned to it. Constraints (38) impose that the total load allocated to a vehicle must
be within freighter capacity. Equations (39) and (40) are the non-negativity constraints. Once the
demand nodes are assigned to routes - the vehicle clusters are identified - the initial routes are
obtained by applying the TSP Concorde algorithm to each vehicle cluster. Finally, within each
satellite cluster a Simulated Annealing process as described in 3.2.6 is applied between the routes
(or vehicles): demand nodes are moved or swapped between the same satellite cluster routes with
50% probability.

4 COMPUTATIONAL EXPERIMENTS

The proposed models were implemented in C++ using CPLEX 22.1.0. The second echelon math-
heuristic variation (section 3.3) employed Concorde TSP C libraries (Applegate et al., 2003). The
math-heuristics were tested with instances used in Sluijk et al. (2022) and Voigt et al. (2022) as

Pesquisa Operacional, Vol. 43, 2023: e270829
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given in https://homepage.univie.ac.at/ulrich.breunig/research/. The best-known solutions (col-
umn BKS), in all the result tables presented below, marked with an asterisk are optimal solutions.
Non marked best-known solutions have not been proven optimal (Breunig et al., 2016).

The chosen instances can be considered small - up to 100 customers - and medium - from 101
to 350 customers (Alesiani et al., 2022). The problem instances were solved using an Intel i7
computer with 32GB of memory running Linux operating system. Steps 1-3 and 5 correspond
to mathematical models that were implemented in CPLEX as described respectively above in
subsections 3.1.1, 3.1.2 and 3.1.3, respectively.

An exact model, solving concurrently the first and second echelon, implemented in Gurobi, using
the mathematical formulation presented in Sluijk et al. (2022) was developed to certify the im-
plemented math-heuristic model– since it uses part of the original formulation – and to check the
processing time of the math-heuristic when compared to the exact monolithic approach. Table 2
and Table 3 present the results for the exact model. The solver time limit was set to 36,000 sec-
onds (10 hours). Column ‘Qty Sat’ contains the number of satellites in the instance; column ‘Qty
Clt’ the number of demand nodes; column ‘Dmd’ the total second echelon demand; column ‘Qty
Tr’ the number of first echelon vehicles; column ‘Truck Cap’ the capacity of each first echelon
vehicle; column ‘Max Van/Sat’ the maximum number of second echelon vehicles per satellite;
columns ‘Qty Vans’ the total number of second echelon vehicles; column ‘Van Cap’ the capacity
of each second echelon vehicle; column ‘BKS’ the cost of the best-known solution for the test
instance; column ‘Sol’ the cost obtained from the exact model; column runtime (solver execution
time in seconds); column ‘Gap %’ the solver gap after the model execution (or execution time
limit being reached) and column deviation the percentage difference from the cost obtained from
the exact model and the best-known solution for the instance.

The math-heuristic test instances results are presented in: Table 4 (test instances from Set#2), in
Table 5 (test instances from Set#3), Table 6 (test instances from Set#4), Table 7 (test instances
from Set#5) and Table 8 (test instances from Set#6). The results presented are an average of five
different executions per set of test instances. Column ‘Qty Sat’ contains the number of satellites
in the instance; column ‘Qty Clt’ the number of demand nodes; column ‘Dmd’ the total second
echelon demand; column ‘Qty Tr’ the number of first echelon vehicles; column ‘Truck Cap’ the
capacity of each first echelon vehicle; column ‘Max Van/Sat’ the maximum number of second
echelon vehicles per satellite; columns ‘Qty Vans’ the total number of second echelon vehicles;
column ‘Van Cap’ the capacity of each second echelon vehicle; column ‘BKS’ the cost of the
best-known solution for the test instance; column ‘SA’ the cost obtained from the math-heuristic;
column runtime (running time in seconds); column ‘deviation’ the percentage difference from
the cost obtained from the math-heuristic and the best-known solution for the instance. Instance
sets named Set#2, Set#3 and Set#4 were solved using the math-heuristic for the second echelon
as described in 3.2.3.

The following parameters were used in the test instances to stay within the computational time
comparable to the methods analyzed in Sluijk et al. (2022): solver gap limit equal 0.005% and
solver time limit = 600 seconds, local search iterations limit L(T) = 10 and simulated annealing

Pesquisa Operacional, Vol. 43, 2023: e270829
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iterations limit = 10,simulated annealing initial (Ti) temperature = 1000 and final temperature
(Tf) = 0.01, temperature reduction ratio (alpha)=0.9 and simulated annealing time limit = 1800
seconds. The size of the test instances contained in datasets Set#5 and Set#6 required the use
of the math-heuristic described in 3.3 since no feasible quality solution was obtained after three
hours of processing with the second echelon math-heuristic described in 3.2.2. The following
parameters were used for instance sets Set#5 and Set#6 to ensure the computational time com-
parable to the methods analyzed in Sluijk et al., 2022: solver gap limit = 0.005% and solver time
limit = 600 seconds, local search iterations limit = 10 and simulated annealing iterations limit
= 10, simulated annealing initial temperature = 1000 and final temperature = 0.01, temperature
reduction ration (alpha) = 0.9, simulated annealing process time limit = 3,600 seconds. The used
intra-route parameters are local search iterations limit = 50 and simulated annealing iterations
limit=50, simulated annealing initial temperature=1,000 and final temperature= 0.01, tempera-
ture reduction ration (alpha) = 0.9, simulated annealing process time limit = 300 seconds. Table
9 presents a summary of the results obtained for all the test instances. Column ‘Qty Sat.’ denotes
the number of satellites in the instance; column ‘Qty. Clt’ the number of demand nodes; columns
delta the difference from the cost obtained from the math-heuristic and the best-known solution
for the instance. Finally, columns ‘t(s)’ correspond to the execution time in seconds.

Pesquisa Operacional, Vol. 43, 2023: e270829



JO
S

É
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Table 2 – Results obtained by the exact model using the formulation by Sluijk et al. (2022).

Set #2
Qty
Sat

Qty
Clt. Dmd

Qty
Tr

Truck
Cap

Max
Van/Sat

Qty
Vans Van Cap BKS Sol.

run
time(s)

Gap
%

Dev
%

Set2a E-n22-k4-s6-17.dat 2 21 22500 3 15000 4 4 6000 417.07* 417.07 8 0.0 0.0
Set2a E-n22-k4-s8-14.dat 2 21 22500 3 15000 4 4 6000 384.96* 384.96 23 0.0 0.0
Set2a E-n22-k4-s9-19.dat 2 21 22500 3 15000 4 4 6000 470.60* 470.60 187 0.0 0.0
Set2a E-n22-k4-s10-14.dat 2 21 22500 3 15000 4 4 6000 371.50* 371.50 22 0.0 0.0
Set2a E-n22-k4-s11-12.dat 2 21 22500 3 15000 4 4 6000 427.22* 427.22 102 0.0 0.0
Set2a E-n22-k4-s12-16.dat 2 21 22500 3 15000 4 4 6000 392.78* 392.78 272 0.0 0.0
Set2a E-n33-k4-s1-9.dat 2 32 29370 3 20000 4 4 8000 730.16* 754.67 1240 0.0 0.0
Set2a E-n33-k4-s2-13.dat 2 32 29370 3 20000 4 4 8000 714.63* 745.38 3600 0.0 0.0
Set2a E-n33-k4-s3-17.dat 2 32 29370 3 20000 4 4 8000 707.48* 762.15 1577 0.0 0.0
Set2a E-n33-k4-s4-5.dat 2 32 29370 3 20000 4 4 8000 778.74* 778.74 3600 0.0 0.0
Set2a E-n33-k4-s7-25.dat 2 32 29370 3 20000 4 4 8000 756.85* 756.85 3600 0.0 0.0
Set2a E-n33-k4-s14-22.dat 2 32 29370 3 20000 4 4 8000 779.05* 779.05 732 0.0 0.0
Set2c E-n51-k5-s2-17.dat 2 50 777 4 400 5 5 160 601.39 612.75 36021 4.06 1.9
Set2c E-n51-k5-s4-46.dat 2 50 777 4 400 5 5 160 702.33 702.33 36010 4.50 0.0
Set2c E-n51-k5-s6-12.dat 2 50 777 4 400 5 5 160 567.42 567.42 36011 1.34 0.0
Set2c E-n51 -k5-s11-19.dat 2 50 777 4 400 5 5 160 617.42 627.99 36022 3.64 1.7
Set2c E-n51-k5-s27-47.dat 2 50 777 4 400 5 5 160 530.76 530.75 10052 0.00 0.0
Set2c E-n51-k5-s32-37.dat 2 50 777 4 400 5 5 160 752.59 805.44 36010 5.93 7.0
Set2c E-n51-k5-s2-4-17-46.dat 4 50 777 4 400 5 5 160 601.39 644.35 36017 6.18 7.1
Set2c E-n51 -k5-s6-12-32-37.dat 4 50 777 4 400 5 5 160 567.42 567.42 36014 2.09 0.0
Set2c E-n51-k5-s11-19-27-
47.dat

4 50 777 4 400 5 5 160 530.76 530.76 36016 1.04 0.0
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Table 3 – Results obtained by the exact model with Sluijk et al. (2022) formulation.

Set #3 Qty Sat
Qty
Clt Dmd

Qty.
Tr

Truck
Cap

Max
Van/Sat

Qty
Vans Van Cap BKS Sol.

run
time (s)

Gap
%

Dev
%

Set3 E-n22-k4-s13-14.dat 2 21 22500 3 15000 4 4 6000 526.15* 526.15 131 0,00 0.0
Set3 E-n22-k4-s13-16.dat 2 21 22500 3 15000 4 4 6000 521.09* 521.09 149 0,00 0.0
Set3 E-n22-k4-s13-17.dat 2 21 22500 3 15000 4 4 6000 496.38* 496.38 101 0,00 0.0
Set3 E-n22-k4-s14-19.dat 2 21 22500 3 15000 4 4 6000 497.80* 497.80 557 0,00 0.0
Set3 E-n22-k4-s17-19.dat 2 21 22500 3 15000 4 4 6000 512.80* 512.80 940 0,00 0.0
Set3 E-n22-k4-s19-21.dat 2 21 22500 3 15000 4 4 6000 520.42* 520.42 867 0,00 0.0
Set3 E-n33-k4-s16-22.dat 2 32 29370 3 20000 4 4 8000 672.17* 672.17 3600 0,10 0.0
Set3 E-n33-k4-s16-24.dat 2 32 29370 3 20000 4 4 8000 666.02* 666.02 3600 0,00 0.0
Set3 E-n33-k4-s19-26.dat 2 32 29370 3 20000 4 4 8000 680.36* 680.36 3600 0,04 0.0
Set3 E-n33-k4-s22-26.dat 2 32 29370 3 20000 4 4 8000 680.36* 680.36 3600 0,10 0.0
Set3 E-n33-k4-s24-28.dat 2 32 29370 3 20000 4 4 8000 670.43* 670.43 3600 0,07 0.0
Set3 E-n33-k4-s25-28.dat 2 32 29370 3 20000 4 4 8000 650.58* 650.58 3600 0,05 0.0
Set3 E-n51-k5-s12-18.dat 2 50 777 3 400 5 5 160 690.59 690.59 36002 1,63 0.0
Set3 E-n51-k5-s12-41.dat 2 50 777 3 400 5 5 160 683.05 689.81 36011 2,86 1.0
Set3 E-n51-k5-s12-43.dat 2 50 777 3 400 5 5 160 710.41 710.41 36017 0,80 0.0
Set3 E-n51-k5-s39-41.dat 2 50 777 3 400 5 5 160 728.54 751.73 36008 4,58 3.2
Set3 E-n51-k5-s40-41.dat 2 50 777 3 400 5 5 160 723.75 735.71 36001 3,95 1.7
Set3 E-n51-k5-s40-43.dat 2 50 777 3 400 5 5 160 752.15 757.77 36002 3,04 0.7
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Table 4 – Set#2 Results obtained by the math-heuristic.

Set #2 Qty Sat Qty Clt. Dmd
Qty
Tr.

Truck
Cap

Max
Van/Sat

Qty
Vans Van Cap BKS SA

Run
time (s)

Dev
%

Set2a E-n22-k4-s6-17.dat 2 21 22500 3 15000 4 4 6000 417.07* 417.07 864 0.0
Set2a E-n22-k4-s8-14.dat 2 21 22500 3 15000 4 4 6000 384.96* 384.96 1087 0.0
Set2a E-n22-k4-s9-19.dat 2 21 22500 3 15000 4 4 6000 470.60* 470.60 1167 0.0
Set2a E-n22-k4-s10-14.dat 2 21 22500 3 15000 4 4 6000 371.50* 371.50 966 0.0
Set2a E-n22-k4-s11-12.dat 2 21 22500 3 15000 4 4 6000 427.22* 429.39 15 0.5
Set2a E-n22-k4-s12-16.dat 2 21 22500 3 15000 4 4 6000 392.78* 422.39 5 7.5
Set2a E-n33-k4-s1-9.dat 2 32 29370 3 20000 4 4 8000 730.16* 754.67 437 3.4
Set2a E-n33-k4-s2-13.dat 2 32 29370 3 20000 4 4 8000 714.63* 745.38 164 4.3
Set2a E-n33-k4-s3-17.dat 2 32 29370 3 20000 4 4 8000 707.48* 762.15 372 7.7
Set2a E-n33-k4-s4-5.dat 2 32 29370 3 20000 4 4 8000 778.74* 778.74 347 0.0
Set2a E-n33-k4-s7-25.dat 2 32 29370 3 20000 4 4 8000 756.85* 756.85 2260 0.0
Set2a E-n33-k4-s14-22.dat 2 32 29370 3 20000 4 4 8000 779.05* 779.05 371 0.0
Set2b E-n51-k5-s2-17.dat 2 50 777 4 400 5 5 160 597.49* 630.60 1214 5.5
Set2b E-n51-k5-s4-46.dat 2 50 777 4 400 5 5 160 530.76* 530.76 930 0.0
Set2b E-n51-k5-s6-12.dat 2 50 777 4 400 5 5 160 554.81* 559.28 3768 0.8
Set2b E-n51 -k5-s11-19.dat 2 50 777 4 400 5 5 160 581.64* 585.95 1261 0.7
Set2b E-n51-k5-s27-47.dat 2 50 777 4 400 5 5 160 538.22* 538.22 3030 0.0
Set2b E-n51-k5-s32-37.dat 2 50 777 4 400 5 5 160 552.28* 552.28 3340 0.0
Set2c E-n51-k5-s2-17.dat 4 50 777 4 400 5 5 160 601.39 607.73 3054 1.1
Set2c E-n51-k5-s4-46.dat 4 50 777 4 400 5 5 160 702.33 702.34 3468 0.0
Set2c E-n51-k5-s6-12.dat 4 50 777 4 400 5 5 160 567.42 586.21 1230 3.3
Set2c E-n51 -k5-s11-19.dat 2 50 777 4 400 5 5 160 617.42 626.50 1216 1.5
Set2c E-n51-k5-s27-47.dat 2 50 777 4 400 5 5 160 530.76 530.76 1169 0.0
Set2c E-n51-k5-s32-37.dat 2 50 777 4 400 5 5 160 752.59 762.54 1800 1.3
Set2b E-n51-k5-s2-4-17-46.dat 2 50 777 4 400 5 5 160 530.76* 530.76 2114 0.0
Set2b E-n51 -k5-s6-12-32-37.dat 2 50 777 4 400 5 5 160 531.92* 564.45 2401 6.1
Set2b E-n51-k5-s11-19-27-47.dat 2 50 777 4 400 5 5 160 527.63* 564.62 2401 7.0
Set2c E-n51-k5-s2-4-17-46.dat 4 50 777 4 400 5 5 160 601.39 617.66 2404 2.7
Set2c E-n51 -k5-s6-12-32-37.dat 4 50 777 4 400 5 5 160 567.42 584.90 2404 3.1
Set2c E-n51-k5-s11-19-27-47.dat 4 50 777 4 400 5 5 160 530.76 530.76 2101 0.0
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Table 5 – Set#3 Results obtained by the math-heuristic.

Set #3
Qty
Sat

Qty
Clt. Dmd

Qty.
Tr. Truck Cap

Max
Van/Sat

Qty
Vans Van Cap BKS SA

Run
time (s)

Dev
%

Set3 E-n22-k4-s13-14.dat 2 21 22500 3 15000 4 4 6000 526.15* 536.32 7 1.93
Set3 E-n22-k4-s13-16.dat 2 21 22500 3 15000 4 4 6000 521.09* 522.54 12 0.3
Set3 E-n22-k4-s13-17.dat 2 21 22500 3 15000 4 4 6000 496.38* 496.38 1468 0.00
Set3 E-n22-k4-s14-19.dat 2 21 22500 3 15000 4 4 6000 498.80* 530.61 98 6.59
Set3 E-n22-k4-s17-19.dat 2 21 22500 3 15000 4 4 6000 512.80* 530.61 48 3.47
Set3 E-n22-k4-s19-21.dat 2 21 22500 3 15000 4 4 6000 520.42* 527.58 1994 1.38
Set3 E-n33-k4-s16-22.dat 2 32 29370 3 20000 4 4 8000 672.17* 703.32 1258 4.63
Set3 E-n33-k4-s16-24.dat 2 32 29370 3 20000 4 4 8000 666.02* 703.32 1027 5.60
Set3 E-n33-k4-s19-26.dat 2 32 29370 3 20000 4 4 8000 680.36* 680.37 455 0.00
Set3 E-n33-k4-s22-26.dat 2 32 29370 3 20000 4 4 8000 680.36* 680.37 835 0.00
Set3 E-n33-k4-s24-28.dat 2 32 29370 3 20000 4 4 8000 670.43* 690.11 1203 2.94
Set3 E-n33-k4-s25-28.dat 2 32 29370 3 20000 4 4 8000 650.58* 690.11 792 6.08
Set3 E-n51-k5-s12-18.dat 2 50 777 3 400 5 5 160 690.59 697.45 3785 0.99
Set3 E-n51-k5-s12-41.dat 2 50 777 3 400 5 5 160 683.05 707.96 6358 3.65
Set3 E-n51-k5-s12-43.dat 2 50 777 3 400 5 5 160 710.41 710.41 1800 0.00
Set3 E-n51-k5-s39-41.dat 2 50 777 3 400 5 5 160 728.54 729.28 1241 0.10
Set3 E-n51-k5-s40-41.dat 2 50 777 3 400 5 5 160 723.75 736.44 1200 1.75
Set3 E-n51-k5-s40-43.dat 2 50 777 3 400 5 5 160 752.15 769.98 1422 2.37
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Table 6 – Set#4 results obtained by the math-heuristic.

Set #4
Qty
Sat Qty Clt. Dmd

Qty
Tr Truck Cap.

Max
Van/Sat Qty Vans Van Cap BKS SA

Run
time (s)

Dev
%

Set4a Instance50-30.dat 3 50 20206 3 12500 3 6 5000 121163* 130872 52 8.01
Set4a Instance50-31.dat 3 50 28153 3 12500 3 6 5000 149031* 153375 622 2.91
Set4a Instance50-32.dat 3 50 20206 3 12500 3 6 5000 119905* 133844 18 11.63
Set4a Instance50-33.dat 3 50 20153 3 12500 3 6 5000 150832* 155079 22 2.82
Set4a Instance50-34.dat 3 50 20206 3 12500 3 6 5000 123396* 136450 57 10.58
Set4a Instance50-35.dat 3 50 28153 3 12500 3 6 5000 171842* 179454 1235 4.43
Set4a Instance50-36.dat 3 50 20206 3 12500 3 6 5000 122895* 131895 58 7.32
Set4a Instance50-37.dat 5 50 28153 3 12500 3 6 5000 152873* 165148 55 8.03
Set4a Instance50-38.dat 5 50 20206 3 12500 3 6 5000 116920* 134038 9 14.64
Set4a Instance50-39.dat 5 50 28153 3 12500 3 6 5000 152091* 166168 6 9.26
Set4a Instance50-10.dat 2 50 20206 3 12500 4 6 5000 140765* 142482 2632 1.2
Set4a Instance50-11.dat 2 50 28153 3 12500 4 6 5000 204743* 208355 2989 1.76
Set4a Instance50-12.dat 2 50 20206 3 12500 4 6 5000 120946* 123949 176 2.48
Set4a Instance50-13.dat 2 50 28153 3 12500 4 6 5000 148179* 166433 2131 12.32
Set4a Instance50-14.dat 2 50 20206 3 12500 4 6 5000 139364* 140412 1992 0.75
Set4a Instance50-15.dat 2 50 28153 3 12500 4 6 5000 148992* 167089 2465 12.15
Set4a Instance50-16.dat 2 50 20206 3 12500 4 6 5000 138919* 141094 835 1.57
Set4a Instance50-17.dat 2 50 28153 3 12500 4 6 5000 208848* 211737 1339 1.38
Set4a Instance50-18.dat 2 50 20206 3 12500 4 6 5000 122767* 122829 773 0.05
Set4a Instance50-19.dat 3 50 28153 3 12500 3 6 5000 156465* 160116 101 2.33
Set4a Instance50-20.dat 3 50 20206 3 12500 3 6 5000 127298* 147286 8 15.70
Set4a Instance50-21.dat 3 50 28153 3 12500 3 6 5000 157782* 160274 107 1.58
Set4a Instance50-22.dat 3 50 20206 3 12500 3 6 5000 128182* 143012 11 11.57
Set4a Instance50-23.dat 3 50 28153 3 12500 3 6 5000 180734* 188014 204 4.03
Set4a Instance50-24.dat 3 50 20206 3 12500 3 6 5000 128269* 133007 11 3.69
Set4a Instance50-25.dat 3 50 28153 3 12500 3 6 5000 152240* 157474 33 3.44
Set4a Instance50-26.dat 3 50 20206 3 12500 3 6 5000 116747* 134193 42 14.94
Set4a Instance50-27.dat 3 50 28153 3 12500 3 6 5000 148156* 150282 1815 1.43
Set4a Instance50-28.dat 3 50 20206 3 12500 3 6 5000 121045* 135017 8 11.54
Set4a Instance50-29.dat 3 50 28153 3 12500 3 6 5000 172200* 185289 209 7.60
Set4a Instance50-40.dat 5 50 20206 3 12500 2 6 5000 119942* 137199 87 14.39
Set4a Instance50-41.dat 5 50 28153 3 12500 2 6 5000 166796* 192650 116 15.50
Set4a Instance50-42.dat 5 50 20206 3 12500 2 6 5000 119454* 137684 99 15.26
Set4a Instance50-43.dat 5 50 28153 3 12500 2 6 5000 143967* 162348 260 12.77
Set4a Instance50-44.dat 5 50 20206 3 12500 2 6 5000 104514* 123848 16 18.50
Set4a Instance50-45.dat 5 50 28153 3 12500 2 6 5000 145095* 162930 37 12.29
Set4a Instance50-46.dat 5 50 20206 3 12500 2 6 5000 108879* 114407 40 5.08
Set4a Instance50-47.dat 5 50 28153 3 12500 2 6 5000 158729* 185889 157 17.11
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Table 6 – Set#4 results obtained by the math-heuristic. (cont.)

Set #4
Qty
Sat Qty Clt. Dmd

Qty
Tr Truck Cap.

Max
Van/Sat Qty Vans Van Cap BKS SA

Run
time (s)

Dev
%

Set4a Instance50-48.dat 5 50 20206 3 12500 2 6 5000 108221* 130914 38 20.97
Set4a Instance50-49.dat 5 50 28153 3 12500 2 6 5000 143488* 159766 48 11.34
Set4a Instance50-50.dat 5 50 20206 3 12500 2 6 5000 108316* 113166 194 4.48
Set4a Instance50-51.dat 5 50 28153 3 12500 2 6 5000 139803* 157056 15 12.34
Set4a Instance50-52.dat 5 50 20206 3 12500 2 6 5000 112569* 119445 110 6.11
Set4a Instance50-6.dat 2 50 28153 3 12500 2 6 5000 127999* 130620 56 2.05
Set4a Instance50-7.dat 2 50 28153 3 12500 4 6 5000 145860* 166545 76 14.18
Set4a Instance50-8.dat 2 50 20206 3 12500 4 6 5000 136376* 136927 2118 0.40
Set4a Instance50-9.dat 2 50 28153 3 12500 4 6 5000 145025* 165233 304 13.93
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Table 7 – Set#5 results obtained by the math-heuristic with alternative 2nd echelon model (subsection 3.3).

Set #5 Qty Sat Qty Clt Dmd
Qty.
Tr

Truck
Cap

Max
Van/Sat Qty Vans Van Cap BKS SA

Run
time(s)

Dev
%

Set5 100-5-1.dat 5 100 5 100 1583 5 528 32 1564.46* 1735.34 9555 10.92
Set5 100-5-1b.dat 5 100 5 100 1583 5 528 15 1108.77 1276.45 9130 15.12
Set5 100-5-2.dat 5 100 5 100 1558 5 520 32 1016.32* 1155.92 9818 13.74
Set5 100-5-2b.dat 5 100 5 100 1558 5 520 15 782.25 944.64 9058 20.76
Set5 100-5-3.dat 5 100 5 100 1562 5 521 30 1045.29* 1208.49 10012 15.61
Set5 100-5-3b.dat 5 100 5 100 1562 5 521 16 828.54 1005.20 8815 21.32
Set5 100-10-1.dat 10 100 10 100 1610 5 537 35 1124.93 1197.17 19188 6.4
Set5 100-10-1b.dat 10 100 10 100 1610 5 537 18 916.25 1024.80 16254 11.85
Set5 100-10-2.dat 10 100 10 100 1536 5 512 33 1002.15 1156.35 18807 15.39
Set5 100-10-2b.dat 10 100 10 100 1536 5 512 18 774.11 926.17 16451 19.64
Set5 100-10-3b.dat 10 100 10 100 1540 5 514 32 854.88 942.15 17624 10.21
Set5 200-10-1.dat 10 200 10 100 1540 5 514 17 1556.95 1674.06 21560 7.52
Set5 200-10-1b.dat 10 200 10 200 3098 5 1033 62 1187.62 1325.38 20349 11.60
Set5 200-10-2.dat 10 200 10 200 3098 5 1033 30 1365.74 1601.90 19043 17.29
Set5 200-10-2b.dat 10 200 10 200 3101 5 1034 63 1002.85 1207.60 17841 20.42
Set5 200-10-3.dat 10 200 10 200 3101 5 1034 30 1793.99 2092.17 24854 16.62
Set5 200-10-3b.dat 10 200 10 200 3077 5 1026 63 1197.90 1453.68 18925 21.35
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Table 8 – Set#6 results obtained by the math-heuristic with alternative 2nd echelon model (subsection 3.3).

Set #6 Qty Sat Qty Clt Dmd
Qty.
Tr.

Truck
Cap.

Max
Van/Sat

Qty
Vans

Van
Cap BKS SA

Run
time(s)

Dev
%

Set6 A-n51-4.dat 4 50 777 2 640 50 50 160 652.00* 742.34 5877 13.86
Set6 B-n51-4.dat 4 50 777 2 640 50 50 160 563.98* 627.67 9361 11.29
Set6 C-n51-4.dat 4 50 777 2 640 50 50 160 689.18* 792.89 7399 15.05
Set6 A-n76-4.dat 4 75 1364 3 560 75 75 140 985.95* 1082.04 9358 9.75
Set6 B-n76-4.dat 4 75 1364 3 560 75 75 140 792.73* 916.76 9430 15.65
Set6 C-n76-4.dat 4 75 1364 3 560 75 75 140 1054.89* 1150.43 9448 9.06
Set6 A-n101-4.dat 4 100 1458 4 448 100 100 112 1194.17* 1255.64 9397 5.1
Set6 B-n101-4.dat 4 100 1458 4 448 100 100 112 939.83* 1027.80 9458 9.36
Set6 C-n101-4.dat 4 100 1458 4 448 100 100 112 1302.16 1435.89 9464 10.27
Set6 A-n51-5.dat 5 50 777 2 640 50 50 160 663.41* 718.15 5678 8.25
Set6 B-n51-5.dat 5 50 777 2 640 50 50 160 549.23* 623.50 6496 13.52
Set6 C-n51-5.dat 5 50 777 2 640 50 50 160 723.12* 811.46 9878 12.22
Set6 A-n76-5.dat 5 75 1364 3 560 75 75 140 979.48* 1037.86 10077 5.96
Set6 B-n76-5.dat 5 75 1364 3 560 75 75 140 784.44* 842.78 10006 7.44
Set6 C-n76-5.dat 5 75 1364 3 560 75 75 140 1115.32* 1209.79 10028 8.47
Set6 A-n101-5.dat 5 100 1458 4 448 100 100 112 1211.68* 1351.48 10145 11.54
Set6 B-n101-5.dat 5 100 1458 4 448 100 100 112 969.13* 1134.30 10090 17.04
Set6 C-n101-5.dat 5 100 1458 4 448 100 100 112 1305.82 1541.74 9539 18.07
Set6 A-n51-6.dat 6 50 777 2 640 50 50 160 662.51* 704.67 6179 6.36
Set6 B-n51-6.dat 6 50 777 2 640 50 50 160 556.32* 625.73 6425 12.48
Set6 C-n51-6.dat 6 50 777 2 640 50 50 160 697.00* 768.79 6148 10.30
Set6 A-n76-6.dat 6 75 1364 3 560 75 75 140 970.20* 1055.11 10691 8.75
Set6 B-n76-6.dat 6 75 1364 3 560 75 75 140 774.17* 868.04 10605 12.13
Set6 C-n76-6.dat 6 75 1364 3 560 75 75 140 1060.52 1212.65 10200 14.34
Set6 A-n101-6.dat 6 100 1458 4 448 100 100 112 1156.62 1260.22 11008 8.96
Set6 B-n101-6.dat 6 100 1458 4 448 100 100 112 960.76* 1081.42 10659 12.56
Set6 C-n101-6.dat 6 100 1458 4 448 100 100 112 1284.48 1515.38 10773 17.98
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Table 9 – Average results obtained by the math-heuristic.

Qty Clt. Qty Sat Dev % Runtime (s)

Set#2

21(a) 2 1.34 684
32(b) 2 2.56 659
50(b) 2 1.18 2257
50(c) 2 1.19 1990
50(b) 4 4.38 2305
50(c) 4 1.93 2303

Set#3
21 2 2.28 605
32 2 3.21 928
50 2 1.48 2634

Set#4
50 2 4,94 1376
50 3 6,98 256
50 5 12,38 80

Set#5
100 5 16.25 9398
100 10 12.7 17665
200 10 15.80 20428

Set#6

50 4 13.40 7546
50 5 11.33 7350
50 6 9.71 6250
75 4 11.48 9412
75 5 7.29 10037
75 6 11.74 10498
100 4 8.3 9440
100 5 15.55 9924
100 6 13.16 10813

5 CONCLUDING REMARKS

The main objective of the work was to develop a math-heuristic to obtain quality solution in com-
putational time comparable to the methods analyzed in Sluijk et al. (2022). The math-heuristic
allowed to high quality, optimum or near optimum solutions with faster processing time than the
exact model for 30 and 50 customers instances when the number of maximum vehicles per satel-
lite equals the second echelon number of available vehicles and the number of available vehicles
in the second echelon is between two and five.

As the number of clients and satellites grow, and the number of second echelon vehicles re-
striction by satellite gets stricter, the search neighborhood grows and the math-heuristic with
the chosen parameters to keep the processing time comparable to the approaches in Sluijk et
al. (2022) did not reach good solutions, although all under 16.25% apart from the best-known
solution. This is expected since the designed model relies heavily on the mathematical program-

Pesquisa Operacional, Vol. 43, 2023: e270829



26 MATH-HEURISTIC FOR THE CAPACITATED TWO-ECHELON VEHICLE ROUTING PROBLEM

ming model resolution for the first echelon and second echelon (reason also that has driven
the approach described in item 3.3 for Set#5 and Set#6 instances). Additionally, the two local
implemented search operators (move and swap) between satellites and between routes for the al-
ternative second echelon math-heuristic are intentionally restricted for movements that maintain
the capacity restrictions, which prevents temporarily accepting unfeasible solutions to explore
broader neighborhoods (Liu and Jiang, 2021) specially when the solutions are very tight (trucks
are almost full and demand sizes do not allow the desired movements). The small number of local
implemented operators (only two) also explains the poor results for medium and large instances
(Arnold and Sorensen, 2019).

The results on benchmark instances show that such “cluster-first, route-second” math-heuristic
approach utilizing package solvers (CPLEX and TSP CONCORDE) can effectively help solving
the CVRP for small instances when compared to an exact method. The contribution of this paper
lies in demonstrating the potential applications of package solvers to solve the CVRP on heuristic
structures.

While the math-heuristic presented in this paper has certain limitations in solving medium and
large instances, it serves to illustrate how the ’cluster-first, route-second’ approach can be uti-
lized to develop initial construction heuristic frameworks. This is due to the simplification of
the original problem and the subsequent ability to gradually replace mathematical models with
heuristic structures, leading to improved scalability. This work also motivates future research
aimed at enhancing the simulated annealing approach by developing more efficient local search
engines, effective destroy and repair methods together with local search operators to explore
several neighborhoods (e.g., pruning or temporarily accepting unfeasible solutions) or alterna-
tively devising population-based heuristics that are all state-of-the-art approaches while taking
advantage of the current existing package solvers processing capacity.
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JANJEVIC M, MERCHÁN D & WINKENBACH M. 2021. Designing multi-tier, multi-service-
level, and multi-modal last-mile distribution networks for omni-channel operations. European
Journal of Operational Research 294(3): 1059-1077. DOI: 10.1016/j.ejor.2020.08.043

JEPSEN M, SPOORENDONK S & ROPKE S. 2015. A branch-and-cut algorithm for the symmetric
two-echelon capacitated vehicle routing problem. Transportation Science 47(1): 23-37. DOI:
10.1287/trsc.1110.0399

KAUFMAN L & ROUSSEEUW P. J. 2005. Finding groups in data: An introduction to cluster
analysis. Wiley series in probability and statistics. New York: Wiley-Interscience.

Pesquisa Operacional, Vol. 43, 2023: e270829



28 MATH-HEURISTIC FOR THE CAPACITATED TWO-ECHELON VEHICLE ROUTING PROBLEM

LAHYANI R, KHEMAKHEM M & SEMET F. 2015. Rich Vehicle Routing Problems: From
a taxonomy to a definition. European Journal of Operation Research¸ 241(1), pp.1-14. DOI:
10.1016/j.ejor.2014.07.048

LI H, WANG H, CHEN J & BAI M. 2021. Two-echelon vehicle routing problem with satel-
lite bi-synchronization. European Journal of Operational Research 288(3): 775-793. DOI:
10.1016/j.ejor.2020.06.019

LI J, XU M & SUN P. 2022. Two-echelon capacitated vehicle routing problem with
grouping constraints and simultaneous pickup and delivery. Transportation Research Part B:
Methodological 162:261-291. DOI: 10.1016/j.trb.2022.06.003

LIU D, DENG Z, MAO X, YANG Y & KAISAR EI. 2020. Two-Echelon Vehicle-Routing
Problem: Optimization of Autonomous Delivery Vehicle-Assisted E-Grocery Distribution, IEEE
Access, 8: 108705-108719. DOI: 10.1109/ACCESS.2020.3001753

LIU R & JIANG S. 2021. A variable neighborhood search algorithm with constraint relaxation
for the two-echelon vehicle routing problem with simultaneous delivery and pickup demands.
Soft Computing, 26: 8879–8896. DOI: 10.1007/s00500-021-06692-3

MARA S & KUO RJ. 2018. Location-routing problem: a classification of recent research,
International Transactions in Operational Research 28: 2941-2983. DOI: 10.1111/itor.12950

MARUJO LG, GOES GV, D’AGOSTO MA, FERREIRA, A. F., WINKENBACH M & BANDEIRA

RA. 2018. Assessing the sustainability of mobile depots: The case of urban freight distribution
in Rio de Janeiro. Transportation Research Part D: Transport and Environment, 62: 256–267.
DOI: 10.1016/j.trd.2018.02.022

PERBOLI G, TADEI R & VIGO D. 2011. The two-echelon capacitated vehicle routing
problem: models and math-based heuristics. Transportation Science, 45(3): 364-380. DOI:
10.1287/trsc.lll0.0368

PRINS C, LACOMME P & PRODHON C. 2014. Order-first split-second methods for ve-
hicle routing problems: A review. Transportation Research Part C, 40: 179-200. DOI:
10.1016/j.trc.2014.01.011

SINGH B, OBERFICHTNER L & IVLIEV S. 2023. Heuristics for a cash-collection routing prob-
lem with a cluster-first route-second approach. Annals of Operations Research, 322: 413–440.
DOI: 0.1007/s10479-022-04883-1

SLUIJK N, AM FLORIO, J KINABLE, N DELLAERT & T.V. WOENSEL. 2022. Two-echelon
vehicle routing problems: A literature review. European Journal of Operational Research, 23
(in-proof). DOI: 10.1016/j.ejor.2022.02.022

VIDAL T, CRAINIC TG, GENDREAU M & PRINS C. 2014. A unified solution framework for
multi-attribute vehicle routing problems. European Journal of Operation Research, 234: 658–
673. DOI: 10.1016/j.ejor.2013.09.045

Pesquisa Operacional, Vol. 43, 2023: e270829
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