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ABSTRACT. The problem of finding the shortest path between a source and a destination node, commonly
represented by graphs, has several computational algorithms as an attempt to find what is called the mini-
mum path. Depending on the number of nodes in-between the source and destination, the process of finding
the shortest path can demand a high computational cost (with polynomial complexity). A solution to reduce
the computational cost is the use of the concept of parallelism, which divides the algorithm tasks between
the processing cores. This article presents a comparative analysis of the main algorithms of the shortest
path class: Dijkstra, Bellman-Ford, Floyd-Warshall and Johnson. The performance of each algorithm was
evaluated considering different parallelization approaches and they were applied on general and open-pit
mining databases present in the literature. The experimental results showed an improvement in performance
of about 55% on the execution time depending on the chosen parallelization point.
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2 PARALLELIZATION OF SHORTEST PATH CLASS ALGORITHMS

1 INTRODUCTION

The graph theory is an old subject and nowadays it has become a method widely used in various
fields of mathematics, computer science, engineering, chemistry, among others. Its application
ranges from finding a shortest path or finding the closest object using the minimum path, to the
representation of chemical structures of molecules (Shirinivas et al., 2010). It is a powerful tool,
but it has a cost, as it requires computational processing power. In case of a deep or wide search
being carried out and aiming to go through all the vertices of the graph, the greater the number
of vertices and edges in the graph, the greater will be the processing required (Deo, 2004).

Although some problems of finding the shortest path can be solved within milliseconds, other
problems can take hours, days, or even years to be solved. According to Ahuja et al. (1988), Ahuja
et al. (1989) and Ahuja et al. (1993), the view on the need for studies on shortest paths in giant
networks is based on the practical importance of these paths for a variety of applications, such
as transport planning, communication routing, logistics and many other complex systems. These
shortest paths represent the most efficient route to transport resources or information between
specific points in a network, taking into account constraints such as capacity, cost, or travel
time. Therefore, understanding and developing efficient algorithms to find shortest paths in giant
networks is extremely important to optimize the performance of these systems and improve their
overall efficiency.

The network flow models proposed by Ahuja et al. (1988) provide a mathematical framework
to represent and analyze shortest path problems in giant networks. These models are based on
fundamental concepts, such as graphs, edge capabilities, costs and flows, which allow a precise
formulation of problems and the application of linear programming techniques to find optimal
solutions. In addition, these models also allow the consideration of additional constraints, such
as capacity limitations at certain points in the network or the existence of multiple resources to be
transported simultaneously. Thus, the vision presented by Ahuja, Magnanti and Orlin highlights
the importance of addressing the challenges related to shortest paths in giant networks, offering a
solid theoretical basis and computationally efficient methods to solve these problems optimally.
Ahuja et al. (1993) shows some examples of physical networks that can benefit from the shortest
path studies in Table 1, with their compositions, structures and types of flows that the structures
have.

One possible approach to improve the processing time is to parallelize the execution of the algo-
rithms. As the most popular graph algorithms have a polynomial complexity (Lee & Sun, 2017),
the parallelization approach can improve the efficiency and execution time.

It is possible to make the parallelization of a code by using the multiple threads of a computer.
The greater the number of simultaneous threads that the computer can process, the faster is the
algorithm execution, maximizing the system efficiency to achieve the final result (Iwashita et al.,
2017; Dutta et al., 2017; Mullen et al., 2017).

The parallelization of a sequential algorithm is a non-trivial process, because not all parts of the
code can be parallelized. Therefore, it is necessary to make a systematic study to find which part
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Table 1 – Ingredients of some common physical networks.

Applications Physical analog of
nodes

Physical analog of
arcs

Flow

Communication
systems

Telephone
exchanges,
computers,
transmission
facilities, satellites

Cables, fiber optic
links, microwave
relay links

Voice messages,
data, video
transmissions

Hydraulic systems Pumping stations,
reservoirs, lakes

Pipelines Water, gas, oil,
hydraulic fluids

Integrated computer
circuits

Gates, registers,
processors

Wires Electrical current

Mechanical systems Joints Rods, beams, springs Heat, energy
Transportation
systems

Intersections,
airports, rail yards

Highways, railbeds,
airline routes

Passengers, freight,
vehicles, operators

Source: Ahuja et al., 1993.

of the algorithm can be parallelized, resulting in increased performance and avoiding the output
of conflicting results (Lisboa, et al., 2019).

In 2020, it was observed that the performance comparison of different shortest path algorithms is
still highly pertinent (Mukhlif & Saif, 2020; AbuSalim et al., 2020; Rachmawati & Gustin, 2020;
Madduri et al., 2007; Solomonik et al., 2013; Arranz, 2015), as in the works of (Mukhlif & Saif,
2020) and (AbuSalimet al., 2020), in which such comparisons were performed focusing on the
Dijkstra and Bellman-Ford algorithms. Based on that, the present paper aims on the additional
analysis of two other important shortest path class algorithms addressed in the literature: Floyd-
Warshall and Johnson.

The main objective of this study is to analyze the performance of four algorithms of the shortest
path class in their sequential and parallel versions using real databases for the experiment of
finding the shortest path. The specific objectives of this work are: to reproduce the algorithms
of Dijkstra, Bellman-Ford, Floyd-Warshall and Johnson in a database to perform the analysis
of experiments; parallelize the algorithms previous-mentioned at different points in its structure;
and, finally, to demonstrate the difference in performance of each one based on the experiments
performed.

This work contributes with the analysis of identifying the best point of parallelization in each
of the four algorithms of shortest path (Dijkstra, Bellman-Ford, Floyd-Warshall and Johnson).
The results obtained demonstrates a significant performance improvement considering the set of
experiments used in the analysis. The approach employed in this work for the construction and
representation of the algorithms can be useful for the improvement of performance of software
that relies on tasks based on finding a shortest path.
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4 PARALLELIZATION OF SHORTEST PATH CLASS ALGORITHMS

2 MATERIAL AND METHODS

This section describes the related works and basic concepts that are relevant to the main research
of this article.

2.1 Related works

In the literature, several authors address the parallelism of search algorithms in graph theory
and how these algorithms are important in solving real problems (Fan et al., 2020; Hou et al.,
2019; Dhulipala et al., 2018). The present work is focused on two main areas regarding this
subject. Firstly, the class of algorithms of shortest path is analyzed with the main objective of
implementing the parallelization of the algorithms to improve the performance. Then, the second
aspect, is to develop a comparison study of each one of the algorithms of the class presented, in
order to identify the one with the best result for the tests performed.

The main difference between this work and the papers present in the literature is that, in the
present work, the algorithms of a shortest path class are presented in their sequential and parallel
versions to demonstrate the performance improvement on this class of algorithms in the parallel
versions.

In the work of Junior et al., (2019) a study is carried out comparing five efficient algorithms
to solve a shortest path problem. The algorithms were: Dijkstra, Radix Heap, Heap Bino-
mial, L-Threshold and Dijkstra with Heuristics. The main objective was to evaluate the per-
formance of each one of the algorithms when applied to a given problem. The algorithm with
best performance was the Dijkstra algorithm with Heuristics.

The research of Madduri et al. (2007) evaluates the ∆-stepping algorithm performance on solving
a problem with 100 million vertices by using a high computational resource (40 processors in-
volved). The research developed represents a contribution, considering computational resources
limited to only 1 applied processor, with a maximum limit of 200 visitation points. However,
the present research demonstrates a real situation for several sectors that have a high impact on
the market, such as the open pit mining sector, which contemplates this reality with billions of
dollars used every year.

In the work of Hajela & Pandey (2014) it is presented a parallel approach of the Bellman-Ford
algorithm based on GPU for different shortest path problems, in which the weights of its edges
can have positive or negative values.

Also, Solomonik et al. (2013) demonstrates a structure that optimizes the interconnection be-
tween processors during the parallelism process, using as a reference a Cray XE6 supercomputer
that used 24,576 cores. From a market perspective, this work contributes with the simple ap-
plication of the parallelization process that assists a wide range of companies operating in the
industrial sector, that do not have access to a powerful computational resource, even using cloud
computing resources.
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The research in Arranz (2015) explores with broad consideration the parallelism process, in-
cluding the All-Pair Shortest-Path (APSP) and Single-Source Shortest-Path (SSSP) structures. It
focuses on the use of sequential and parallel execution techniques. Among the differences with
the research carried out, there is the use of GPUs in their experiments, instead of CPUs, with ele-
ment evaluation, even analyzing the L1 cache utilization. This work focuses on the use of CPUs
that are even used by employees of the sector under analysis.

In the article of Dickow, et al. (2013), it is presented four classic algorithms that are also algo-
rithms covered in the present work, which are: Bellman-Ford, Dijkstra, Floyd-Warshall and John-
son. The objective of the work was to analyze these routing algorithms and perform a comparison
based on their applications in WirelessHART networks.

It is worth citing research with such structures with practical applications. As an example, there is
the research by Hribar et al. (2001) with the research of shortest paths for parallel transport appli-
cations. We also have more recent research, such as Aridhi et al. (2015) applying map reduction
to large-scale networks, Selim & Zhan (2016) also applying such perspectives to large networks.
Another pertinent reference is the research by Heywood et al. (2019) with an evaluation of paths
with multiple sources, with parallelism for a macroscopic analysis of a path assignment in a
network.

And finally, in 2020, as shown in the works of Mukhlif & Saif (2020) and AbuSalim et al. (2020),
where such comparisons were performed focusing on the Dijkstra and Bellman-Ford algorithms,
confirming the relevance of the present paper which aims to add the performance comparison’s
analysis of two more relevant structures in the literature.

2.2 Theory background

In this subsection it is presented the main concepts related to the parallelism techniques and the
shortest path algorithms. The survey on the structures used can be justified here by a brief com-
parative analysis. According to Gallo & Pallottino (1986), shortest path algorithms may differ in
their approaches and resolution strategies. They propose a unified view of shortest path methods,
which encompasses classic algorithms such as the Dijkstra algorithm, the Bellman-Ford algo-
rithm and the Floyd-Warshall algorithm, among others. One of the main differences between
shortest path algorithms is the way they select and update paths in search of the shortest path.
Dijkstra’s algorithm, for example, uses a greedy strategy, exploring the paths with the lowest
accumulated cost so far. The Bellman-Ford algorithm, on the other hand, allows the presence of
edges with negative weight and iterates over all edges in each step, updating the path costs itera-
tively. The Floyd-Warshall algorithm, in turn, is a dynamic programming method that calculates
the shortest paths between all pairs of vertices in a single run.

In addition, other factors that can differentiate shortest path algorithms include the type of graph
considered (directed, undirected, weighted, etc.), the presence of additional constraints (such as
capabilities or resource limits), computational efficiency, and the ability to handle large networks
or dynamic updates to the network topology. In summary, shortest path algorithms can vary in
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6 PARALLELIZATION OF SHORTEST PATH CLASS ALGORITHMS

their approaches, path selection and update strategies, ability to handle different types of net-
works and constraints, and computational efficiency. The choice of the most suitable algorithm
depends on the specific characteristics of the network and the requirements of the problem in
question.

2.2.1 Speedup metrics

As previously mentioned, a parallelism technique consists of dividing complex tasks into sub-
tasks, to distribute them among other interconnected processors and executing instructions si-
multaneously in order to achieve a performance improvement. According to Rafikov et al.(2020),
the speedup and efficiency of a parallel algorithm are both metrics relevant to evaluate the per-
formance of a parallelized algorithm. The speedup (S) metric can be calculated according to
equation (1).

S =
T (1)
T (N)

(1)

where T (1) is the execution time in a single processor (serial time) and T (N) is the time of
execution in N processors (parallel time). In summary, the speedup represents the relative benefit
in solving a problem with multiple processors. The efficiency (E) represents the fraction of the
total time that all processors are used during processing, and it is given by equations (2) and (3).

E =
S
N

=

T1
TN

N
=

T1

N.TN
(2)

Eε [0,1] (3)

where E is the efficiency of the parallel version in relation to the serial, S is the speedup, N is
the number of processors.

2.2.2 Graph and distance calculation

A graph is represented as G = (V,E) where V is the set of vertices, and E is the set of edges
(Sadiq & Yousaf, 2020; Chu & Wu, 2021; Losqui & Souza, 2019). According to Arranz (2015)
and Sedgewick & Wayne (2011), a direct graph (or digraph) is “a graph G = {(V,E)/(u,v) ̸=
(v,u) : (u,v),(v,u) ∈ E} where the edge (u, v), that connects node u with node v, only can be
traversed from u to v, and therefore is different from edge (v, u)”. The weight of the path p =

(v0,v1,v2, ...,vk) is the sum of the weights of its paths, which is given by equation (4):

w(p) =
k

∑
i=1

w(vi−1,vi) (4)

Given two vertices u and v, the weight of shortest path between them is defined as δ (u,v) =
min{wp : u,v, if such a path exists, or δ (u,v) = ∞ if the path does not exist. For each edge
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(u,v) ∈ E there is the following relationship: δ (s,v) ≤ δ (s,u)+w(u,v), where s represents the
origin vertex. The shortest path estimated between u and v is represented by d[v], where d[v] ≥
δ (s,v) for all vertices v ∈ E, and once d[v] reaches the value of δ (s,v), it never changes again.

To measure the distance between two points, the Euclidean distance calculation is commonly
used, which can be proved by repeated application of the Pythagorean theorem, as shown in
equation (5) (where n is the number of points, p and q are the initial and final points of each
path) (Losqui & Souza, 2019; Lu et al., 2020).√

n

∑
i=1

(pi−qi)
2 (5)

2.2.3 Dijkstra Algorithm

The algorithm described by Dijkstra in 1959 has the purpose of finding the shortest path in a
directed or non-directed graph given by G = (V,E). The edge weights must have positive values,
w (u, v)≥ 0 for each edge (u, v ∈ E (Dijkstra, 1959; Martelli, 1977; Cormen, 2013). According
to Arranz (2015), Dijkstra can be defined as an algorithm described in four fundamental steps:

1. (Initialization) It starts on the source node s, initializing the distance array D[i] = ∞

for all nodes i and D[s] = 0. Node s is settled and is considered as the frontier node
f ( f ← s), the starting node for the edge relaxation.

2. (Edge relaxation) For every node v adjacent to f that has not been settled, a new distance
from source node s is found using the path through f, with value D[ f ] + w( f , v). If this
distance is smaller than the previous value D[v], then D[v] ← D[ f ] + w( f , v).

3. (Settlement) The non-settled node b with the minimal value in D is taken as the new frontier
node ( f ← b), and it is now considered as settled.

4. (Termination criterion) If all nodes have been settled, the algorithm finishes. Otherwise,
the algorithm proceeds once more to step 2.

According to Algorithm 1, the execution of the algorithm makes it go through the vertices of a
graph G and separating each one of the vertices in two different groups: Q and S. The vertices not
visited by the algorithm persist in set Q, being added to set S as the visit is carried out (Dijkstra,
1959; Martelli, 1977; Cormen, 2013).

According to Arranz (2015), there is a process of storing the process of visiting the nodes until
reaching the source node.

2.2.4 Bellman-Ford Algorithm

The Bellman-Ford algorithm is the integration of the algorithm described by Bellman (in 1956)
with the algorithm described by Ford (in 1956). The objective is to find a shortest path in a
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8 PARALLELIZATION OF SHORTEST PATH CLASS ALGORITHMS

Algorithm 1: Dijkstra

1 D (G, s) 
2 for each vertex  in   
3 [ ] = ∞ // initial distance from source to vertex v is set to  ∞ 
4 previous[v] = undefined // Previous node in optimal path from source 
5 [ ]= 0 // Distance from source to source 

6  = the set of all nodes in Graph // all nodes in the graph are unoptimized - thus are in 
Q 

7 while ≠ ∅ // main loop 
8  = node in  with smallest [ ]  

9 remove u from Q  

10 for each neighbor  of : // where  has not yet been removed from . 
11 alt = [ ] + ( , )  

12 if  <  [ ] // Relax ( , ) 
13 [ ]  =    

14 previous[v] = u  

15 return [ ]  

Source: Dijkstra, 1959; Martelli, 1977.

graph with weighted edges . In contrast to Dijkstra method, the algorithm can present edges with
negative values (AbuSalim et al., 2020; He et al., 2020). The algorithm solves the problem of
shortest path in a directed or non-directed graph given by G = (V, E). During the iterations of the
algorithm, a Boolean value is returned, indicating the existence, or not, of a cycle with negative
weight. The pseudocode of the algorithm is presented in algorithm 2 considering s as the initial
vertex.

Similar to Dijkstra, the algorithm starts by assigning the weight δ (s,v) = 0, if the source vertex
is the destination itself, and δ (s,v) = ∞, if a real path from s to v is not yet known. In line 3
it is created a loop visiting all the vertices of the graph in |V |− 1 visitations. At each visit, the
algorithm performs the relaxation technique on all edges present at each vertex. The relaxation
technique is used to progressively decrease the estimate d[v] in the weight of a shortest path from
the origin s to each vertex v ∈ E, in order to find the real weight δ (s,v) of the shortest path. After
visiting all the vertices of the graph G, lines 6, 7, 8 and 9 check for a negative weight cycle. The
algorithm returns ‘TRUE’ if, and only if, the graph has no negative weight cycle that is accessible
from the origin s.

2.2.5 2.2.5 Floyd-Warshall Algorithm

Published by Floyd in 1962 and based on a theorem described by Warshall in 1962, the Floyd-
Warshall algorithm solves the problem of shortest paths between nodes in a directed and non-
directed graph given by G = [V,E]. The algorithm seeks to find a shortest path for all vertices
(u,v) ∈ V , with minimum weight, as well as Bellman-Ford with negative weight edges. The
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Algorithm 2: Bellman-Ford

1 𝛿 (𝑠, 𝑣) = 0 IF 𝑠 = 𝑣 

2 𝛿 (𝑠, 𝑣) = ∞ IF 𝑠 ≠ 𝑣 

3 FOR 𝑖 = 1 to 𝑖 = |𝑉 [𝐺]| 

4  FOR each edge (𝑢, 𝑣) ∈ 𝐸[𝐺] 

5   DO relaxation (𝑢, 𝑣, 𝑤) 

6 FOR each edge (𝑢, 𝑣) ∈ 𝐸[𝐺] 

7  IF 𝑑 [𝑣] > 𝑑 [𝑢] + 𝑤(𝑢, 𝑣) 

8   RETURN FALSE 

9 RETURN TRUE 

Source: Dickow, et al., 2013; Weber et al., 2020.

Floyd-Warshall algorithm uses an adjacency matrix to represent the same graph. The element in
the matrix of row u and column v is the weight of a shortest path from u to v (Hougardy, 2010).

The operation of the algorithm is based on the multiplication of matrices using the repeated
squared technique. It explores the relationship that the number of vertices of the directed
weighted graph G is given by V = {1,2,3, . . . ,n} and the intermediate vertices of the path p
between u and v are considered a subset {1,2,3, . . . ,k}. The pseudocode of the Floyd-Warshall
algorithm is presented in Algorithm 3, where M[u,v] is a matrix N×N, where N is the number
of vertices, and its elements represent the weights of the edges between the vertices u and v
(Dickow, et al., 2013).

The execution of the algorithm starts by assigning to the elements of the matrix the weight
M[u,v] = 0, if the origin is the destination itself in the adjacency matrix. If there is not any path
between u and v, the weight M [u, v] = ∞ is assigned. Lines 3, 4 and 5 form loops that determine
the execution time of the algorithm. At each visit to a given vertex, the paths are recalculated,
and it is checked whether there is a path with less weight so that the matrix M [u, v] is updated.

Algorithm 3: Floyd-Warshall
1 𝑀[𝑢, 𝑣]  =  0 IF 𝑢 =  𝑣 

2 𝑀[𝑢, 𝑣]  =  ∞ IF 𝑢 ≠  𝑣 

3 FOR 𝑘 =  1 to 𝑘 =  𝑛 

4    FOR 𝑢 =  1 to 𝑢 =  𝑛 

5       FOR 𝑣 =  1 to 𝑣 =  𝑛 

6          IF 𝑀 [𝑣, 𝑢]  >  𝑀 [𝑢, 𝑘]  +  𝑀[𝑘, 𝑣] 
7             THEN 𝑀 [𝑣, 𝑢]  =  𝑀 [𝑢, 𝑘]  +  𝑀[𝑘, 𝑣] 
8 RETURN 𝑀[𝑢, 𝑣]  
Source: Dickow, et al., 2013.
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10 PARALLELIZATION OF SHORTEST PATH CLASS ALGORITHMS

2.2.6 Johnson Algorithm

The algorithm described by Johnson in 1977 finds a shortest path between all vertices of a graph
given by G = [V, E)] through an adjacency matrix. It makes use of the Dijkstra and Bellman-
Ford algorithms in its subroutines and assumes that the edges E are stored in a list of adjacencies
(Dickow, et al., 2013).

The algorithm, presented in Algorithm 4, produces a V × V matrix D with its elements rep-
resenting the weight δ (u, v) of the path between u and v. The algorithm uses the weighting
technique, which considers that if all weights w of edges of a graph G are positive, to find a
shortest path between all pairs of vertices by executing the Dijkstra algorithm (Dickow, et al.,
2013).

The algorithm starts by the evaluation of the graph V [G ′] with the original weight function w,
where s is the origin vertex. Initially, the edges E [G ′] and the weights w(s, v) are also calculated.
The Bellman-Ford algorithm is executed in line 4, if the FALSE Boolean value is returned. This
indicates that a negative cycle has been found and that it will be declared on line 5.

Lines 6 to 14 assume that the graph G ′ has no negative weight cycle and define h(v) as the
weight of the shortest path calculated by the Bellman-Ford algorithm for all v ∈V ′. Lines 8 and
9 perform the calculation for the new weights w ′. The loop from lines 10 to 14 calculates the
weight of the shortest path δ (u, v) for each pair of vertices u ∈ V using the Dijkstra algorithm.

Algorithm 4: Johnson
1 Calculate V [G′] = V [G] U {s} 

2 Calculate E [G′] = E [G] U { (s, v) : v ∈ V [G] } 

3 Calculate w (s, v) = 0 para v ∈ V [G] 

4 IF Bellman-Ford (𝐺′, 𝑤, 𝑠) = 𝐹𝑎𝑙𝑠𝑒 

5     THEN “There is a negative cycle” 

6    FOR EACH v ∈ V [G′] 

7         DO h(v) throught Bellman-Ford 

8     FOR EACH (u, v) ∈ E [G′] 

9     DO w′ (u, v) = w (u, v) + h (u) − h(v) 

10   FOR u ∈ V [G] 

11       DO Dijkstra (G′, w′, u) 

12           calculate δ( u, v) in v ∈ V G 

13       FOR EACH v ∈ V G 

14           DO d(uv) ← δ(s, v) +h (v) − h(u) 

15 RETURN 𝐷 

Source: Dickow, et al., 2013.

In line 14 of the pseudocode, it is stored at the input of the matrix the estimate d(u, v) of the
correct weight of the shortest path between u and v. Finally, in line 15, it is returned the matrix
D completed with the weights δ (u,v) of each vertex of the graph G.

Pesquisa Operacional, Vol. 43, 2023: e272130
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2.3 Parallelization approach

The C / C ++ programming languages have a multi-process programming library of shared mem-
ory on multiple platforms called OpenMP, that can be used to parallelize the previous mentioned
algorithms. OpenMP is a library widely used by programmers with little, if any, experience
in parallelism, as it facilitates the creation of threads and requires that the programmer only
establishes what needs to be parallelized (Silva & Martins, 2012).

According to Silva & Martins (2012), OpenMP is based on the shared memory programming
paradigm, in which the parallelism consists of multiple threads. Thus, it can be said that OpenMP
is an explicit parallel programming model, offering total control to the programmer.

The programming model adopted by OpenMP is very portable and scalable and can be used on
several platforms, ranging from a personal computer to supercomputers. OpenMP is based on
compilation directives, library routines and environment variables.

The first step to parallelize the proposed algorithms was to carry out an analysis of the execution
time of their serial versions. The analysis was made based on databases with graphs of differ-
ent sizes containing the latitude and longitude of different cities, where the Euclidean distance
from all cities to all cities was calculated, using the database present in Reinhelt (2014). In this
database (table 2), each dataset has a number of vertices (example: base att48 - 48 vertices, rat99
- 99 vertices), which will imply a difference in evaluation times.

Table 2 – Databases

att48 kroB100 lin105 pr144
berlin52 kroB150 pr76 pr152
kroA100 kroB200 pr107 rat99
kroA150 kroC100 pr124 rat195
kroA200 kroD100 pr136 kroE100

Source: Authors.

These instances are stored in text files with a specific structure. Each instance file contains several
sections, including general instance information and point coordinate data. Here is a simplified
example of how data is stored in the TSPLIB95 base:

1. General information section:

• NAME: Instance name

• TYPE: Type of issue (usually ”TSP”)

• DIMENSION: Number of cities/points in the instance

• EDGE WEIGHT TYPE: Distance matrix type (Euclidean, Geometric, etc.)

2. Coordinate section: Point coordinate data is listed in this section. Typically, each line rep-
resents a point/city and contains a unique identifier and the coordinates (x, y) of the point.
For example, a TSP instance in base TSPLIB95 might have the following structure:
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• makefile

• Copy code

• NAME: example

• TYPE: TSP

• DIMENSION: 4

• EDGE WEIGHT TYPE: EUC 2D

• NODE COORD SECTION

• 1 20 35

• 2 40 50

• 3 15 25

• 4 10 30

In this example, we have an instance with 4 cities/points, and the coordinates of these points are
provided in the NODE COORD SECTION section. Each line in this section contains the point
identifier followed by the x and y coordinates. Instances in base TSPLIB95 may have additional
sections depending on the specific issue and data provided. It is important to consult the official
TSPLIB95 documentation for detailed information about the structure and format of specific
instance files. This database was used considering the proposed algorithms. For example, in
Dijkstra’ s algorithm, node “b” is chosen as the next node to be visited from the unresolved nodes
with the shortest current distance. To do this, initialize the algorithm by setting the distance from
the origin node to 0 and the distance to the other nodes to infinity. In each iteration, we select
the unresolved node with the shortest current distance, marking it as resolved. This process is
repeated until all nodes are resolved or until the target node is resolved, if applicable. In this
way, the algorithm expands towards the unresolved nodes with the shortest distance, ensuring an
efficient search in the graph to find the shortest path.

The experiments were carried out using the IDE Visual Studio 2019, which shows the runtime
data in detail. The language used on the development of the algorithms was C ++, because it is a
very efficient programming language with regards to the performance and memory usage.

With the OpenMP library, it is possible to use the ”#pragma omp” directive, that makes the C
/ C ++ compiler generate the optimized code for the OpenMP execution environment. One of
its main directives is the “#pragma omp parallel”, which allows to parallelize such part of the
algorithm as shown in Algorithm 5 as an example. In the example showed in algorithm 5, the
basic OpenMP function “omp get thread num ()” returns the identifier of the current thread, and
can then take the control over it. The function omp get num threads () returns the number of
threads currently active. Another directive used in this work was “#pragma omp critical”, which
informs the compiler that a code instruction within its block can only be executed by one thread
at a time. For instance, if the programming of an instruction is within a critical section, it means

Pesquisa Operacional, Vol. 43, 2023: e272130
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Algorithm 5: Inserting Parallelism
3 ... 
4 PRAGMA OMP PARALLEL num_threads(8) 
5     n_threads ← omp_get_num_threads() 
6     id ← omp_get_threads_num() 
7     FOR i ← 0 to num_steps  
8         local_count ← 0 
9         FOR j ← 0 to ... 

Source: Authors.

that it is only possible to program one instruction at a time in the system, otherwise it will be
returned inconsistent and disconnected results.

The tests were performed on a notebook with the Intel (R) Core (TM) i7-8565U 1.8GHz
processor, 8GB of RAM and 256GB PCIe NVMe SSD.

3 RESULTS

The following subsections present the main results of analysis made on the previous mentioned
algorithms.

3.1 Preliminary Analysis of Performance

In order to describe the process to obtain the results related to the performance of the shortest
path algorithms in their parallel execution in comparison to their serial execution, it is presented
in this subsection a preliminary analysis of the performance of a code to calculate the value of π .
The algorithms that represent its serial and parallel version are presented in algorithm 6 and 7,
respectively.

Algorithm 6: Calculating the value of π – serial version
1 BEGIN 
2 x, pi, sum ← 0 

3 step ← 1 / num_steps 
4 FOR i ← 0 to num_steps  
5     n ← (i + 0.5) * step 

6    sum ← sum + (4 / (1 + (x*x))) 
7 END FOR 
8 pi ← step * sum 
9 PRINT(“Result: ”, pi) 
10 RETURN 0 
11 END  

Source: Authors.

Pesquisa Operacional, Vol. 43, 2023: e272130



14 PARALLELIZATION OF SHORTEST PATH CLASS ALGORITHMS

Algorithm 7: Calculating the value of π – parallel version
1 BEGIN 
2 x, pi, global_sum ← 0 
3 step ← 1 / num_steps 
4 PRAGMA OMP PARALLEL num_threads(8) 
5     n_threads ← omp_get_num_threads() 
6     id ← omp_get_threads_num() 
7     local_sum ← 0 
8     FOR i ← 0 to num_steps  
9         x ← (i + 0.5) * step 
10         local_sum ← local_sum + 4 / (1 + x * x) 
11     END FOR 
12 END PARALLEL 
13 PRAGMA OMP CRITICAL 
14     global_sum ← global_sum + local_sum 
15 END CRITICAL 
16 pi ← step * sum 
17 PRINT(“Result: ”, pi) 
18  RETURN 0 
19 END 

Source: Authors.

The execution time spent in the serial version was 8.438 seconds. However, for the parallel
version with 8 threads the execution time was 1.256 seconds, which represents an execution
time reduction of more than 80%.

3.2 Analysis of Serial and Parallel Versions of Algorithms

The shortest path algorithms were parallelized in different parts of their code with focus on the
parts that represents a significant impact on the computational cost such as loops, comparisons
and math calculations. The algorithms were applied on the database previously mentioned in sec-
tion 2. Each algorithm was executed 500 times on the database to guarantee an average analysis
of their performance.

The first test was executed with the Dijkstra algorithm (see Figure 1), which had a code paral-
lelization at three different points. Firstly, in line 10, the internal loop was parallelized, but it
resulted in a poor performance, with a 50% drop in the execution time and a poor performance
when compared to its serial version. This drop in performance was due to the algorithm having
to redo the calculation of the distribution of the parallelization point, according to the number of
vertices of the graph and because it is inside a loop that is executed V times, with V being the
number of vertices.

Another parallelization alternative was implemented in line 8, where the minimum distance is
calculated. This approach resulted in the worst performance on the tests considered, being the
one that spent the longest execution time, with a drop of about 57% on its execution time when
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compared to the serial version. Based on that, similar to the test performed in the inner loop, this
one had a worse result because it is also inside an outer loop and, therefore it is a simpler part of
the algorithm, in which the parallelization on a single line (line 8) brings no benefit.

The test with the best result occurred in the parallelization of line 5, which corresponds to the
outermost loop of the code. This test achieved a considerable improvement in the execution time,
resulting in about 65% speed up when compared to the serial version. This last test achieved the
best result because the calculation to distribute the threads was performed only once, and, as it
represents a large part of the algorithm, it resulted in a better use of the parallelization approach.

Figure 1 – Dijkstra comparison chart.

Source: Authors.

The data presented in Figure 2 shows the statistical mean of the execution time of the Dijkistra
algorithm parallelized at different points on all the databases. Most of the results related to the
time execution of the algorithms at different points of parallelism are concentrated between 0.05
ms and 0.2 ms, with a maximum limit of approximately 0.45 ms, which represents a better result
than in the serial version.

The second test was performed on the Bellman-Ford algorithm (see Figure 3), which similarly to
the approach applied on the Dijkstra algorithm, was parallelized at the same 3 parts of the code.
The first parallelization, in line 6, that contains the loop responsible for checking the presence
of a negative cycle, resulted in a 35% performance improvement when compared to the serial
version. The complexity of this part of the algorithm is not significant and, because of that, the
time spent to distribute the threads is longer than the execution of the code itself.
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Figure 2 – Base processing times by the Dijkstra algorithm (in milliseconds) where the boxplot
demonstrates a minimum processing value of 0.005ms and an approximate maximum value of 0.375, with

a concentration of test times between 0.05 and 0.2 ms.

Source: Authors.

The second point of parallelism was in line 4, in the innermost loop responsible for the relaxation
calculation. The parallelization at this point of the algorithm resulted in the worst performance
with a drop of about 73% compared to its serial version. The drop in performance came from the
multiple calculations of the distribution of the parallelization point threads, that the algorithm had
to perform according to the number of edges of the graph. In addition, this calculation is inside
a loop that is executed E times, being E the number of edges, which causes a greater impact on
the performance.

The best result was obtained by parallelizing line 3, in the outermost loop of relaxation with a
66% improvement in performance. This last test, as well as in Dijkstra algorithm, presented the
best result because the calculation to distribute the threads was performed only once, and, as it
represents a significant part of the algorithm, it was advantageous to apply of the parallelization
process.

In Figure 4, most of the processed data time is between 2 ms and 18 ms, which is significantly
higher in relation to its serial version, which had its maximum limit below 1 ms according to the
graph in Figure 1. Therefore, it is important to identify the point of parallelism that provides an
improvement in performance.

The third test was performed with the Floyd-Warshall algorithm (see Figure 5), which, such as
the previous ones, was parallelized in 3 different parts of the code. On line 5, in the innermost
loop, was performed a parallelization and at this point of the algorithm the worst performance
was obtained with a loss of about 80% in performance when compared to the serial version. The
loss of performance at this point was due to the calculation of the distribution of threads, which
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Figure 3 – Bellman-Ford comparison.

Source: Authors.

is performed V 2 times, because the inner loop is inside of two other loops that execute V times
each.

On line 4, in the middle loop, the parallelization at this point also resulted in a drop of perfor-
mance, but not as expressive as the previous test. The drop in performance was of about 27%,
because, in this case, the distribution calculation was performed V times.

The best result obtained for this test came from the parallelization of line 3, in the outermost loop,
in which was achieved a 37% gain in the execution time when compared to the serial version.
Similar to the other algorithms, this point of parallelization resulted in the best result, because
the calculation to distribute the threads was performed only once. In addition, as this part of the
code represents most of the algorithm, it was possible to achieve a better outcome from the use
of parallelization.

Figure 6 shows an analysis similar to the Bellman-Ford algorithm. In this analysis it is important
to consider the part of the code that was parallelized to guarantee that there is no loss of perfor-
mance, because its serial version had a maximum limit of about 17 ms. As can be seen in Figure
6, most of the data performance is concentrated between 5 ms and 18 ms, with outliers still rep-
resenting the execution of the biggest bases in its worst parallelization part, reaching about 50
ms of execution.

The fourth test was performed using the Johnson algorithm (see Figure 7). As this algorithm uses
the Dijkstra and Bellman-Ford algorithms in its execution, the tests were performed with these
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Figure 4 – Base processing times by the Bellman-Ford algorithm (in milliseconds) where the boxplot
demonstrates a minimum processing value of 1ms and an approximate maximum value of 36.6ms (with a

specific sample of 70ms), with a concentration of test times between 2 and 18 ms.

Source: Authors.

Figure 5 – Floyd-Warshall comparison chart.

Source: Authors.

algorithms in their parallel versions, that corresponded to the best performance obtained in the
previous tests.

By parallelizing the Dijkstra algorithm on line 11, it was possible to obtain an improvement
in performance of about 3%, while the parallelization of the Bellman-Ford algorithm resulted
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Figure 6 – Base processing times by the Floyd-Warshall algorithm (in milliseconds) where the boxplot
demonstrates a minimum processing value of 0.5ms and an approximate maximum value of 33ms (with a

specific sample of 50ms), with a concentration of test times between 5 and 18 ms.

Source: Authors.

in an improvement even greater, reaching a gain in performance of about 54%. In Figure 8, it
is observed that, on average, the bases executed in parallel versions took about 300 ms to be
executed, with a minimum limit of 0.1 ms and a maximum limit of 850 ms.

The outliers showed in the graph came from the execution of the larger databases. For these
databases, the difference in performance for the parallelization of the Dijkstra algorithm com-
pared to the parallelization of the Bellman-Ford algorithm becomes more significant, with the
Bellman-Ford algorithm having a better performance. In summary, by analyzing the results of
the tests performed, it is possible to notice that, if the point of parallelism in the code is not
strategically selected, it can result in a loss of performance. In contrast, if the correct part of the
code is parallelized, a considerable improvement (up to 55%) in performance is achieved. The
results obtained by the shortest path between the initial and final position of each graph were
the same for all algorithms (see Table 3), concluding that in terms of information, all algorithms
presented an accurate result.

The provided situation illustrates a comparison of execution times for different graph algo-
rithms on a specific instance (kroA150). These algorithms are used to solve a problem related to
graphs, possibly finding the shortest paths between nodes. The execution times are measured in
milliseconds. The significant discrepancies between the execution times are as follows:

• Dijkstra: This algorithm has the shortest execution time among the listed algorithms. It
takes approximately 0.275 milliseconds in the serial case and around 0.075 milliseconds
in the best parallelized case.
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Figure 7 – Johnson comparison chart.

Source: Authors.

Figure 8 – Base processing times by the Johnson algorithm (in milliseconds) where the boxplot
demonstrates a minimum processing value of 0.1ms and an approximate maximum value of 850ms (with a

specific sample of 1900ms), with a concentration of test times between 170 and 750 ms.

Source: Authors.
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Table 3 – Shortest path of Algorithms.

DIJKSTRA BELLMAN-FORD FLOYD-WARSHALL JOHNSON
att48 3,743.079102 3,743.079102 3,743.079102 3,743.079102
berlin52 1,220.460938 1,220.460938 1,220.460938 1,220.460938
kroA100 2,643.494141 2,643.494141 2,643.494141 2,643.494141
kroA150 1,382.167114 1,382.167114 1,382.167114 1,382.167114
kroA200 2,616.114990 2,616.114990 2,616.114990 2,616.114990
kroB100 1,248.565552 1,248.565552 1,248.565552 1,248.565552
kroB150 2,096.789307 2,096.789307 2,096.789307 2,096.789307
kroB200 3,117.489258 3,117.489258 3,117.489258 3,117.489258
kroC100 1,650.458374 1,650.458374 1,650.458374 1,650.458374
kroD100 2,718.802979 2,718.802979 2,718.802979 2,718.802979
kroE100 3,496.164307 3,496.164307 3,496.164307 3,496.164307
lin105 1,742.839600 1,742.839600 1,742.839600 1,742.839600
pr76 3,716.180908 3,716.180908 3,716.180908 3,716.180908
pr107 10,385.687500 10,385.687500 10,385.687500 10,385.687500
pr124 9,411.224609 9,411.224609 9,411.224609 9,411.224609
pr136 9,070.000000 9,070.000000 9,070.000000 9,070.000000
pr144 10,949.486328 10,949.486328 10,949.486328 10,949.486328
pr152 13,719.090820 13,719.090820 13,719.090820 13,719.090820
rat99 215.037201 215.037201 215.037201 215.037201
rat195 304.401062 304.401062 304.401062 304.401062

Source: Authors.

• Bellman-Ford: In the serial case, this algorithm takes approximately 20 milliseconds,
which is about 72 times the execution time of Dijkstra. In the parallelized case, it takes
around 7.5 milliseconds, about 100 times the execution time of Dijkstra.

• Floyd-Warshall: In the serial case, this algorithm takes approximately 15 milliseconds,
roughly 54 times the execution time of Dijkstra. In the parallelized case, it takes around 10
milliseconds, approximately 133 times the execution time of Dijkstra.

• Johnson: In the serial case, this algorithm takes approximately 1900 milliseconds, which
is about 7000 times the execution time of Dijkstra. In the parallelized case, it takes around
750 milliseconds, approximately 10000 times the execution time of Dijkstra.

These discrepancies in execution times suggest that the algorithms are performing differently
on the given instance. While Dijkstra is the fastest algorithm in both serial and parallel cases,
other algorithms like Bellman-Ford, Floyd-Warshall, and Johnson exhibit significantly longer
execution times. Possible factors could include the algorithm’ s design, the nature of the graph,
the complexity of the problem, and the efficiency of parallelization techniques used. Certainly,
let’ s correlate the provided execution time results for the algorithms on the kroA150 instance
with the results from the base att48 instance. The instances seem to differ, but we can still analyze
the patterns between the two datasets.
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On the att48 instance, the execution times are as follows:

Serial Case:

• Dijkstra: Approximately 0.0100 milliseconds

• Bellman-Ford: Approximately 0.3051 milliseconds

• Floyd-Warshall: Approximately 0.2362 milliseconds

• Johnson: Approximately 33.4489 milliseconds

Parallel Case:

• Dijkstra: Approximately 0.0057 milliseconds

• Bellman-Ford: Approximately 0.1172 milliseconds

• Floyd-Warshall: Approximately 0.1170 milliseconds

• Johnson: Approximately 31.2480 milliseconds

When comparing the results between the kroA150 instance and the att48 instance:

• In both instances, Dijkstra consistently has the shortest execution time, and it is also faster
in the parallel case compared to the serial case. This suggests that Dijkstra’ s algorithm is
well-suited for these instances and benefits from parallelization.

• Bellman-Ford and Floyd-Warshall exhibit similar patterns in both instances. In the serial
case, they have longer execution times compared to Dijkstra, and in the parallel case, they
are faster but still slower than Dijkstra. These algorithms seem to be affected by the size
and complexity of the graph instances.

• Johnson’ s algorithm shows a significant increase in execution time in both instances com-
pared to the other algorithms. It takes much longer than the rest in both serial and parallel
cases. Additionally, it appears that the execution time of Johnson’ s algorithm is consistent
across instances, despite the differences in instance size.

Overall, the att48 instance results exhibit similar trends to those of the kroA150 instance, even
though the absolute execution times differ due to the nature of the instances. These trends can
provide insights into how the algorithms perform in general, their sensitivity to instance charac-
teristics, and the impact of parallelization. Across the 20 tested databases, a consistent pattern
emerged where the algorithms’ average behaviors in terms of execution speed remained rela-
tively constant. Despite variations in absolute execution times, the algorithms maintained their
relative ranking in speed. Dijkstra consistently performed fastest, followed by Bellman-Ford and
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Floyd-Warshall, while Johnson consistently took the most time. This stability suggests that the
algorithms’ inherent efficiencies were consistent, although their performance varied due to differ-
ences in graph structures and sizes in each database. This underlines the algorithms’ sensitivity
to graph characteristics and the importance of choosing the right algorithm for specific problem
instances based on their performance profiles.

4 CONCLUSIONS

The algorithms of the shortest path class – Dijkstra, Bellman-Ford, Floyd-Warshall and Johnson
– already have a remarkable performance, being capable of taking milliseconds to execute in
considerably large graphs and solving most of the application problems in real life. However,
in the study presented it was identified that there is a significant improvement in its parallelized
versions.

After the parallelization analysis, the improvement observed by executing the algorithms in dif-
ferent databases was of an average gain of about 55% on all algorithms. In real-time applications,
where it is possible to have thousands of requests made per second, the gain obtained with the
parallelization can represent a decrease in the response time of the system, which can represent
a positive impact on the savings of the companies.

Finally, the effort used to parallelize the algorithms would have benefits, because it was used
techniques from the OpenMP library of C / C ++, which has implemented paradigms to facilitate
the parallelization of serial codes.
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