Arg. Bras. Med. Vet. Zootec., v.68, n.1, p.191-200, 2016

Seleção e classificação multivariada de modelos não lineares para frangos de corte

[Selection and classification of multivariate nonlinear models for broilers]

R.C. Veloso¹, L.K. Winkelstroter², M.T.P. Silva³, A.V. Pires³, R.A. Torres Filho⁴, S.R.F. Pinheiro³, L.S. Costa³, J.M. Amaral³

¹Universidade Federal de Viçosa – Viçosa, MG
 ²Universidade Federal de Minas Gerais – Belo Horizonte, MG
 ³Universidade Federal dos Vales do Jequitinhonha e Mucuri – Diamantina, MG
 ⁴Universidade Federal Fluminense – Niterói, RJ

RESUMO

Objetivou-se com este estudo utilizar a técnica de análise de agrupamento para classificar modelos de regressão não lineares usados para descrever a curva de crescimento de frangos de corte, levando em consideração os resultados de diferentes avaliadores de qualidade de ajuste. Para tanto, utilizaram-se dados de peso corporal e idade dos seguintes grupos genéticos de frangos de corte: Cobb500, Hubbard Flex e Ross308, de ambos os sexos, constituindo, assim, seis classes. Foram ajustados 10 modelos não lineares, cuja qualidade de ajuste foi medida pelo coeficiente de determinação ajustado, pelos critérios de informação de Akaike e bayesiano, pelo quadrado médio do erro e pelo índice assintótico. A análise de agrupamento indicou os modelos logístico, Michaelis-Menten, Michaelis-Menten modificado e von Bertalanffy como os mais adequados à descrição das curvas de crescimento das seis classes estudadas.

Palavras-chave: agrupamento, curva de crescimento, idade, peso corporal

ABSTRACT

The aim of this study was to classify non-linear models used to describe the growth curve of broilers using the cluster analysis technique, taking into account the results of different measures of quality adjustment regression. For this purpose, we used data of body weight and age the following genetic groups of broilers: Cobb500, Hubbard Flex and Ross308, of both sexes, thus constituting six classes. Ten non-linear models were fitted, the quality of fit was measured by the adjusted coefficient of determination, Akaike information criteria and Bayesian, mean square error and index asymptotic. Cluster analysis indicated the Logistico, Michaelis Menten, Michaelis Menten Modificado and von Bertalanffy models as the most appropriate description of the growth curves for the six classes studied.

Keywords: age, body weight, cluster, growth curve

INTRODUÇÃO

O crescimento é uma propriedade fundamental do sistema biológico, podendo ser definido como um aumento no tamanho do corpo por unidade de tempo (Schulze *et al.*, 2001). Nesse sentido, o estudo de curvas de crescimento de modelagem de animais é necessário para otimizar a gestão e a eficiência da produção animal (Köhn et *al.*, 2007).

Os modelos não lineares têm sido propostos para descrição da curva de crescimento dos indivíduos, pois apresentam parâmetros com interpretação biológica e, assim, possibilitam maior entendimento do processo de crescimento dos animais. Porém, na maioria das vezes, a escolha dos melhores modelos não é tão simples. Por causa do grande número de avaliadores de qualidade de ajustes existentes na literatura, muitas vezes há discordância entre eles para a

Recebido em 7 de agosto de 2014 Aceito em 16 de setembro de 2015 E-mail: velosozootecnista@yahoo.com.br definição do melhor modelo a ser utilizado para descrever o crescimento dos animais. Assim, uma análise que considere simultaneamente todos os avaliadores de qualidade é necessária para estabelecer qual modelo melhor se ajusta aos dados de crescimento.

Dessa maneira, uma análise complementar que pode ser útil seria a análise de agrupamento, a fim de agrupar modelos cujos resultados dos avaliadores de qualidade de ajuste sejam similares dentro de cada população. Essa técnica de agrupamento tem sido proposta por diversos autores (Maia *et al.*, 2009; Silva *et al.*, 2011; Silveira *et al.*, 2012).

Nesse contexto, objetivou-se com este trabalho utilizar a análise de agrupamento para classificar modelos não lineares, usados para descrever a curva de crescimento de três genótipos de frangos de corte de ambos os sexos.

MATERIAL E MÉTODOS

Os dados utilizados são provenientes de um experimento em um delineamento inteiramente ao acaso, realizado com frangos de corte, que foi conduzido no Departamento de Zootecnia da UFVJM, situado no *Campus* JK, em Diamantina-MG, durante o período de 31 de outubro a 19 de dezembro de 2011, aprovado pela Comissão de Ética no Uso de Animais da UFVJM (Protocolo nº 015/10).

Utilizaram-se dados de pesos corporais individuais dos frangos de corte medidos a um, sete, 14, 21, 28, 35, 42 e 49 dias de idade, totalizando 456 aves, de três genótipos (Cobb500, Hubbard Flex e Ross308), de ambos os sexos, perfazendo um total de 152 aves por genótipo e 76 aves por sexo x genótipo, constituindo um total de seis classes (dois sexos x três genótipos). A ração experimental utilizada foi formulada á base de milho e farelo de soja, conforme Rostagno *et al.* (2011).

Os seguintes modelos de regressão não linear, descritos por Silva *et al.* (2011) e Silveira *et al.* (2011), foram ajustados aos dados de frangos de corte (Tab. 1), utilizando-se o método dos quadrados mínimos ordinários, cujas soluções foram obtidas mediante o processo iterativo de Gauss-Newton, por meio do "proc model" do SAS (SAS, 2002).

O parâmetro β_1 representa o peso adulto, ou peso assintótico do animal, e o parâmetro β₃ a taxa de maturidade, ou velocidade de crescimento, exceto para dois modelos, Michaelis-Menten modificado e Weibull, em que a taxa de maturidade é obtida como função dos demais parâmetros. Os modelos que apresentam o parâmetro β₄ possuem ponto de inflexão variável, cuja localização é determinada pelo parâmetro em questão, e os demais modelos ou apresentam o ponto de inflexão fixo ou não o possuem, como é o caso do modelo Michaelis-Menten. De forma geral, não há uma interpretação prática para o parâmetro β₂ (constante de integração), yi representa a observação da variável dependente designada de variável resposta, e x_i a variável independente designada de variável explicativa.

Foram utilizados cinco avaliadores da qualidade de ajuste: coeficiente de determinação ajustado (R²aj), quadrado médio do erro (QME), critério de informação de Akaike (AIC) e critério de informação bayesiano (BIC), proposto por Silva et al. (2011), e índice assintótico (IA), descrito por Ratkowsky (1990) e utilizado por Araújo et al. (2012) e Drumond et al. (2013), o qual combina os seguintes critérios: desvio padrão assintótico (DPA), desvio médio absoluto (DMA) e coeficiente de determinação (R²), atribuindo valor 100 para a maior estimativa de cada critério, sendo os demais ponderados em relação a este, assim: IA=(DPA+DMA) - R², em que quanto menor o índice, melhor o ajuste do modelo.

Tabela 1. Modelos de regressão não linear para descrever curvas de crescimento dos frangos de corte

Modelo Modelo	Função
A- Meloun I	$y_i = \beta_1 - \beta_2 e^{(-\beta_3 x_i)} + e_i$
B- Meloun II	$y_i = \beta_1 - e^{(-\beta_2 - \beta_3 x_i)} + e_i$
C- Michaelis-Menten	$y_i = \frac{\beta_1 x_i}{x_i + \beta_2} + e_i$
D- Weibull	$y_i = \beta_1 - \beta_2 e^{-e^{\beta_2 x_i^{\beta_4}}} + e_i$
E- Logístico	$y_i - \frac{\beta_1}{(1 + e^{(\beta_2 - \beta_2 x_j)})} + e_i$
F- Gompertz	$y_i = \beta_1 e^{(-e^{(\beta_2 - \beta_3 x_i)})} + e_i$
G- Michaelis-Menten modificado	$y_{i} = \frac{\beta_{2}\beta_{3}^{\beta_{4}} + \beta_{1}x_{i}^{\beta_{4}}}{\beta_{3}^{\beta_{4}} + x_{i}^{\beta_{4}}} + e_{i}$
H- Von Bertalanffy	$y_i = \beta_1 (1 - \beta_2 e^{-\beta_2 x_i})^3 + e_i$
I- Richards	$y_i = \frac{\beta_1}{(1 + e^{(\beta_2 - \beta_3 x_i)})^{\frac{1}{\beta_4}}} + e_i$
J- Mitscherlich	$y_i = \beta_1 \big(1 - e^{\left(\beta_2 \beta_2 - \beta_2 x_i\right)}\big) + e_i$

Após a obtenção dos avaliadores de qualidade apresentados para cada um dos modelos, confeccionou-se um conjunto de dados multivariados, no qual os modelos correspondem às unidades a serem agrupadas e os avaliadores correspondem às variáveis medidas (Silva *et al.*, 2011 e Silveira *et al.*, 2011).

O método de agrupamento utilizado foi o método hierárquico do centroide. Nesse método, a distância entre dois grupos é definida como sendo a distância entre os vetores de médias, também chamados de centroides, dos grupos que estão sendo comparados. Segundo Mingoti (2007), é dada, então, pela distância euclidiana ao quadrado entre os centroides dos dois grupos. Nessa análise, obtiveram-se os valores do índice RMSSTD (Root Mean Square Standard Deviation, ou Raiz Quadrada do Desvio Padrão

Médio), que possibilitam identificar o número ótimo de grupos, de acordo com Cecon *et al.* (2008).

RESULTADOS E DISCUSSÃO

Os pesos corporais dos frangos de corte, mostrados na Tab. 2, foram semelhantes aos encontrados por Corzo et al. (2010), Tang et al. (2011), Lai et al. (2012) e Walk et al. (2012). De forma geral, observa-se que o genótipo Ross308, em ambos os sexos, apresentou maior peso corporal nas diferentes idades, e entre as fêmeas o genótipo Hubbard Flex apresentou maior peso corporal nas idades de 42 e 49 dias. Os machos do genótipo Hubbard Flex, assim como as fêmeas do genótipo Cobb500, apresentaram os menores pesos corporais.

Apenas as equações propostas nos modelos de Richards e Mitscherlich não atingiram convergência.

Entre as que convergiram, nota-se que, de forma geral, entre os genótipos de frango de corte em ambos os sexos, conforme pode ser visualizado nas Tab. 3, 4, e 5, os melhores ajustes dos modelos foram observados para os frangos dos genótipos Hubbard Flex e Cobb500,

independentemente do sexo, uma vez que foram observados maiores R^2_{aj} e menores QME, AIC, BIC e IA. Com base nessas informações, verificou-se que os dados médios dos genótipos Hubbard Flex e Cobb500 apresentam um comportamento mais característico de curva de crescimento, conforme pode ser visualizado na Tab. 2, uma vez que os modelos específicos para descrever este fenômeno se ajustaram melhor.

Tabela 2. Pesos corporais observados (em gramas) de acordo com a idade, considerando os dados médios das seis classes de frangos de corte x sexo estudadas

Classe		Idade (dia)						
Classe	1	7	14	21	28	35	42	49
Cobb500 macho	41,00	129,00	353,52	761,52	1245,81	2025,69	2579,48	3367,28
Hubbard Flex macho	42,80	124,82	349,86	739,54	1175,41	1936,71	2676,31	3370,35
Ross308 macho	43,20	140,66	364,48	774,613	1232,21	1981,59	2649,85	3382,65
Cobb500 fêmea	40,08	119,73	336,48	694,44	1108,13	1731,75	2227,52	2777,33
Hubbard Flex fêmea	41,68	128,82	339,85	694,14	1137,57	1782,08	2368,15	2968,27
Ross308 fêmea	43,40	133,92	355,76	722,29	1145,35	1809,66	2296,77	2917,32

Todos os avaliadores de qualidade, com exceção do QME e IA, apresentaram baixo coeficiente de variação. Resultados semelhantes observados por Silva et al. (2011). Em relação aos outros avaliadores de qualidade de ajuste (AIC e BIC), de forma geral, os modelos da "família" de Richards (Gompertz e von Bertalanffy) foram os que apresentaram os melhores avaliadores de qualidade, mostrando a superioridade desses modelos, nas condições aqui avaliadas. Resultados semelhantes foram encontrados por Drumond et al. (2013), que recomendaram a utilização dos modelos Gompertz e logístico para descrição do crescimento de codornas de corte.

Pode ser observado que os maiores valores do QME foram observados para modelos com três (Meloun I e Meloun II) e quatro parâmetros (Weibull). Em bovinos de corte, Silva *et al.* (2011) observaram maiores valores de QME para modelos mais parametrizados, como Richards, Michaelis-Menten modificado e Weibull. Neste trabalho, o modelo Michaelis-Menten modificado apresentou baixo QME.

Quanto ao coeficiente de determinação ajustado (R^2_{aj}) , foi o avaliador que apresentou menores

coeficientes de variação, o que permite inferir que esse avaliador realmente apresenta baixa variabilidade. Com isso, recomenda-se utilizar outros avaliadores de qualidade de ajuste, pois as diferenças entre os R^2_{aj} dos diferentes modelos usados no estudo de curvas de crescimento foram irrisórias, conforme também destacado por Oliveira *et al.* (2000).

O menor valor para o índice assintótico (IA) foi observado para os modelos da "família Richards" mais o modelo Michaelis-Menten modificado em todas as seis classes estudadas, indicando serem esses os modelos que mais se ajustaram aos dados, considerando que o IA é um critério que combina R², DPA e DMA e que, portanto, em princípio, é visto como um critério mais "completo" (Araújo et al., 2012). Nesse sentido, para a escolha de modelos, pode-se recomendar o índice assintótico.

O modelo von Bertalanffy, levando em consideração o QME, o AIC e o BIC, ajustou-se melhor ao crescimento dos frangos de corte Cobb500 machos, pois os menores valores desses critérios foram observados, conforme apresentado na Tab. 3. Se a escolha do modelo for feita somente observando o IA, o modelo

Gompertz se ajustou melhor ao crescimento dos frangos de corte Cobb500 em ambos os sexos. É interessante observar que, nas fêmeas,

independentemente do critério de qualidade de ajuste a ser utilizado, o modelo Gompertz é sempre o indicado.

Tabela 3. Avaliadores da qualidade de ajuste para os modelos não lineares avaliados nos frangos de corte do genótipo Cobb500

Modelo	Avaliadores da qualidade de ajuste						
Wiodelo	R ² _{aj}	QME	AIC	BIC	IA		
Cobb500 Macho							
A- Meloun I	0,9972	1154648,00	10071,90	10076,30	115,79		
B- Meloun II	0,9966	1384108,00	10178,50	10182,90	181,58		
C- Michaelis-Menten	0,9985	122020,00	8729,20	8733,60	73,39		
D- Weibull	0,9949	1384108,00	10178,50	10182,90	1258,56		
E- Logistico	1,0000	61466,00	8319,60	8324,00	60,57		
F- Gompertz	1,0000	124887,00	8735,70	8740,10	-13,08		
G- Michaelis-Menten modificado	1,0000	61488,00	8325,70	8347,60	62,35		
H- Von Bertalanffy	0,9985	61408,00	8319,10	8323,50	63,61		
Média	0,9985	544266,62	9107,27	9113,86	225,35		
Desvio-padrão	0,0019	636590,03	874,97	872,76	421,09		
Coeficiente de variação (%)	0,1992	116,96	9,60	9,57	53,51		
Cobb500 Fêmea							
A- Meloun I	0,9972	772411,00	9815,60	9819,90	109,62		
B- Meloun II	0,9966	940930,00	9947,30	9951,70	180,91		
C- Michaelis-Menten	0,9998	59470,00	8299,10	8303,50	64,91		
D- Weibull	0,9949	940930,00	9947,30	9951,70	1068,89		
E- Logístico	1,0000	26394,00	7813,70	7818,10	68,32		
F- Gompertz	1,0000	26356,00	7812,90	7817,30	-7,48		
G- Michaelis-Menten modificado	1,0000	26517,40	7820,70	7842,70	68,47		
H- Von Bertalanffy	0,9999	26593,00	7818,20	7822,60	66,38		
Média	0,9986	352450,17	8659,35	8665,93	202,50		
Desvio-padrão	0,0020	443989,47	1043,81	1041,79	354,00		
Coeficiente de variação (%)	0,1997	125,9723	12,05	12,0217	57,20		

R²_{aj}: coeficiente de determinação ajustado; QME: quadrado médio do erro; AIC: critério de informação de Akaike; BIC: critério de informação bayesiano; IA: índice assintótico.

O modelo Logístico se ajustou melhor ao crescimento dos frangos de corte Hubbard Flex, independentemente do sexo, pois os menores valores de QME, AIC, BIC e IA foram observados, como mostra a Tab. 4, sendo o

indicado para descrição da curva de crescimento do genótipo Hubbard Flex.

O modelo Logístico, levando em consideração os critérios de qualidade de ajuste QME, AIC e

BIC, ajustou-se melhor ao crescimento dos frangos de corte Ross308 machos, pois apresentaram os menores valores, conforme mostrado na Tab. 5. Assim como observado com o genótipo Cobb500, se a escolha do modelo for feita somente observando o IA, o modelo Gompertz se ajustou melhor ao crescimento dos frangos de corte Ross308 em ambos os sexos. Nas fêmeas, independentemente do critério de qualidade de ajuste a ser utilizado (QME, AIC, BIC e IA), o modelo Gompertz é o recomendado.

Tabela 4. Avaliadores da qualidade de ajuste para os modelos não lineares avaliados nos frangos de corte

do genótipo Hubbard Flex

Modelo do genotipo Hubbard Flex	Avaliadores da qualidade de ajuste					
Modelo	R ² _{aj}	QME	AIC	BIC	IA	
. 361		Flex Macho	10002.00	10000 20	41.20	
A- Meloun I	0,9971	1177946,00	10083,80	10088,20	41,39	
B- Meloun II	0,9966	1398119,00	10184,50	10188,90	187,53	
C- Michaelis-Menten	0,9998	128936,00	8762,20	8766,60	87,52	
D- Weibull	0,9949	1398119,00	10184,50	10188,90	1269,95	
E- Logistico	1,0000	54080,00	8243,10	8247,50	36,38	
F- Gompertz	1,0000	88628,00	8538,00	8542,40	41,51	
G- Michaelis-Menten modificado	1,0000	54572,70	8253,50	8275,50	51,19	
H- Von Bertalanffy	0,9998	54942,00	8252,60	8256,90	64,78	
Média	0,9986	544417,83	9062,77	9069,36	222,53	
Desvio-padrão	0,0020	650198,30	918,68	916,50	426,11	
Coeficiente de variação (%)	0,1996	119,43	10,13	10,10	52,22	
Hubbard Flex Fêmea						
A- Meloun I	0,9972	882455,00	9910,90	9915,30	39,09	
B- Meloun II	0,9966	1067240,00	10022,80	10027,20	187,36	
C- Michaelis-Menten	0,9998	71354,00	8408,20	8412,60	83,63	
D- Weibull	0,9949	1067240,00	10022,80	10027,20	1133,07	
E- Logístico	1,0000	26249,00	7810,60	7815,00	34,47	
F- Gompertz	1,0000	239513,00	9122,20	9126,60	56,66	
G- Michaelis-Menten modificado	1,0000	26490,60	7821,20	7843,20	50,34	
H- Von Bertalanffy	0,9998	57637,00	8281,20	8285,60	72,68	
Média	0,9986	547592,05	9096,57	9103,17	237,08	
Desvio-padrão	0,0020	643431,74	890,94	888,68	420,09	
Coeficiente de variação (%)	0,1993	117,50	9,79	9,76	56,43	

R²_{ai}: coeficiente de determinação ajustado; QME: quadrado médio do erro; AIC: critério de informação de Akaike; BIC: critério de informação bayesiano; IA: índice assintótico.

Tabela 5. Avaliadores da qualidade de ajuste para os modelos não lineares avaliados nos frangos de corte

do genótipo Ross308

do genótipo Ross308	Avaliadores da qualidade de ajuste							
Modelo	R ² _{aj}	QME	AIC	BIC	IA			
	Ross308 Macho							
A- Meloun I	0,9972	1164539,00	10072,80	10077,20	144,79			
B- Meloun II	0,9966	1396297,00	10183,70	10188,10	185,38			
C- Michaelis-Menten	0,9998	122049,00	8729,40	8733,80	75,72			
D- Weibull	0,9949	1396297,00	10183,70	10188,10	1267,0			
E- Logístico	1,0000	57359,00	8278,30	8282,70	77,52			
F- Gompertz	1,0000	128885,00	8756,00	8760,40	-10,31			
G- Michaelis-Menten modificado	1,0000	57673,40	8287,50	8309,50	83,77			
H- Von Bertalanffy	0,9998	57637,00	8281,20	8285,60	72,68			
Média	0,9986	547592,05	9096,57	9103,17	237,08			
Desvio-padrão	0,0020	643431,74	890,94	888,68	420,09			
Coeficiente de variação (%)	0,1993	117,50	9,79	9,76	56,43			
Ross308 Fêmea								
A- Meloun I	0,9966	1022814,00	9963,90	9968,30	156,47			
B- Meloun II	0,9966	1022814,00	9963,90	9968,30	184,82			
C- Michaelis-Menten	0,9998	69470,00	8364,20	8368,60	74,28			
D- Weibull	0,9949	1022814,00	9963,90	9968,30	1110,6			
E- Logístico	1,0000	32386,00	7909,70	7914,10	36,97			
F- Gompertz	1,0000	32307,00	7908,30	7912,70	2,40			
G- Michaelis-Menten modificado	1,0000	32465,80	7917,00	7939,00	49,87			
H- Von Bertalanffy	0,9998	32471,00	7911,30	7915,70	48,35			
Média	0,9985	408442,72	8737,77	8744,37	207,97			
Desvio-padrão	0,0021	508902,01	1026,79	1024,80	369,91			
Coeficiente de variação (%)	0,2062	124,59	11,75	11,71	56,22			

 R^2_{aj} : coeficiente de determinação ajustado; QME: quadrado médio do erro; AIC: critério de informação de Akaike; BIC: critério de informação bayesiano; IA: índice assintótico.

Na Tab. 6, observa-se que, para todos os genótipos e ambos os sexos avaliados, o número ótimo de grupos encontrado foi quatro, ou seja, os oito modelos considerados foram condensados em apenas quatro grupos distintos, mostrando grande semelhança nos resultados para os diferentes modelos.

Percebe-se que os melhores grupos (Grupo 1) foram os que apresentaram, de forma geral, menores valores de QME, AIC, BIC e IA

considerados simultaneamente. Ao se verificarem quais modelos foram predominantes na formação desses grupos, os quais contêm os melhores modelos, nota-se que houve predominância dos modelos da "família" Richards (Gompertz, logístico e von Bertalanffy) mais os modelos Michaelis-Menten e Michaelis-Menten modificado. Esses modelos encontramse entre os melhores para descrever o crescimento dos genótipos de frangos de corte, independentemente do sexo. Nota-se que o

modelo Gompertz encontra-se entre os melhores para descrição das seis classes de frangos de corte, devido à sua predominância em todos os grupos. Para descrição do crescimento dos machos, percebe-se que houve predominância dos modelos Michaelis-Menten, além do modelo Gompertz, na formação dos grupos. Com relação às fêmeas, além do modelo de Gompertz, houve predominância dos modelos logístico, Michaelis-Menten modificado e von Bertalanffy na formação dos grupos.

Tabela 6. Grupos com os seus respectivos modelos e médias dos avaliadores de qualidade de ajuste (AQ)

para cada classe considerada

Classe	Avaliador de		Grupo 2 (Modelos)	1	Grupo 4 (Modelos)
	ajuste R ² _{aj}	(Modelos) 0,9992	0,9957	(Modelos) 0,9995	0,9972
	R _{aj} QME	123453,50	1384108,00	61454,00	1154648,00
Cobb500	AIC	8732,45	10178,50	8321,47	10071,90
macho		· ·	· ·	· ·	· ·
	BIC	8736,85	8331,70	8331,70	10076,30
	IA	30,15	720,06	62,17	115,790
	D ?	C e F	B e D	E, G e H	A
	R^2_{aj}	0,9999	0,9958	0,9998	0,9971
Hubbard Flex	QME	63055,68	1398119,00	128936,00	1177946,00
macho	AIC	8321,80	10184,50	8762,20	10083,80
111110	BIC	8330,58	10188,90	8766,60	10088,20
	IA	48,47	728,74	87,52	41,39
		E, F e H	B e D	С	A
	R^2_{aj}	0,9999	0,9999	0,9958	0,9972
Ross308	QME	125467,00	57556,47	1396297,00	1164539,00
macho	AIC	8742,70	8282,33	10183,70	10072,80
macho	BIC	8747,10	8292,60	10188,10	10077,20
	IA	32,70	77,99	726,23	144,79
		C e F	E, G e H	B e D	A
	R^2_{aj}	0,9999	0,9958	0,9998	0,9972
C-1-1-500	QME	26465,10	940930,00	59470,00	772411,00
Cobb500	AIC	7816,38	9947,30	8299,10	9815,60
fêmea	BIC	7825,18	9951,70	8303,50	9819,90
	IA	48,92	624,90	64,91	109,62
		E, F, G e H	B e D	С	A
	R^2_{aj}	0,9999	0,9958	0,9972	1,0000
TT 11 1 T1	QME	37680,15	1067240,00	882455,00	239513,00
Hubbard Flex	AIC	7964,78	10022,80	9910,90	9122,20
fêmea	BIC	7973,58	10027,20	9915,30	9126,60
	IA	59,20	660,22	39,09	56,66
	-	C, E, G e H	B e D	A	F
	R ² _{aj}	0,9999	0,9949	0,9966	0,9998
D 200	QME	32407,45	1022814,00	1022814,00	69470,00
Ross308	AIC	7911,58	9963,90	9963,90	8364,20
fêmea	BIC	7920,38	9968,30	9968,30	8368,60
	IA	34,40	1110,64	170,65	74,28
	1/1	フェ・エリ			/ T•40

A- Meloun I; B- Meloun II; C- Michaelis-Menten; D- Weibull; E- logístico; F- Gompertz; G- Michaelis- Menten modificado; H- von Bertalanffy.

O modelo de Gompertz tem sido recomendado por diversos autores para descrição do crescimento de frangos de corte (Wang et al., 2005; Norris et al., 2007; Rizzi et al., 2013). Entretanto, outros modelos têm sido propostos por outros autores, como Tompic et al. (2011), que, além do modelo de Gompertz, também recomendaram o modelo de Richards. Yang et al. (2006) recomendaram o modelo von Bertalanffy para descrição do crescimento de frangos de corte.

CONCLUSÕES

Os modelos Gompertz, logístico, Michaelis-Menten, Michaelis-Menten modificado e von Bertalanffy, por apresentarem bons avaliadores de qualidade de ajuste, são os recomendados para descrever o crescimento dos três genótipos de frango de corte, de ambos os sexos. A análise de agrupamento proposta mostrou-se adequada para classificação dos modelos não lineares.

AGRADECIMENTOS

Os autores agradecem ao apoio financeiro recebido da Capes, do CNPq e da Fapemig.

REFERÊNCIAS

- ARAÚJO, R.O.; MARCONDES, C.R.; DAMÉ, M.C.F. *et al.* Classical nonlinear models to describe the growth curve for Murrah buffalo breed. *Ciênc. Rural*, v.42, p.520-525, 2012.
- CECON, P.R.; SILVA, F.F.; FERREIRA, A. *et al.* Análise de medidas repetidas na avaliação de clones de café 'Conilon'. *Pesqui. Agropecu. Bras.*, v.43, p.1171-1176, 2008.
- CORZO, A.; SCHILLING, M. W.; LOAR II, R. E. *et al.* Responses of Cobb x Cobb 500 broilers dietary amino acid density regimens. *J. Appl. Poult. Res.*. v.19, p.227-236, 2010.
- DRUMOND, E.S.C.; GONÇALVES, F.M.; VELOSO, R.C. *et al.* Curvas de crescimento para codornas de corte. *Ciênc. Rural*, v.43, p.1872-1877, 2013.
- KÖHN, F.; SHARIFI A.R.; SIMIANER, H. Modeling the growth of the Gottingen minipig. *J. Anim. Sci.*, v.85, p.84-92, 2007.

- LAI, H.T.L.; NIEUWLAND, M.G.; AARNINK, A.J. *et al.* Effects of 2 size classes of intratracheally administered airborne dust particles on primary and secondary specific antibody responses and body weight gain of broilers: A pilot study on the effects of naturally occurring dust. *Poult. Sci.*, v.91, p.604–615, 2012.
- MAIA, E; SQUEIRA, D.L.; SILVA, F.F. *et al.* Método de comparação de modelos de regressão não-lineares em bananeiras. *Ciênc. Rural*, v.39, p.1380-1386, 2009.
- MINGOTI, S.A. Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte: UFMG, 2007. 295p.
- NORRIS, D.; NGAMBI, J.W.; BENYI, K. *et al.* Analysis of growth curves of indigenous male Venda and Naked Neck chickens. *S. Afr. J. Anim. Sci.*, v.37, p.21-26, 2007.
- OLIVEIRA, H.N.; LOBO, R.B.; PEREIRA, C.S. Comparação de modelos não-lineares para descrever o crescimento de fêmeas da raça Guzerá. *Pesqui. Agropecu. Bras.*, v.35, p.1843-1851, 2000.
- RATKOWSKY, D.A. *Handbook of nonlinear regression models*. New York: Marcel Dekker, 1990. 241p.
- RIZZI, C.; CONTIERO, B.; CASSANDRO, M. Growth patterns of Italian local chicken population. *Poult. Sci.*, v.92, p.2226-2235, 2013.
- ROSTAGNO, H.S. et al. *Tabelas brasileiras* para aves e suínos: composição de alimentos e exigências nutricionais. 3.ed. Viçosa: Universidade Federal de Viçosa, 2011. 252p.
- SAS user's guide. Version 9.1. Cary: Statistical Analysis Systems, 2002. v.2, 1052p.
- SCHULZE, V.; ROHE, R.; LOOFT, H.; KALM, E. Genetic analysis of the course of individual growth and feed intake of group-penned performance-tested boars. *Arch. Tierzucht*, v.44, p.139-156, 2001.
- SILVA, N.A.M.; LANA, A.M.Q.; SILVA, F.F. *et al.* Seleção e classificação multivariada de modelos de crescimento não lineares para bovinos Nelore. *Arq. Bras. Med. Vet. Zootec.*, v.63, p.364-371, 2011.

- SILVEIRA, F.G.; SILVA, F.F.; CARNEIRO, P.L.S. *et al.* Análise de agrupamento na seleção de modelos de regressão não-lineares para curvas de crescimento de ovinos cruzados. *Rev. Ciênc. Rural*, v.41, p.692-698, 2011.
- SILVEIRA, F.G.; SILVA, F.F.; CARNEIRO, P.L.S.; MALHADO, C.H.M. Classificação multivariada de modelos de crescimento para grupos genéticos de ovinos de corte. *Rev. Bras. Saúde Prod. Anim.*, v.13, p.62-73, 2012.
- TANG, S.C.; ZULKIFLI, I.; EBRAHIMI, M. et al. Effects of feeding different levels of corn dried distillers grains with solubles on growth performance, carcass yeld and meat fatty acid composition in broiler chickens. *Int. J. Anim. Vet. Adv.*, v.3, p.205-211, 2011.
- TOMPIC, T.; DOBSA, J.; LEGEN, S. *et al.* Modeling the growth pattern of in-season and off-season Ross 308 broiler breeder flocks. *Poult Sci.*, v.90, p.2879-2887, 2011.
- WALK, C. L.; ADDO-CHIDIE, E.K.; BEDFORD, M.R.; ADEOLA, O. Evaluation of a highly soluble calcium source and phytase in the diets of broiler chickens. *Poult. Sci.*, v.91, p.2255-2263, 2012.
- WANG, C. F.; ZHANG, L.; LI, J.Y.; WU, C.X. Analysis of body conformation and fitting growth model in Tibetan chicken raised in plain. *Sci. Agric. Sinica*, v.38, p.1065-1068, 2005.
- YANG, Y.; MEKKI, D.M.; L.V., S.J. *et al.* Analysis of fitting growth models in jinghai mixed-sex yellow chicken. *J. Poul. Sci.*, v.5, p.517-521, 2006.