Phytoplankton diversity in the middle Rio Doce lake system of southeastern Brazil

Cristiane Freitas de Azevedo Barros^{1,3}, Aline Morena Menezes dos Santos² and Francisco Antônio Rodrigues Barbosa²

Submitted: 22 June, 2011. Accepted: 15 January, 2013

ABSTRACT

This study presents results of the inventory of algal flora conducted between August 2007 and May 2008 in 18 lakes of the middle Rio Doce lake system, most of which is in the state of Minas Gerais, Brazil. We recorded 481 taxa, increasing the known total phytoplankton diversity of the region (gamma diversity) by 80%. The following classes were represented: Zygnematophyceae (171 taxa), Cyanobacteria (101), Chlorophyceae (71), Bacillariophyceae (42), Euglenophyceae (43), Trebouxiophyceae (24), Dinophyceae (8), Xanthophyceae (8), Chrysophyceae (6), Cryptophyceae (6) and Oedogoniophyceae (1). We identified 221 taxa that were rare (restricted to one or two lakes), and 101 that were considered representative (present in at least nine lakes). *Botryococcus braunii, Elakatothrix genevensis, Planktolyngbya limnetica, Peridinium pusillum, Trachelomonas volvocina, Cosmarium contractum, Staurastrum forficulatum, Staurastrum rotula,* and *Staurodesmus dejectus* were present in all lakes. Richness varied from 95 taxa (in Lake Gambazinho) to 168 taxa (in Lake Palmeirinha). Jaccard indices were low, and the highest similarities between lakes were 53% (Ferrugem/Ferruginha), 47% (Central/Almécega) and 46% (Águas Claras/Palmeirinha), demonstrating high environmental and biotic dissimilarities between lakes. Geographic distance was not significantly associated with floristic similarity, suggesting that local factors are more important than are regional ones in shaping the phytoplankton composition of lakes.

Key words: algal flora, inventory, tropical lakes

Introduction

Species richness is considered one of the simplest measures to express and quantify biological complexity in a given region (Nabout *et al.* 2007). In aquatic environments, species richness is influenced by several factors, including water temperature, mixing patterns of the water column, light, nutrient availability, and herbivory (Reynolds, 1987). Therefore, knowledge of richness patterns is essential to proposals for monitoring strategies and for biodiversity conservation activities (Downing & Leibold 2002; Declerck *et al.* 2005; Nogueira *et al.* 2008).

Diversity can be assessed on different scales. Local, or alpha, diversity is given by the total number of species in each habitat. Regional, or gamma, diversity is the total number of species observed in a range of habitats (Magurran 2004). The term beta diversity was introduced by Whittaker in the 1960s. At first the term was used in order to describe changes in species composition along gradients of altitude and humidity through differences in rates of gain and loss of species. However, beta diversity is now defined as the taxonomic difference between samples, whether occurring along an environmental gradient or not (Veech *et al.* 2002).

The middle Rio Doce lake system is a large freshwater system in southeastern Brazil, formed as a result of a mass of sediments (from the original drainages of Rio Doce and its tributaries) that acted as a natural dam, giving rise to a dense network of lakes (Pflug 1969 cited in de Meis & Tundisi 1997). The biological and ecological importance of the system was recently demonstrated by its recognition as an international Ramsar site, making it the 11th site in Brazil to be added to the Ramsar list of wetlands of international importance (Ramsar 2010).

Limnological research in the middle Rio Doce lake system was initiated in the 1970s (Tundisi & Saijo 1997). Since then, various aspects have been investigated (Barbosa & Tundisi 1980; Henry & Barbosa 1989; Rocha *et al.* 1989; Tundisi & Saijo 1997), increasing knowledge of the geological, morphological, physical, chemical, and biological characteristics of the lakes. However, specific studies on phytoplankton were mainly focused on Lake Dom Helvécio and Lake Carioca (Hino *et al.* 1986; Taniguchi *et al.* 2003;

¹ Universidade do Estado de Minas Gerais, Frutal, MG, Brazil

² Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Limnologia, Belo Horizonte, MG, Brazil

³ Author for correspondence crisfabarros@gmail.com

Barros *et al.* 2006; Souza *et al.* 2008). However, a recent survey evaluated plankton diversity in a larger number of lakes (Maia-Barbosa *et al.* 2006). Therefore, there is still little information on phytoplankton diversity in this lake system, as shown by Barbosa *et al.* (1994). The present study aims to contribute to the knowledge of phytoplankton diversity of this lake complex by presenting the results of an inventory of the algal flora in 18 lakes.

Material and methods

Study area

The Rio Doce basin is located at in southeastern Brazil, between the state of Minas Gerais (86% of the total area) and the state of Espírito Santo (14% of the total area), encompassing 83,400 km² (Marques & Barbosa, 2002). Two lake systems compose this basin: one, at the middle course, comprising ca. 250 lakes, distinct in their trophic status (Maillard *et al.* 2011), and another, at the lower course, comprising ca. 70 lakes (Cavati & Fernandes 2008). Approximately 50 lakes in the middle course are protected within Rio Doce State Park, a conservation unit created in 1939 and representing the largest contiguous remnant of the Atlantic Forest in Minas Gerais (359.76 km²). Lakes located in the surrounding area are affected mainly by hardwood (*Eucalyptus* spp.) plantations and pastureland, among several municipalities.

For the purposes of this study, 18 lakes were selected: eight located inside the Rio Doce State Park limits and ten in the surrounding areas (Fig. 1; Tab. 1). In selecting the lakes, we took into account their greatest physiographic differences and their accessibility, mainly during the rainy (summer) season. The climate of the region is classified as tropical semi-humid with 4-5 months of dry weather, exhibiting mesothermal characteristics (Nimer, 1989) with temperatures of approximately 25°C. According to Tundisi (1997), the monthly precipitation is highest in December (350 mm) and lowest in July and August (10 mm).

Samplings

Field work was conducted quarterly, in August 2007, November 2007, February 2008, and May 2008. Samples were collected from a fixed point in the limnetic region of each lake. Samplings were authorized by the Minas Gerais State Forestry Institute (permit no. 005/07). Water transparency was estimated *in situ* by Secchi disk measurements (Cole 1983). Samples were collected for total phosphorus quantification (Mackereth *et al.* 1978).

Samples for qualitative analysis of phytoplankton were collected by successive vertical and horizontal throws with a 20-µm mesh plankton net, then fixed with 4% formaldehyde solution. For each qualitative sample (four samples/lake), eight slides were analyzed, for a total of 32 slides per lake. Organisms were identified under light microscopy down to

Figure 1. Middle Rio Doce lake system, showing the outline of Rio Doce State Park, sampled lakes (1 to 18), and limnetic fixed points of sampling (+). Digital base (shapefiles) provided by the Minas Gerais State Forestry Institute.

the lowest possible taxonomic level using a specific bibliography: Föster (1969; 1974), Prescott *et al.* (1975; 1977; 1981; 1982), Komárek & Fott (1983), Sant'Anna (1984), Komárek & Anagnostidis (1989; 1999), Menezes *et al.* (1995), and Bicudo & Menezes (2006). Samples for quantitative analyses were collected with van Dorn bottles at three depths (100%, 10%, and 1% of incident light, as defined with Secchi disk measurements) and fixed with Lugol's solution. Quantitative analysis followed the method described by Utermöhl (1958).

Data analysis

For each lake, species richness was assessed on the basis of the number of taxa identified, considering the qualitative and quantitative data. Species richness for the sampled region (gamma diversity) was estimated with the first-order jackknife estimator (Nabout *et al.* 2007), using Stimate S software (Colwell 2006). Beta diversity was estimated by the difference between gamma diversity (total species recorded for the set of lakes) and average alpha diversity (mean species richness per lake), as suggested by Crist *et al.* (2003):

 $\beta = \gamma - \text{mean } \alpha$

Location	Lake (abbreviation) Geographic coordinates	Coordination and instan	Depth	DI	Area	Secchi	Total phosphorous
		(m)	DL	(km ²)	(m)	(µg/L)	
	Aníbal (AN)	19°06'47.1"S; 42°29'54.5"W	6.0	4.29	2.79	2.44 ± 0.13	30.12 ± 18.74
	Carioca (CA)	19°45' 26.0"\$; 42°37'06.2"W	10.0	1.28	0.13	1.70 ± 0.32	17.31 ± 6.75
	Central (CE)	19°37'39.0"S; 42°34'12.5"W	5.0	2.03	0.44	0.81 ± 0.18	30.44 ± 10.72
	Dom Helvécio (DH)	19°46'55.7"S; 42°35'28.9"W	28.0	4.93	5.27	2.48 ± 0.55	20.13 ± 8.86
State Park	Gambá (GA)	19°47'15.1"S; 42°35'01.0"W	12.0	1.13	0.22	3.23 ± 0.67	13.27 ± 4.46
	Gambazinho (GN)	19°47'07.7"S; 42°34'45.5"W	10.0	2.9	0.09	1.78 ± 0.22	23.29 ± 8.51
Surroundings	Patos (PT)	19°48'19.9"S; 42°32'12.7"W	8.0	2.01	1.09	2.47 ± 0.82	27.33 ± 6.69
	Santa Helena (SH)	19°47'48.8"S; 42°33'04.7"W	10.5	2.42	0.86	2.26 ± 0.44	26.77 ± 11.81
	Águas Claras (AC)	19°49'06.9"S; 42°35'42.5"W	9.5	2.24	0.62	3.28 ± 1.35	16.16 ± 7.35
	Almécega (AL)	19°51'25.4"S; 42°37'31.9"W	7.0	2.44	1.3	2.81 ± 0.55	19.21 ± 14.10
	Amarela (AM)	19°49'23.1"S; 42°34'28.7"W	2.5	1.82	0.27	0.86 ± 0.11	75.46 ± 64.80
	Barra (BA)	19°48'11.1"S; 42°37'43.6"W	7.0	3.45	1.94	2.45 ± 0.76	47.91 ± 32.13
	Ferrugem (FE)	19°52'39.0"S; 42°36'34.3"W	3.5	1.61	0.42	0.93 ± 0.25	49.96 ± 21.92
	Ferruginha (FN)	19°53'17.5"S; 42°36'59.4"W	4.0	1.4	0.12	1.03 ± 0.05	32.99 ± 12.53
	Jacaré (JA)	19°48'37.8"S; 42°38'57.0"W	8.5	1.28	1.22	1.95 ± 0.17	42.49 ± 18.30
	Palmeirinha (PA)	19°49'41.8"S; 42°36'25.4"W	6.0	2.83	0.23	2.26 ± 0.60	28.36 ± 17.93
	Pimenta (PI)	19°37'27.4"S; 42°35'44.3"W	3.5	1.63	1.24	1.13 ± 0.25	37.78 ± 22.38
	Verde (VE)	19°49'55.2"S; 42°37'54.1"W	19.0	2.29	0.83	2.19 ± 0.58	14.38 ± 4.24

Table 1. Geographic coordinates, depth, margin development index, area, transparency, and total phosphorous concentration of 18 lakes sampled in the middle Rio Doce lake system, between August 2007 and May 2008.

DL - development index.

where β is beta diversity, γ is gamma diversity, and α is alpha diversity.

Differences in relation to water transparency and total phosphorus levels were determined using ANOVA. Spearman's correlation coefficient was used in order to test for relationships between the morphometric features (area, depth, and margin development index) and physico--chemical variables. Hierarchical cluster analysis using Jaccard distance and Ward's method (Ward 1963) were performed in order to assess similarity between lakes in terms of the phytoplankton species composition. These statistical analyses were conducted using Past 1.90 software (Hammer *et al.* 2001).

Results and discussion

Morphometric features, such as depth, margin development index, and area, varied among lakes (Table 1). Secchi depth and total phosphorus concentrations also differed among lakes (F=996.888; p=0.000 and F=730.533; p=0.000, respectively) and correlated with depth (p<0.05; r=0.630 for Secchi disk measurements and r=0.596 for total phosphorus concentrations). Lakes that were shallower (<5 m: Pimenta, Central, Amarela, Ferrugem, and Ferruginha) showed lower Secchi disappearance depths (>1.2 m) and higher levels of total phosphorus (>30 μ g/L; especially Lakes Amarela and Ferrugem, in which total phosphorus was >50 μ g/L), than did the lakes that were deeper (>7 m: Dom Helvécio, Águas Claras, Almécega, Gambá, and Verde), which showed greater water transparency (down to 2.2 m) and lower values of the trophy indicator (below 21 μ g/L of phosphorus).

Richness extrapolation indices, such as the jackknife, although not usually used for phytoplankton (Nabout et al. 2007; Nogueira et al. 2008), can be important tools to assess the representativeness of the sampling effort. In the present study, a total of 481 taxa were recorded (Fig. 2), corresponding to 77% of the expected richness, estimated using first-order jackknife (jackknife 1 = 624). The relationship between the observed and estimated values for richness indicated that our methods were appropriate for a diversity survey. In addition, the known phytoplankton diversity in the middle Rio Doce lake system was high in comparison with the 267 species reported for seven lakes in the system by Maia-Barbosa et al. (2006). Gamma diversity increased by 80% with the expansion of the number of studied environments, reinforcing the observed environmental and biotic heterogeneity.

Eleven classes were identified: Zygnematophyceae (171 taxa), Cyanobacteria (101), Chlorophyceae (71), Bacillario-

Figure 2. Species accumulation curve of 18 lakes sampled in the middle Rio Doce lake system, between August 2007 and May 2008.

phyceae (42), Euglenophyceae (43), Trebouxiophyceae (24), Dinophyceae (8), Xanthophyceae (8), Chrysophyceae (6), Cryptophyceae (6) and Oedogoniophyceae (1); Appendix 1. The predominance of desmids, especially those of the genera *Cosmarium, Staurastrum* and *Staurodesmus*, in the middle Rio Doce lakes was previously reported by Reynolds (1997), who attributed the dominance of this group to oligotrophic conditions and good preservation of the lakes. It has also been suggested that the thermal stratification pattern known as atelomixis (characterized by unusual, irregular circulation periods of short duration) is a key factor for desmid prevalence (Barbosa & Padisák 2002; Souza *et al.* 2008), because it allows these species, which have relatively high specific density (Padisák *et al.* 2003), to remain within the upper layers of the water column.

Of the 481 taxa identified, 221 were rare, occurring exclusively in one or two lakes, and 101 exhibited high frequency, occurring in at least nine lakes (Tab. 2). In addition, 10 species were common to all lakes: *Botryococcus braunii* Kützing, *Elakatothrix genevensis* (Reverdin) Hindák, *Planktolyngbya limnetica* (Lemmerman) Komárkova-Legnerová and Cronberg, *Peridinium pusillum* (Pénard) Lemmerman, *Trachelomonas volvocina* Ehrenberg, *Cosmarium contractum* Kirchner, *Staurastrum forficulatum* Lundell, *Staurastrum leptocladum* Nordstedt, *Staurastrum rotula* Nordstedt, and *Staurodesmus dejectus* (Brébisson) Teiling.

Phytoplankton richness ranged from 95 taxa (Lake Gambazinho) to 168 taxa (Lake Palmeirinha). In general, the most representative groups for each lake were the same observed for the data set: Zygnematophyceae > Chlorophyceae > Cyanobacteria; exceptions occurred for Lake Amarela, where the number of Euglenophyceae species (25) exceeded that of Cyanobacteria species (15), and for Lake Gambazinho, which had more Bacillariophyceae species (22) than Cyanobacteria species (12) (Fig. 3). The predominance of Euglenophyceae in Lake Amarela, previously reported by Reynolds (1997), is associated with its late successional stage, shallowness, and broad macrophyte coverage of the surface area, mainly with *Nymphaea* sp., *Utricularia* sp., and *Eleocharis* sp.

 Table 2. List of the most common species in the 18 lakes sampled in the middle Rio Doce lake system between August 2007 and May 2008

50-79%			80-100%	
Bacillariophyceae	Chrysophyceae	Oedogoniophyceae	Bacillariophyceae	Euglenophyceae
Cyclotella sp.	Dinobryon bavaricum	Oedogonium NI	Synedra acus	Trachelomonas volvocina
Encyonema sp. 1	Dinobryon sertularia	Xanthophyceae	Chlorophyceae	Zygnemaphyceae
Eunotia lineolata	Cryptophyceae	Isthmochloron lobulatum	Botryococcus braunii	Cosmarium asphaerosporum
Gomphonema gracile	Cryptomonas sp2	Tetraplekton sp1	Botryococcus terribilis	Cosmarium contractum
Stenopterobia curvula	Cryptomonas sp4	Zygnemaphyceae	Chlorella sp.	Cosmarium moniliforme
Urosolenia cf. longiseta	Cryptomonas sp5	Cosmarium bioculatum	Closteriopsis sp. 1	Cosmarium pseudoconnatum
Chlorophyceae	Cyanobacteria	Cosmarium depressum	Elakatothrix genevensis	Staurastrum forficulatum
Ankistrodesmus fusiformis	Anabaena cf. solitaria	Cosmarium monomazum	Eutetramorus planctonicus	Staurastrum ionatum
Ankistrodesmus sp.2	Aphanocapsa delicatissima	Cosmarium quadrum	Monoraphidium contortum	Staurastrum laeve
Botryococcus protuberans	Aphanocapsa sp.	Micrasterias truncata	Monoraphidium sp.	Staurastrum leptocladum
Coelastrum pulchrum	Coelomorum sp.	Spondylosium panduriforme	Nephrocytium agardhianum	Staurastrum rotula
Coelastrum reticulatum	Coelosphaerium sp.	Staurastrum cerastes	Oocystis sp. 4	Staurastrum smithii
Coelastrum sphaericum	Cylindrospermopsis raciborskii	Staurastrum cf. muticum	Tetraedron caudatum	Staurastrum trifidum
Crucigenia tetrapedia	Limnothrix redekei	Staurastrum chaetoceras	Cryptophyceae	Staurastrum sp5
Crucigeniella retangularis	Lyngbya sp.	Staurastrum manfeldtii	Cryptomonas brasiliensis	Staurodesmus crassus

Table 2. Continuation.

	50-79%		80-1	00%
Desmodesmus armatus	Merismopedia tenuissima	Staurastrum setigerum	Cyanobacteria	Staurodesmus dejectus
var. bicaudatus	Microcystis aeruginosa	Staurastrum tetracerum	Aphanocapsa elachista	Staurodesmus jaculiferus
Dictyosphaerium pulchellum	Oscillatoria sp1	Staurastrum sp6	Chroococcus minutus	Staurodesmus sp3
Keratococcus sp.	Planktolyngbya contorta	Staurodesmus convergens	Planktolyngbya limnetica	Teilingia granulata
Kirchneriella lunaris	Pseudanabaena limnetica	Staurodesmus cuspidatus	Pseudanabaena galeata	
Oocystis lacustris	Dinophyceae	Staurodesmus subulatus	Dinophyceae	
Oocystis sp. 3	Peridinium cf. africanum		Gymnodynium sp.	
Scenedesmus bijugus	Euglenophyceae		Peridinium pusillum	
Scenedesmus quadricauda	Phacus longicauda		Peridinium baliense	
Tetraedron minimum	Phacus raciborskii			

Figure 3. Species richness and contribution of each taxonomic class of 18 lakes sampled in the middle Rio Doce lake system, between August 2007 and May 2008: Águas Claras (AC), Almécega (AL), Amarela (AM), Aníbal (AN), Barra (BA), Carioca (CA), Central (CE), Dom Helvécio (DH), Ferrugem (FE), Ferruginha (FN), Gambá (GA), Gambazinho (GN), Jacaré (JA), Palmeirinha (PA), Patos (PT), Pimenta (PI), Santa Helena (SH), and Verde (VE).

Lake Amarela showed the highest number of exclusive taxa (26), followed by Lakes Gambazinho (15), Jacaré (13), and Palmeirinha (13). The lowest numbers of exclusive species were observed in Lakes Ferrugem (1), Carioca (2), and Ferruginha (2).

The fact that the incidence of exclusive species was highest in Lakes Amarela and Gambazinho indicates the great importance of the shoreline regions, given that, in the case of Lake Gambazinho, the main representative species were diatoms of the order Pennales (6 taxa) and large desmids (5 taxa), the latter also prevailing in Lake Amarela (12 taxa), together with Euglenophyceae (7 taxa). Those two lakes are quite distinct from the other lakes of the region and from those presented here. In Lake Amarela, high amounts of organic matter reflect its advanced state of eutrophication, as evidenced by the total phosphorous and transparency values. Lake Gambazinho has a polymictic pattern of thermal stratification, in contrast to the more common warm-monomictic pattern of thermal stratification observed in the majority of the middle Rio Doce lakes. Such characteristics seem to have been responsible for the higher numbers of typically periphytic species in the samples collected from these lakes. We obtained low Jaccard indices. The highest similarities were 53% for Lake Ferrugem versus Lake Ferruginha, followed by 47% for Lake Central versus Lake Almécega, and 46% for Lake Águas Claras versus Lake Palmeirinha. Lake Amarela showed the lowest similarity with the other lakes, ranging from 14% to 25%.

On the basis of phytoplankton species composition, we identified five clusters of lakes (Fig. 4): cluster 1-Lakes Aníbal, Carioca, Pimenta, Dom Helvécio, and Santa Helena; cluster 2-Lakes Central, Almécega, Ferrugem, and Ferruginha; cluster 3-Lakes Águas Claras, Palmeirinha, Patos, Barra, Jacaré, and Verde; cluster 4-Lakes Gambá and Gambazinho, and cluster 5-Lake Amarela. Geographic distance between lakes did not correlate significantly with interlake similarity in phytoplankton composition (r = 0.03; p > 0.05).

With the exception of a few pairs of lakes that are geographically proximal and were all included in the same cluster-Gambá and Gambazinho (500 m apart); Ferrugem and Ferruginha (1200 m apart); and Águas Claras and Palmeirinha (1500 m apart)-it should be noted that the clusters were composed of lakes that were distant from one another, some located within the Rio Doce State Park and others located in the surrounding areas. In addition, the difference between the gamma diversity and the mean alpha diversity, considered here as an estimate of beta diversity, was high: 347 species. This suggests that the phytoplankton species composition of such lakes is more dependent on local factors than on regional factors. Considering that diversity and rarity are important criteria for assessing the conservation value of a given region (Coesel 2001), the possibility of protecting the middle Rio Doce lake system as a whole should be considered. That will require specific strategies for the environments surrounding the state park, with the primary objective of maintaining phytoplankton diversity at the regional level.

Acknowledgments

This study received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico/ Ministério da Ciência e Tecnologia (MCT/CNPq, Ministry of Science and Technology/National Council for Scientific and Technological Development), as part of the funding of the Brazilian Long-Term Ecological Research (LTER) program, Site 4 (Grant no. 520031/98-9), and from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Foundation for the Support of Research in the state of Minas Gerais; doctoral scholarship to C.F.A.B.) We are grateful to Diego G. F. Pujoni and Maria Betânia G. Souza for their valuable suggestions, as well as to the staff of the Limnology Laboratory of the Instituto de Ciências Biológicas/Universidade Federal de Minas Gerais (ICB/UFMG, Life Sciences Institute/Federal University of Minas Gerais) for their contributions to the sampling and analysis.

Figure 4. Cluster obtained from data of 18 lakes sampled in the middle Rio Doce lake system, between August 2007 and May 2008, considering presence and absence of species. Cluster 1-Aníbal (AN), Carioca (CA), Pimenta (PI), Dom Helvécio (DH), and Santa Helena (SH); Cluster 2-Central (CE), Almécega (AL), Ferrugem (FE), and Ferruginha (FN); Cluster 3-Águas Claras (AC), Palmeirinha (PA), Patos (PT), Barra (BA), Jacaré (JA), and Verde (VE); Cluster 4-Gambá (GA) and Gambazinho (GN); Cluster 5-Amarela (AM).

References

- Barbosa, F.A.R. & Tundisi, J.G. 1980. Primary production of phytoplankton and environmental characteristics of a shallow quaternary lake at Eastern Brazil. Archiv fur Hydrobiologie 90(2): 139-161.
- Barbosa, F.A.R.; Godinho, A.L.; Gentil, J.G. & Pinto-Coelho, R.M. 1994.
 Limnologia e ictiologia. Pp. 17-23. In: Instituto Estadual de Florestas/ MG (Ed.). Anais do Workshop sobre pesquisas prioritárias para o Parque Estadual do Rio Doce. Instituto Estadual de Florestas IEF/ ENGEVIX, Belo Horizonte.
- Barbosa, F.A.R. & Padisák, J. 2002. The forgotten lake stratification pattern: atelomixis, and its ecological importance. Verhandlungen des Internationalen Verein Limnologie 28: 1385-1395.
- Barros, C.F.A.; Souza, M.B.G. & Barbosa, F.A.R. 2006. Seasonal forces driving phytoplankton size structure in a tropical deep lake (Dom Helvécio Lake, South-East Brasil). Acta Limnologica Brasiliensia 18(1): 55-66.
- Bicudo, C.E.M. & Menezes, M. 2006. Gêneros de algas de águas continentais do Brasil: Chave para Identificação e Descrições. São Carlos, Editora Rima.
- Cavati, B. & Fernandes, V.O. 2008. Algas perifíticas em dois ambientes do baixo rio Doce (lagoa Juparanã e rio Pequeno – Linhares, Estado do Espírito Santo, Brasil): variação espacial e temporal. **Acta Scientiarium 30**(4): 439-448.
- Coesel, P.F.M. 2001. A method for quantifying conservation value in lentic freshwater habitats using desmids as indicator organisms. **Biodiversity** and Conservation 10(2): 177-187.

Cole, G.A. 1983. Textbook of limnology. St. Louis: The C.V. Mosby Company.

- Colwell, R.K. 2006. Estimate S Statistical estimation of species richness and shared species from samples. Version 8. University of Connecticut. Available in: http://purl.oclc.org/estimates. (Accessed 19/March/2010).
- Crist, T.O.; Veech, J.A.; Gering, J.C. & Summerville, K.S. 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α , β , and γ diversity. **The American Naturalist 162**(6):734-743.
- Declerck, S.; Vandekerkhove, J.; Johansson, L.; Muylaert, K.; Conde-Porcuna, J.M.; Van Der Gucht, K.; Pérez-Martinéz, C.; Lauridsen, T.; Schwenk, K.; Zwart, G.; Rommens, W.; López-Ramos, J.; Jeppesen, E.; Vyverman, W.; Brendonck, L. & De Meester, L. 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86(7): 1905-1915.
- De Meis, M.R.M. & Tundisi, J.G. 1997. Geomorphological and limnological process as a basis for lake typology. The middle Rio Doce lake system. Pp. 25-50. In: Tundisi, J.G. & Saijo, Y. (Ed.). Limnological Studies in the Rio Doce Valley Lakes. São Carlos, Brazilian Academy of Sciences.
- Downing, A.L. & Leibold, M.A. 2002. Ecosystem consequences of species richness and composition in pond food webs. **Nature 416**: 837-841.
- Förster, K. 1969. Amazonische Desmidieen. 1. Areal Santarém. Amazoniana 2(1-2): 5-232.
- Förster, K. 1974. Amazonische Desmidieen. 2. Areal Maués-n Abacaxis. Amazoniana 5(2): 135-242.
- Hammer, O.; Harper, D.A.T. & Ryan, P.D. 2001. Paleontological statistics software package for education and data analysis. Paleontologia electronic 4: 9.
- Henry, R. & Barbosa, F.A.R. 1989. Thermal structure, heat content and stability of two lakes in The National Park of Rio Doce Valley (Minas Gerais, Brazil). **Hydrobiologia 171**(3):189-199.
- Hino, K.; J.G. Tundisi & Reynolds, C.S. 1986. Vertical distribution of phytoplankton in a stratified lake (Lago Dom Helvécio, Southeastern Brazil), with special reference to the metalimnion. Japanese Journal of Limnology 47(3): 239-246.
- Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of cyanophytes, 4: Nostocales. Algological Studies 82(3): 247-345.
- Komárek, J. & Anagnostidis, K. 1999. Cyanoprokaryota I. Teil Chroococcales. Pp. 1-548. In: Ettl, H.; Gärtner, G.; Heynig H. & Mollenhauer, D. (Ed.). Süsswasserflora von Mitteleuropa 19. Verlag: G. Fischer.
- Komárek, J. & Fott, B. 1983. Chlorophyceae (Grünalgen), Ordiniung: Chlorococcales. Pp. 1–1.044. In: Huber-Pestalozzi, G.; Heynig H. & Mollenhauer, D. (Eds.). Das phytoplankton des Sübwassers: Systematik und Biologie. Stuttgart: E. Schwiezerbat'sche Verlagsbuchlandlung.

- Mackereth, F.J.H.; Heron, J. & Talling, J.F. 1978. Water analysis. Ambleside: Scientific Publication N° 36, Freshwater Biological Association.
- Magurran, A.F. 2004. Measuring Biological Diversity. Oxford, Blackwell.
- Maia-Barbosa, P.M.; Barros, C.F.A.; Souza, M.B.G.; Faria, V.R.; Barbosa, L.G.; Brito, S.L.; Souza, R.A.; Rietzler, A.; Eskinazi-Sanťanna, E. & Barbosa, F.A.R. 2006. The middle Rio Doce lakes, southeast Brazil: biodiversity and its controlling forces at local and regional scales. Verhandlungen des Internationalen Verein Limnologie 29: 1-5.
- Maillard, P.; Pivari, M.O. & Luis, C.H.P. 2011. Remote Sensing for Mapping and Monitoring Wetlands and Small Lakes in Southeast Brazil. In: Chemin, Y. (Ed.). Remote Sensing of Planet Earth. Croatia, Intechweb.org.
- Marques, M.M. & Barbosa, F.A.R. 2002. Áreas prioritárias para a conservação da diversidade aquática no trecho médio da bacia do Rio Doce, MG. **Naturalia 27**: 211-229.
- Menezes, M.; Nascimento, E.P. & Fonseca, C.G. 1995. Flora dos Estados de Goiás e Tocantins Criptógamos v. 4: Euglenophyceae. Goiânia, Editora UFG.
- Nabout, J.C.; Nogueira, I.S.; Oliveira, L.G. & Morais, R.R. 2007. Phytoplankton diversity (alpha, beta, and gamma) from the Araguaia River tropical floodplain lakes (central Brazil). Hydrobiologia 557: 455-461.
 Nimer, E. 1989. Climatologia do Brasil. IBGE.
- Nogueira, I.S., Nabout, J.C.; Oliveira, J.E. & Silva, K.D. 2008. Diversidade (alfa, beta e gama) da comunidade fitoplanctônica de quatro lagos artificiais urbanos do município de Goiânia, GO. **Hoehnea 35**(2): 219-233.
- Padisák, J.; Soróczki-Pintér, E. & Reznersinking, Z. 2003. Properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study. Hydrobiologia 500: 243-257.
- Prescott, G.W.; Croasdale, H.T. & Vinard, W.C. 1975. A synopsis of North American desmids Part II. Desmidiaceae: Placodermae Section 1. USA, University of Nebraska Press.
- Prescott, G.W.; Croasdale, H.T. & Vinard, W.C. 1977. A synopsis of North American desmids Part II. Desmidiaceae: Placodermae Section 2. USA, University of Nebraska Press.
- Prescott, G.W.; Croasdale, H.T.; Vinard, W.C. & Bicudo, C.E.M. 1981. A synopsis of North American desmids Part II. Desmidiaceae: Placodermae Section 3. USA, University of Nebraska Press.
- Prescott, G.W., Croasdale, H.T. & Vinard, W.C. 1982. A synopsis of North American desmids Part II. Desmidiaceae: Placodermae Section 4. USA, University of Nebraska Press.
- Ramsar. 2010. The Ramsar List of wetlands of international importance. Available in http://www.ramsar.org/pdf/sitelist_order.pdf. (Accessed 16/May/2011).
- Reynolds, C.S. 1987. The response of phytoplankton communities to change lake environments. Schweizerische Zeitschrift fur Hydrologie **49**(2): 220-236.
- Reynolds, C.S. 1997. On the vertical distribution of phytoplankton in the middle Rio Doce valley lakes. Pp. 227-241. In: Tundisi, J.G. & Saijo, Y. (Ed.). Limnological studies on the Rio Doce valley lakes, Brazil. São Carlos, Brazilian Academy of Sciences.
- Rocha O.; Tundisi, T.M. & Tundisi, J.G. 1989. The metalimnetic layer of Lake D. Helvécio: Plankton Distribution. Japanese Journal of Limnology 50(2): 168-169.
- Sant'anna, C.L. 1984. Bibliotheca Phycologica. Chlorococcales (Chlorophyceae) do Estado de São Paulo, Brasil. Germany, J.Cramer.
- Souza, M.B.G.; Barros, C.F.A.; Barbosa, F.; Hajinal, E. & Padisák, J. 2008. Role of atelomixis in phytoplankton assemblages' replacement in Dom Helvécio Lake, South-East Brazil. Hydrobiologia 607: 211-224.
- Taniguchi, G.M.; Rocha, O. & Senna, P.A.C. 2003. A comunidade fitoplanctônica de um lago tropical no sudeste do Brasil (lago Dom Helvécio, estado de Minas Gerais). Caderno de Pesquisa Série Biologia, Santa Cruz do Sul 15(1): 29-55.
- Tundisi, J.G. 1997. Climate; Pp. 7-11. In: Tundisi, J.G. & Saijo, Y. (Ed.). Limnological Studies on the Rio Doce Valley Lakes, Brazil. São Paulo: Brazilian Academy of sciences, University of São Paulo, School Engineering at S. Carlos and Center for Water Resources and Applied Ecology.

- Tundisi, J.G. & Saijo, Y. 1997. Limnological studies in the Rio Doce valley lakes, Brazil. São Paulo, Brazilian Academy of sciences, University of São Paulo, School Engineering at S. Carlos and Center for Water Resources and Applied Ecology.
- Utermöhl, H., 1958. Zur vervollkomnung der quantitativen phytoplanktonmethodik. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38.
- Veech, J.A.; Summerville, K.S., Crist, T.O. & Gering, J.C. 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99: 3-9.
- Ward, J.H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301): 236-244.
- Wetzel, R.G. 2001. Limnology: Lake and River ecosystems. 3 ed. USA, Academic Press.

Online version: www.scielo.br/abb and http://www.botanica.org.br/acta/ojs

Appendix 1. List of species recorded between August 2007 and May 2008 in the 18 lakes sampled in the middle Rio Doce lake system: Águas Claras (AC), Almécega (AL), Amarela (AM), Aníbal (AN), Barra (BA), Carioca (CA), Central (CE), Dom Helvécio (DH), Ferrugem (FE), Ferruginha (FN), Gambá (GA), Gambazinho (GN), Jacaré (JA), Palmeirinha (PA), Patos (PT), Pimenta (PI), Santa Helena (SH), and Verde (VE).

Taxa	Occurrence
Bacillariophyceae	
Aulacoseira ambigua (Grunow) Simonsen	GN; AL
Aulacoseira granulata (Ehrenberg) Simonsen	SH; AC
Aulacoseira sp. 1	CE; PT; AL; FE; FN; VE
Aulacoseira sp. 2	AL; FN
Caloneis cf.	GN
Cyclotella sp.	All except GA, PT; FE, FN
Encyonema sp. 1	AN; CA; CE; PT; SH; AC; FN; PA; VE
Encyonema sp. 2	DH; SH; FE; JA
Encyonema sp. 3	GN
Encyonema sp. 4	JA
<i>Eunotia lineolata</i> Hustedt	All except CA, GA, GN, PT
Eunotia zygodon Ehrenberg	GA; PT
Eunotia sp. 1	AN; CA; GA; SH; AC; AL; PA
Eunotia sp. 2	DH; AC
Eunotia sp. 3	GN; AL; PA
Eunotia sp. 4	PT; AC; VE
Eunotia sp. 5	GN
Frustulia crassinervia (Brébisson) Costa	GN; PA; VE
Frustulia krammeri Lange-Bertalot e Metzeltin	CE; GA; GN
Frustulia sp. 1	FN
Gomphonema gracile Ehrenberg	All except CA; GA; GN
Gomphonema subtile Ehrenberg	PI
Hantzschia amphioxys (Ehrenberg) Grunow	GA
Melosira varians Agardh	AL; VE
Navicula sp.	CE; DH; PT; AL; BA; FN; PA; VE
Neidium sp.	GA; GN; BA
Nitzschia sp.	AN
Pinnularia viridis (Nitzsch) Ehrenberg	AN; CA; CE; AC; BA
Pinnularia sp. 1	AL
Pinnularia sp. 2	GN
Pinnularia sp. 3	GN
Pinnularia sp. 4	AC
Pinnularia sp. 5	РА
Stauroneis phoenicenteron (Nitzsch) Ehrenberg	GN; AM
Stenopterobia curvula (Wm. Smith) Krammer	All except CE; SH; AL; AM; JA
Surirella linearis W. Smith	CA; GN; AL; VE
Synedra acus Kützing	All except GN; VE
Urosolenia cf. eriensis (H.L.Smith) Round & R.M. Crawford	GA; BA
Urosolenia cf. longiseta (Zacharias) Edlung & Stoermer	AN; CA;CE; DH;GA;SH;AC;AL; FE; FN; PA; PI; VE
Pennales NI 1	GN;
Pennales NI 2	CE; AL; FE; VE
Pennales NI 3	BA; JA

Таха	Occurrence
Chlorophyceae	
Ankistrodesmus densus Korsikov	CE; SH; VE
Ankistrodesmus falcatus (Corda) Ralfs	FN
Ankistrodesmus fusiformis Corda	CA;CE; DH; GA; PT;SH; AC;AL; BA; FE; JA; PI
Ankistrodesmus gracilis (Reinsch) Korsikov	AC
Ankistrodesmus spiralis (Turner) Lemmermann	PT; FN; PA; VE
Ankistrodesmus sp. 1	SH
Ankistrodesmus sp. 2	CA; DH; GA; PT; AC; AM; BA; FE; PA; VE
Ankyra judayi (G.M. Smithi) Fott	CE; PT; SH; AL; AM; PI; VE
Chlamydomonadaceae NI2	AC; PA
Coelastrum cambricum Archer	CE; GA; AL; FE; FN; PA; PI
Coelastrum microporum Nägeli	CE; PT; AL; JA
Coelastrum pseudomicroporum Korsikov	JA
Coelastrum pulchrum Schmidle	CE; DH; GN; SH; AC; JA; PA; PI; VE
Coelastrum reticulatum (P.A.Dangeard) Senn	AN; CA; CE; GN; PT; AL; FE; FN; PI; VE
Coelastrum sphaericum Nägeli	AN; CA; CE; AC; AL; FE; JA; PA; VE
Desmodesmus armatus var. bicaudatus (Guglielmetti) Hegewald	CA; CE; SH; AC; BA; FN; JA; PA; PI
Desmodesmus denticulatus (Lagerheim) S.S.An, T.Friedl & E.Hegewald	AN; AC; PA; PI
Dimorphococcus cf. lunatus A. Braun	AC; AM
Elakatothrix cf. biplex (Nyg.) Hindák	GN
Elakatothrix genevensis (Reverdin) Hindák	All lakes
Eudorina elegans Ehrenberg	DH; PT; BA; PA
Eutetramorus planctonicus (Korsikov) Bourrely	All except AN; DH; AM
Glaucocystis cf. nostochinearum Itzigsohn	SH
Gloeomonas sp.	AN; CE; SH; VE
Golenkinia radiata Chodat	CA; AC; BA; JA; PA
Gregiochloris cf.	PI
Kirchneriella lunaris (Kirchner) K. Möbius	All except AN; PT; SH; JA
Kirchneriella cf. obesa (W.West) Schmidle	CA; CE; AL; FN
Kirchneriella roselata Hindák	PT; SH
Korschikoviella sp.	AM
Monoraphidium contortum (Thuret) Komàrková-Legnerová	All except GA; AL; AM
Monoraphidium sp.	All except PI; VE
Nephrocytium agardhianum Nägeli	All except SH; PI; VE
Nephrocytium cf. lunatum W. West	AM
Pectodictyon aff.	DH
Pediastrum duplex Meyen	CA; AC; PI
Pediastrum sp. 1	AM
Planktonema cf.	PT; SH
Quadrigula closterioides (Bohlin) Printz	CE; DH; PT; AL; FN; PA
Radiococcus cf.	PT; SH; VE
Scenedesmus acuminatus (Lagerheim) Chodat	CA; CE; SH; AC; BA; FE; FN; PI
Scenedesmus acuminatus f. maximus Uherkovich	JA; PI
Scenedesmus arcuatus Lemmermann	AN; CE; AC; BA; PI

Taxa	Occurrence
Scenedesmus bijugus (Turpin) Kutzing	All except DH; GA; FE; PI
Scenedesmus bijugus var. disciformis (Chodat) Leite	PT; AC; BA; FN; JA; PA; PI
Scenedesmus acunae Comas	GN; AC; PA
Scenedesmus quadricauda (Turpin) Brébisson	CA; GN; SH; AC; AL; FE; FN; PA; PI; VE
Scenedesmus regularis Swir	PI
Scenedesmus spinosus Chodat	CE; AL
Selenastrum sp. 1	GA; FN
Sphaerocystis sp. 1	CE; GA; PT; BA; FE
Sphaerocystis sp. 2	AL
Stauridium privum (Printz) Hegewu	PT; AL; BA; FN; PA; PI
Stauridium tetras (Ehrenberg) Ralfs	FN; PI
Tetraedron caudatum (Corda) Hansgirg	All except AM
Tetraedron incus (Teiling) G.M. Smithi	GA; PT; BA
Tetraedron minimum (A. Braun)	AN; CA;CE;DH;GA; PT; AL;BA; FE; FN; JA;PA
Tetrallantos lagerheimii Teiling	DH; SH; AC; FE; FN; JA; PI
Tetranephris brasiliense Leite & C. Bicudo	CA; SH
Tetranephris cf.	CA; DH
Ulothrix sp. 1	PI
Ulothrix sp. 2	AM
Ulothrix sp. 3	AM
Volvocales NI	SH; PI
Chaetophorales NI	GN
Chlorococcales NI1	GA; FN
Chlorococcales NI2	GN
Chlorococcales NI3	JA
Chlorococcales NI4	SH
Chlorococcales NI5	SH
Chrysophyceae	
Dinobryon bavaricum Imhof	CA; CE; DH; GA; PT; AC; AL; AM; JA; PA; PI
Dinobryon sertularia Ehrenberg	All except GN; PT; FE; JA
Dinobryon sp.	AC
Mallomonas cf.	PT; SH; AC; AM; BA; JA
Pteromonas cf.	DH; PT; AM
Synura cf.	AN
Cryptophyceae	
Cryptomonas brasiliensis Castro, C. Bicudo & D. Bicudo	All except PT; AM; VE
Cryptomonas marssonii Skuja	AN;GA;PT; AC; AL;AM; BA; FN; JA; PA;PI;VE
Cryptomonas sp. 1	AN; DH; AC; AL; PI
Cryptomonas sp. 2	CE; GA; AC; AM; FE; FN; JA; PA; VE
Cryptomonas sp. 3	All except SH; AC; AM; VE
Rhodomonas sp.	AN; DH; SH; FE; FN; PI
Cyanobacteria	
Anabaena planctonica Brunnthaler	PT; AL; PA
Anabaena cf. solitaria Klebahn	AN; DH; GA; PT; SH; AM; FE; JA; PA; PI

Таха	Occurrence
Anabaena sp. 1	AM
Anabaena sp. 2	DH; SH; AC; FE; JA; PI; VE
Anabaena sp. 3	CA; AL; BA; JA
Aphanizomenon sp.	AN
Aphanocapsa delicatissima W. West & G. S. West	CA; CE; GA; GN; PT; SH; AL; BA; FE; FN; JA; VE
Aphanocapsa elachista W.West & G.S.West	All except AM
Aphanocapsa holsatica (Lemmermann) Cronberg & Komárek	GA; GN; PT; JA
Cyanobacteria	
Aphanocapsa planctonica (G.G.Smith) Komárek et Anagnostidis	CE; AL
Aphanocapsa sp.	AN; CA; CE; SH; AL; BA; FE; FN; PI; VE
Aphanothece cf. stagnina (Sprengel) A Braun	AN; DH; SH; AL; FE; VE
Aphanothece sp. 1	CE; GA; GN; FN
Aphanothece sp. 2	FE
Aphanothece sp. 3	CA; DH; SH
Aphanothece sp. 4	JA; PA
Asterocapsa sp.	CA; SH; JA
Calothrix sp.	CA; DH; PT; AC; AL; AM; PA
Chroococcus minutus (Kütz) Nägeli	All except GN; PI
Chroococcus sp. 1	PT; AM; JA
Coelomorum sp.	CE; DH; SH; AC; AL; FE; FN; JA; VE
Coelosphaerium sp. 1	CA; CE; DH; GN; SH; AL; BA; FE; FN; JA
Coelosphaerium sp. 2	SH
Cyanodictyon cf. iac Cronberg & Komárek	AL; FN; VE
Cyanodictyon imperfectum Cronberg & Weibull	CE; AL; FE; FN
Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju	DH; PT; SH; AL; BA; FE; FN; PI; VE
Epigloeosphaera sp. 1	CE; DH; PT; SH; AL; FE; FN; PA
Epigloeosphaera sp. 2	CE; FE; FN
Eucapsis sp.	CE
Geitlerinema cf. amphibium (Agardh ex Gomont) Anagnostidis	AN; DH; SH
Geitlerinema splendidum (Greville ex Gomont) Anagnostidis	AN; PT; AM
Geitlerinema unigranulatum (Singh) Komárek & Azevedo	CE; AC; JA
Johannesbaptistia sp.	AM
Leptoplyngbya sp.	AC; AM
Limnothrix redekei (Van Goor) Meffert	All except AL; AM; JA; PA
<i>Lyngbya</i> sp.	AN; CA; CE; DH; PT; AC; AM; BA; JA; VE
Merismopedia glauca (Ehrenberg) Kützing	AN; CA; PT; BA; FE; FN
Merismopedia tenuissima Lemmermann	All except AN; GN; AM; VE
Microcrocis cf.	JA
Microcystis aeruginosa (Kützing) Kützing	CA; CE; PT; SH; AL; BA; FE; FN; JA; PA; VE
Microcystis novacekii (Komárek) Compère	SH; FE; JA
Microcystis protocystis Crow	CA; CE; SH; AL; BA; FE; JA; VE
Microcystis wesenbergii Komárek	AN; SH; AL; FN; JA
Nostoc sp. 1	VE
Nostoc sp. 2	SH

Taxa	Occurrence
Nostoc sp. 3	BA
Oscillatoria sp. 1	CA;DH; GA; PT; SH;AC; AM; BA; FN;JA;PA;PI
Oscillatoria sp. 2	AN; CE; AM; FE; FN; JA; PA; VE
Planktolyngbya contorta (Lemmermann) Anagnostidis & Komárek	CA;CE;DH;GA;GN; SH; AL; BA; FE; FN; PI; VE
Planktolyngbya microspira Komárek et Cronberg	GN; BA
Planktolyngbya sp.	VE
<i>Planktolyngbya limnetica</i> (Lemmermann) J.Komárková-Legnerová & G.Cronberg	All lakes
Planktothrix sp.	CA; DH; AC; AM
Porphyrosiohon cf.	DH
Pseudanabaena catenata Lauterborn	AN; SH; BA; VE
Pseudanabaena galeata Böcher	All except AN; AM; PA
Pseudanabaena limnetica (Lemmermannn) Komárek	AN; CA; CE; GA; AL; BA; FE; FN; PA; PI; VE
Pseudanabaena mucicola (Nauman & Hubber-Pestalozzi) Bourrelly	DH; GN; FE
Pseudanabaena sp. 1	AN; PT; PI
Pseudanabaena sp. 2	SH; AC; JA; PA
Rabdoderma cf.	FN
Radiocystis cf.	CE; GA
Radiocystis fernandoi Komárek & Komárkova-Legnerová	SH; AL; FE; FN
Raphidiopsis cf.	CE
Snowella cf.	JA
Sphaerocavum brasiliense Azevedo & Sant'Anna	DH
Spirulina sp. 1	PT; PI
Spirulina sp. 2	PT; AM
Synechococcus cf.	DH; AC; JA; PA
Synechocystis cf.	AL; BA; FE
Chroococcales NI 1	CE; AL
Chroococcales NI 2	CE; AL
Chroococcales NI 3	PT; FN
Chroococcales NI 4	CE; FE
Chroococcales NI 5	CE
Chroococcales NI 6	FN
Chroococcales NI 7	GA
Chroococcales NI 8	SH
Chroococcales NI 9	PI
Chroococcales NI 10	CA
Chroococcales NI 11	CA; AM
Chroococcales NI 12	GA
Chroococcales NI 13	GA
Chroococcales NI 14	CE; DH; AL; FN
Chroococcales NI 15	AL; FE; FN
Chroococcales NI 16	CE; AL
Nostocales NI 1	CA; GN; AC; JA; VE
Nostocales NI 2	VE

Appendix 1. Continuation.

Taxa	Occurrence
Nostocales NI 3	РА
Nostocales NI 4	РА
Nostocales NI 5	PI
Nostocales NI 6	РА
Oscillatoriales NI 1	CE; GA
Oscillatoriales NI 2	AN; CE; FN; PA
Oscillatoriales NI 3	AN
Pseudanabaenaceae NI 1	AC
Pseudanabaenaceae NI 2	CE; PA
Pseudanabaenaceae NI 3	PT
Pseudanabaenaceae NI 4	PA
Stigonematales NI 1	PT
Stigonematales NI 2	JA
Dinophyceae	
Gymnodynium sp.	All except AM; BA
Peridinium baliense Lindemann	All except PT; AM
Peridinium cf. africanum Lemmermann	AN; CA; PT; SH; AC; AL; AM; FE; FN; VE
Peridinium cf. volzii Lemmermann	AL; AM; BA; FE
Peridinium pusillum (Pénard) Lemmermann	All lakes
Peridinium sp. 1	VE
Peridinium sp. 2	AN; CA; AC
Peridinium sp. 3	SH
Euglenophyceae	
Euglena acus Ehrenberg	CE; AC; AM; PA; PI
Euglena ehrenbergii Klebs	PT; AC; AL; AM
Euglena oxyuris Schmarda	AN; CA; CE; AC; AM; PA
Lepocinclis fusiformis (H.J.Carter) Lemmermann	AM; PI
Lepocinclis cf. ovum (Ehrenberg) Lemmermann	SH
Lepocinclis sp. 1	CA; CE; DH; AM; PA; VE
Lepocinclis sp. 2	GN
Lepocinclis sp. 3	AM
Lepocinclis sp. 4	JA
Monomorfina cf. pyrum (Ehrenberg) Mereschkowski	DH; SH; AC; PA
Phacus hamatus Pochmann	AN; PT; AM; BA; FN; JA; PI
Phacus longicauda (Ehrenberg) Dujardin	AN; JA; GN; SH; AC; AM; BA; FN; JA; PI
Phacus onyx Pochmann	CA; CE; AM
Phacus raciborskii Drezepolski	CA; CE; JA; GA; PT; AM; JA; PA; PI; VE
Phacus suecicus Lemmermann	AL; AM; BA
Phacus sp. 1	AM
Phacus sp. 2	JA; SH; AC; AM
Phacus sp. 3	GN; FN
Rhabdomonas sp.	GA
Strombomonas cf. encifera	PI
Strombomonas cf. gibberosa	AM

Taxa	Occurrence
Trachelomonas mirabilis var. spinosa Svirenko	AM; PA; PI
Trachelomonas armata (Ehrenberg) Stein	AN; CA; PT; AC; AM; FN; JA; PI
Trachelomonas cf. magdaleniana Deflandre	AM
Trachelomonas cf. oblonga Lemmermann	SH
Trachelomonas cf. spinosa Stokes	JA
Trachelomonas hispida var. coronata Lemmermann	CE; AC
Trachelomonas hispida var. duplex Deflandre	SH; AM; BA; JA; PA; JA
Trachelomonas cf. zingeri Roll	CE; JA; PA
Trachelomonas lacustris Drezepolski	AM; JA; FN; JA; PA; JA
Trachelomonas megalacantha Da Cunha	AM
Trachelomonas volvocina Ehrenberg	All lakes
Trachelomonas sp. 1	SH; AL
Trachelomonas sp. 2	CA; CE; AC; AM; JA; FN
Trachelomonas sp. 3	AN; SH
Trachelomonas sp. 4	AC; JA; PA
Trachelomonas sp. 5	AM
Trachelomonas sp. 6	AM
Trachelomonas sp. 7	DH
Euglenales NI 1	AN; AC; AM; BA; JA; PA; JA
Euglenales NI 2	GA
Euglenales NI 3	GA
Euglenales NI 4	CE
Oedogoniophyceae	
Oedogonium sp.	CA; GA; GN; PT; AC; AL; AM; PA; JA
Trebouxiophyceae	
Actinastrum aciculare Playfair	AN; CA; GA; FE; FN; JA; PA; PI
Actinastrum hantszchii Lagerheim	GA
Botryococcus braunii Kützing	All lakes
Botryococcus protuberans W.West & G.S.West	All except DH; GA; SH; FE
Botryococcus terribilis J. Komárek & P. Marvan	All except GN; BA; VE
Chlorella sp.	All except PA
Closteriopsis sp. 1	All except VE
Closteriopsis sp. 2	CA; GN; SH; AC; JA; PI; VE
Crucigenia cf. fenestrata (Schimidle) Shimidle	AL; BA; JA; VE
<i>Crucigeni</i> a cf. <i>quadrata</i> Morren	CE
Crucigenia tetrapedia (Kirchner) W.West & G.S.West	All except DH; GA; GN; FE
Crucigeniella crucifera (Wolle) Komárek	PI
Crucigeniella retangularis (Nägeli) Komárek	AN; CA; CE; PT; AL; AM; BA; FE; JA; PA; PI
Dictyosphaerium erenbergianum Nägeli	GN; AL; FE; JA
Dictyosphaerium pulchellum Wood	All except DH; GA; GN; BA; VE
Keratococcus sp.	AN; CA; CE; PT; SH; AL; BA; FN; PI
<i>Oocystis</i> cf. <i>nephrocytioides</i> Fott & Cado	PT; SH

Taxa	Occurrence
Oocystis cf. solitaria Wittrock	AN; GA; PT; FE
<i>Oocystis lacustris</i> Chodat	All except AN; CA; GA; GN
Oocystis sp. 1	CE; GA; AL; BA; PA;
Oocystis sp. 2	All except GA; GN; PI; VE
Oocystis sp. 3	All except AN; GN; PA
Oocystis sp. 4	AM; BA
Oocystis sp. 5	DH
Xanthophyceae	
Centritractus sp.	CA; PT; SH; BA; JA; JA
Isthmochloron lobulatum (Nägeli) Skuja	AN; DH; GN; PT; AL; AM; BA; JA; JA; VE
Isthmochlorum gracile (Reinsch) Skuja	CA; CE; SH; PA; JA
Pseudostaurastrum sp.	AC; AM; JA
Tetraplektron cf. bourrelyi Ettl	AN; DH; GA; AC; AM; BA; PI
Tetraplektron torsum (Skuja) Dedus.	AC; AM; FN; JA; PA
Tetraplektron sp. 1	CA; CE; DH; GN; PT; SH; AC; FN; JA; PA; PI;VE
Tetraplektron sp. 2	AN; AM; BA; FE; FN; JA; PA
Zygnematophyceae	
Actinotaenium sp.	AM; JA
Bambusina Brébissonii Kützing	AC; AM
Bourrellyodesmus jolyanus C. Bicudo & Azevedo	PT; SH; AC; JA; PA; VE
Closterium cf. setaceum Ehrenberg	PT; AC; AM; PA; PI; VE
Closterium closterioides (Ralfs) Louis & Peeters	GN; AC
Closterium dianae Ehrenberg	CE
Closterium gracile Brébisson ex Ralfs	CA; AC; AM; BA; FN; PA; PI
Closterium kuetzingii Brébisson	AN; CE; DH
Closterium moniliferum (Bory) Ehrenberg ex Ralfs	GN
Closterium cf. turgidum Ehrenberg	AC
Closterium sp. 1	CE; AL
Closterium sp. 2	GN; AM
Closterium sp. 3	GN; AM
Closterium sp. 4	РА
Cosmarium asphaerosporum Wittrock	All except AM
Cosmarium bioculatum Brébisson in Ralfs	AN; CA; GA; SH; AC; BA; FE; FN; JA; PA; PI
Cosmarium conspersum Ralfs	CE; PT; FE; PI
Cosmarium contractum Kirchner	All lakes
Cosmarium depressum (Nageli) Lundell	
Cosmarium lagoense Nordstedt	AL; BA
Cosmarium moniliforme West & West	All except AM; PI
Cosmarium monomazum P.Lundell	AN; CE; DH; PT; AC; BA; FN; JA; PA; VE
Cosmarium ornatum Ralfs	JA; PA
Cosmarium portianum Archer	GN; AC; JA; PA
Cosmarium pseudoconnatum Nordstedt	All except GA; AM
Cosmarium cf. pseudopyramidatum Lundell	GN

Taxa	Occurrence
Cosmarium pyramidatum Brébisson in Ralfs	DH; GA; AC; BA; FE; FN; PA; VE
Cosmarium quadrum P.Lundell	CE; DH; GA; GN; AC; AL; BA; FN; JA; VE
Cosmarium trilobulatum Reinsch	PA
Cosmarium cf. zonatum P.Lundell	AC
Cosmarium sp. 1	CE; AL; AM
Cosmarium sp. 2	AN; AL; PA
Cosmarium sp. 3	BA; FN; PA
Cosmarium sp. 4	ВА
Cosmarium sp. 5	AC; FE; FN; JA; PA; VE
Cosmarium sp. 6	BA; VE
Cosmarium sp. 7	VE
Cosmarium sp. 8	CA; GN; PA
Cosmarium sp. 9	AM
Cosmarium sp. 10	AM
Cosmarium sp. 11	AC; AM; PA
Cosmarium sp. 12	AM
Cosmarium sp. 13	AM
Cosmarium sp. 14	AM
Cosmarium sp. 15	PA
Cosmarium sp. 16	PA
Cosmarium sp. 17	JA
Desmidium aptogonum Brébisson	SH; BA
Desmidium grevillei (Kützing ex Ralfs) De Bary	CA
Desmidium swartzii Agardh	SH
Euastrum cf. abruprum Nordstedt	GN; PT; FN
Euastrum didelta (Turpin) Ralfs	GN
Euastrum elegans (Brébisson) Kützing	AM
Euastrum pulchellum Brébisson	РТ; ВА
Gonatozygon Brébissonii De Bary	AM; BA; PI
Gonatozygon cf. pillosum Wolle	GA; PT
Gonatozygon monotaenium De Bary in West & G.S.West	GN; BA
Haplotaenium minutum (Ralfs) Delponte	DH; AC; PI; VE
Hyaloteca sp.	PT; AC; AL; JA; PA; VE
Micrasterias abrupta West & G.S.West	AC; PA
Micrasterias arcuata Bailey	AC
Micrasterias borgei H. Krieger	GN
Micrasterias crux-melitensis (Ehrenberg) Ralfs	FN; VE
Micrasterias oscitans var. mucronata (R.V.Dixon) J.N.F.Wille	AC; PA
Micrasterias pinnatifida (Kützing) Ralfs	AC; AL; JA; PA
Micrasterias tropica Nordstedt	AM
Micrasterias truncata (Corda) Bréb. ex Ralfs	AN; DH; AC; AL; AM; JA; JA; PA; PI; VE
Mougeotia sp. 1	AN; GN; PT; AC; AM
Mougeotia sp. 2	AM

Taxa	Occurrence
Netrium sp.	PA
Octacanthium mucronulatum (Nordstedt) P.Compère	CA; PA; PI; VE
Octacanthium sp.	JA
Onychonema laeve Nordstedt	PT
Pleurotaenium cf. baculoides (Skuja) Krieger	AC
Pleurotaenium sp.	AM; PA; VE
Sirogonium cf.	AM
Sphaerozosma sp.	CE; DH; SH; FE; FN; JA; PA; PI
<i>Spirogyra</i> sp. 1	AN
<i>Spirogyra</i> sp. 2	VE
<i>Spirogyra</i> sp. 3	AM
Spondylosium panduriforme (Heimerl) Teiling	AN; CE; DH; PT; SH; AL; AM; BA; JA; PA; VE
Spondylosium planum (Wolle) West & G.S.West	JA
Staurastrum avicula Brébisson	All except PT; SH; BA
Staurastrum brasiliense Nordstedt	PT
Staurastrum cerastes Lundell	AN; DH; PT; AL; BA; FN; PA; PI; VE
Staurastrum chaetoceras (Schröder) G.M.Smith	AN; CA; CE; DH; GA; GN; PT; SH; FN; PA; PI
Staurastrum curvimarginatum Scott et Grönblad	PA
Staurastrum depressiceps Scott et Grönblad	CE; BA; FE; JA; PA
Staurastrum forficulatum Lundell	All lakes
Staurastrum gemelliparum Nordstedt	CA; FN
Staurastrum grallatorium Nordstedt	GA; PT; AC; AL; BA; JA; PA; VE
Staurastrum ionatum Wolle	All except AM; FE
Staurastrum cf. hagmannii Grönblad	PT; BA; PA
Staurastrum cf. hirsutum Borge	DH; SH
Staurastrum laeve Ralfs	All except GN; AM
Staurastrum leptacanthum Nordstedt	CA; PT; AC; BA; FE; JA; VE
Staurastrum leptocladum Nordstedt	All lakes
Staurastrum manfeldtii Delponte	PT; SH; AC; AL; FN; JA; PA; PI; VE
Staurastrum minnesotense Wolle	AN; PT; FE; FN; JA
Staurastrum cf. muticum (Brébisson) Ralfs	AN; CE; GA; GN; PT; AC; FE; FN; PA; PI
Staurastrum nudibrachiatum Borge	PT; AL; BA; JA; VE
Staurastrum orbiculare (Ehrenberg) Ralfs	CA; AM; PI
Staurastrum quadrangulare Brébisson	AC; BA; PI
Staurastrum rotula Nordstedt	All lakes
Staurastrum sebaldii Reinsch	SH; PI
Staurastrum setigerum Gleve	All except CA; CE; AM; PA; PI
Staurastrum sexangulare Bulnheim (Rabenhorst)	РТ
Staurastrum smithii (G.M. Smith) Teiling	All except GN; AM; VE
Staurastrum taylorii Grönblad	CA; DH; AC; AM; JA; PA; VE
Staurastrum teliferum Ralfs	AN; CE; DH; AC
Staurastrum teliferum Ralfs var. 2	PT: SH: AC: FE: FN: PA: VE

Таха	Occurrence
Staurastrum tentaculiferum Borge	AC: PA: VE
Staurastrum tetracerum (Kützing) Ralfs ex Ralfs	AN;CA; DH; SH; AC; BA:FE:FN: IA: PA: PI:VE
Staurastrum trifidum Nordstedt	All except SH: AM
Staurastrum wolleanum Butler cited in Wolle	AN; PT; AL; PA; VE
Staurastrum sp. 1	All except DH; AM
Staurastrum sp. 2	AN; CE; DH; GA; AC; AL; FE; JA; VE
Staurastrum sp. 3	CE; AC; AL; AM; VE
Staurastrum sp. 4	GN; AL; FE; FN; VE
Staurastrum sp. 5	CE; PT; BA; JA; PA
Staurastrum sp. 6	FN
Staurastrum sp. 7	CA; PT; JA; PA; PI
Staurastrum sp. 8	DH; SH; BA; PA; PI
Staurastrum sp. 9	ВА
Staurastrum sp. 10	DH; SH; AC; BA; JA; PA; PI; VE
Staurastrum sp. 11	GA; PT; SH; AC; AM; BA; JA; PA
Staurastrum sp. 12	SH; JA
Staurastrum sp. 13	PI
Staurastrum sp. 14	VE
Staurastrum sp. 15	АМ
Staurastrum sp. 16	AN; CE; FE; FN; JA
Staurastrum sp. 17	PA
Staurastrum sp. 18	AC
Staurastrum sp. 19	AC
Staurastrum sp. 20	AC; JA
Staurastrum sp. 21	AC
<i>Staurastrum</i> sp. 22	GA; FE; FN
Staurodesmus convergens (Ehrenberg Ex Rafs) Teiling	All except GN; PT; AM; JA; VE
Staurodesmus convergens (Ehrenberg Ex Rafs) Teiling var. 2	AC; BA; FN; JA; PI
Staurodesmus crassus (West & West) Florin	All except GN; AM
Staurodesmus cuspidatus (Brébisson) Teiling	All except GA; AC; AL; AM; VE
Staurodesmus dejectus (Brébisson) Teiling	All lakes
Staurodesmus cf. extensus (Anderson) Teiling	AC; PA
Staurodesmus incus (Brébisson) Teiling	CA; CE; FE; PI
Staurodesmus jaculiferus (W. West) Teiling	All except SH; AM
Staurodesmus lobatus (Borgesen) Bourrely	AC; AM; BA; FN; JA; PI; VE
Staurodesmus o'mearii (Archer) Teiling	CA; CE; DH; GA; FN; VE
Staurodesmus pachyrhynchus (Nordst.) Teiling	AL; BA; FN
Staurodesmus phimus (Turner) Thomasson	CE; PI; VE
Staurodesmus subulatus (Kützing) Croasdale	AN;CA;DH; GN;AL;AM; BA; FE; FN; JA; PA;PI
Staurodesmus sp. 1	DH; AC; AL; FE; FN; JA; PA; VE
Staurodesmus sp. 2	GA; AC; FN; PA; VE
Staurodesmus sp. 3	AN; CE; PT; AL
Staurodesmus sp. 4	FE; PA

Taxa	Occurrence
Staurodesmus sp. 5	AN; AL
Staurodesmus sp. 6	JA
Staurodesmus sp. 7	AN; VE
Staurodesmus sp. 8	FN; JA; PA
Staurodesmus sp. 9	PT; PI
Staurodesmus sp. 10	CA; VE
Staurodesmus sp. 11	VE
Staurodesmus sp. 12	AM
Staurodesmus sp. 13	AM; PI
Staurodesmus sp. 14	JA
Staurodesmus sp. 15	AC
Teilingia granulata (J.Roy & Bisset) Bourrelly	All except AM
Teilingia sp. 1	GA
Teilingia sp. 2	GN; AL; VE
Triploceras gracile Bailey	JA; PA
Xanthidium regulare Nordstedt	РА
Zygnema aff.	GN