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ABSTRACT
Phytoplankton is formed by photosynthesizing microorganisms that act as primary producers in distinct water 
bodies. These include microalgae and cyanobacteria. It is essential to know the phytoplankton in water catchment 
areas intended for drinking water treatment once their excessive density may result in problems, such as taste and 
odor in the water, toxin production, filter clogging, and other damages. This study investigated the phytoplankton 
dynamics and the environmental factors that may influence phytoplankton density in the drinking water catchment 
zone of Macapá, a city located on the Amazon River mouth. The sampling was carried out monthly from April/2015 
to March/2016. The study reports the first detailed information on the phytoplankton in the study area since 
previously published studies regarded only cyanobacteria. The species Limnothrix planctonica and Aulacoseira granulata 
may substantially influence the water treatment due to their great abundance in the study area, especially in July 
and November, when their density peaks occur, respectively. Nevertheless, Aulacoseira granulata is the primary 
constituent of the phytoplankton biovolume. This study provides biological and sanitary information to guide 
public administration towards improving the quality and safety of water supply services, and also to increase the 
biodiversity knowledge of Amazonian phytoplankton.
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Introduction
Phy toplankton compr ises  photosynthet ic 

microorganisms-microalgae and cyanobacteria-adapted to 
live partly or continuously in open water (Chorus & Bartram 
1999; Reynolds 2006). These organisms are responsible for 
the oxygenation of aquatic ecosystems, where they act as 
the primary producer of organic carbon (Reynolds 2006).

Phytoplankton populations may increase rapidly (bloom) 
as a consequence of eutrophication and pollution of the 

water body. High phytoplankton densities in the water 
supply impair the water quality since these organisms may 
cause several problems for drinking water treatment, such 
as the production of toxins, taste and odor compounds, 
trihalomethanes, clogging of filters, and reduction of 
efficiency to produce finished water (Di Bernardo 1995; 
Chorus & Bartram 1999; Ewerts et al. 2013; Oliver & Ribeiro, 
2014).

Some species from the cyanobacteria, diatoms, 
chlorophytes, chrysophytes, rhodophytes, and dinoflagellates 
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are known to cause problems to water treatment plants 
(Watson 2009; Ewerts et al. 2013; Niiyama et al. 2016). In the 
case of the production of taste and odor compounds, some of 
the principal causes that make difficult the source-tracking of 
these compounds include species misidentification (Watson 
& Jüttner 2019). Because of these issues, it is essential to 
know the phytoplankton composition and density to prevent 
or quickly solve future trouble related to water treatment 
concerns.

This study was conducted in Macapá, a city located at the 
Amazon River mouth, whose waters are the primary source 
of water supply in town. This estuary area has multiple uses 
like the loading/unloading of cargo and passengers, sports, 
bathing, fishing, and leisure (Oliveira et al. 2019a). Besides 
that, there is an occasional and diffuse discharge of effluents 
into the river, which provides nutrients for phytoplankton 
population growth (Bastos et al. 2009).

The purpose of this study is to investigate the 
phytoplankton composition, density, and biovolume, and 
the environmental factors that may have an influence on 
phytoplankton density in the drinking water catchment zone 
of Macapá. The results intend to guide public administration 
towards improving the quality and safety of water provision 
services.

Materials and methods

Study area and sampling procedures
The samples were collected in the city of Macapá, 

at the Company of Water Supply and Sewage of Amapá 
(CAESA), at the raw water intake point, which is situated 
approximately 500 meters from the Amazon River bank 
(Fig. 1), nearby the city downtown. Macapá is a city located 
in the Northern Channel of the Amazon River in the State 
of Amapá, Brazilian Amazonia.

Figure 1. Study area: water intake point for water supply in the 
municipality of Macapá, State of Amapá.

Sampling occurred monthly from April/2015 to March/2016 
during a tidal cycle (13 hours). We collected material for 
qualitative and quantitative studies of phytoplankton as well 
as physicochemical analysis of the water.

Environmental variables
The environmental data measured were turbidity, 

suspended solids, precipitation, insolation, radiation, 
water temperature, water transparency, dissolved oxygen, 
nutrients (nitrate, nitrite, ammonia, phosphorus, and 
phosphate), and pH (Tab. 1).

Qualitative analysis of phytoplankton
We collected the qualitative analysis samples every two 

hours, using the horizontal and simultaneous dragging of 
two plankton nets-20µm and 64µm mesh opening. In one 
day of sampling work, we provided seven samples for each 
plankton net used. In the laboratory, we took aliquots from 
the 20µm mesh samples and combined them into a single 
representative sample; we did the same with the 64µm mesh 
samples. This technique, known as composite sampling 
(Brandão et al. 2011), allowed the formation of a monthly 
qualitative sample for each plankton net employed, which 
reduced the sampling effort and shortened the analysis 
time. Qualitative samples were preserved with Transeau’s 
solution (Bicudo & Menezes 2006).

We identified the taxa under standard light microscopy 
with the aid of specialized bibliography (Prescott et al. 1977; 
1982; Anagnostidis & Komárek 1986; 1988; Komárek & 
Anagnostidis 1999; Godinho 2005; Bicudo & Menezes 2006; 
Sant’Anna et al. 2006; Faustino 2006; Godinho 2009) and 
recent taxonomic papers describing new genera, examining 
ten slides for each sample. Richness was calculated as the 
number of species founded in the slides.

Phytoplankton counting 
For phytoplankton counting, we collected samples 

monthly at the raw water intake during high tide and 
stored them in a 1L amber glass bottle, preserved with 
8mL of Lugol’s solution. The quantitative analyzes were 
performed using the Utermöhl sedimentation method 
(Utermöhl 1958) in 5 mL Utermöhl chambers, visualized in 
an inverted microscope under a 400x magnification. After 
sedimentation, we counted the organisms throughout the 
whole chamber base. To obtain the phytoplankton density 
(organisms per milliliter), the number of organisms was 
multiplied by 0.2 (1/5=one whole base of the chamber 
divided by the decanted volume 5mL) (APHA 2010; Cetesb 
2012). To determine the abundant and dominant species, we 
used the Lobo & Leighton (1986) criterion, where abundant 
species are those whose number of individuals is higher 
than the average value of the total number of individuals 
per species in a sample. The dominant species are those 
with ≥50 % of the total number of individuals in the sample.
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Average and total biovolume 
The average biovolume (µm3) was determined from 

measurements of 10 to 30 individuals of each species taking 
into account the simplest geometric configuration (sphere, 
cone, cylinder, prism, ellipsoid, spheroid, and cuboid) that 
best suited for phytoplankton organisms’ shapes, disregarding 
mucilages or arrows (Hillebrand et al. 1999). As a means to 
obtain the total biovolume (µm3 mL-1), we multiplied the 
average biovolume of the individuals by their density.

Statistical analysis
A Canonical Correspondence Analysis (CCA) was used 

to infer the relationship between abiotic variables and 
phytoplankton species. To perform the CCA, we used 
data on the relative abundance of phytoplankton. Species 
with a density of ≤ 10 % of the total density or frequency 
of occurrence <1/5 of the most common species were 
excluded to reduce trends caused by rare species. Then, we 
transformed the biological and environmental data into ln 
(x + 1) to standardize distribution and reduce the effects of 
the most abundant species. After that, we selected physical 
and chemical parameters with the ordistep function of 
the R 3.4.3 software (R Development Core Team 2017). 
Subsequently, we calculated the inflation factor (VIF) to 
exclude multicollinear variables, eliminating the variables 
with VIF≥ 15 (Oksanen 2012). This selection aimed at 
removing irrelevant explanatory variables in the analysis, 

highly correlated factors, and variables with relatively little 
variation (Ter Braak & Verdonschot 1995).

After the screening above, we performed CCA with 
four environmental variables (suspended solids, rainfall, 
ammonia (NH4), and dissolved oxygen) and the most 
common phytoplankton species detected in the study.

Results 

Environmental aspects
The characterization of the environmental parameters is 

summarized in Table 2. Throughout the study, the Amazon 
River turbidity presented an average value of 49.30 NTU 
(range= 19.80-122 NTU), and suspended solids averaged 52.85 
mg.L-1 (range= 24.70- 119.20 mg.L-1). The water transparency 
varied from 12.50 cm (rainy season) to 36.50 cm (dry period).

Regarding monthly precipitation in Macapá city, the 
wettest months were April 2015 (584.50 mm) and February 
2016 (528.20 mm). It is noteworthy that there was no 
rainfall in September, October, and November 2015 (dry 
period of the region). The average monthly insolation in 
Macapá ranged from 3.30 to 9.79 hours, and the months 
between August-December 2015 presented the highest 
insolation. Regarding irradiation, on the sampling day, 
there was a variation between 86.60 to 312.30 W.m-2, with 
an average of 236.82 W.m-2.

Table 1. Measurement units of the physical and chemical parameters, methods, analysis equipment, and database.

Parameter Unit Method / Equipment / Database

Physical

Turbidity NTU Horiba multi-parameter probe

Suspended solids mg L-1 Gravimetric analysis (APHA 2012)

Rainfall Mm INMET

Insolation Hour INPE

Radiation W m-2 INP

Water temperature °C Horiba multi-parameter probe

Water transparency Cm Secchi Disk

Dissolved Oxygen (DO) mg L-1 YSI 550 A DO (Dissolved oxygen meter)

Chemical

Nitrate (NO3) mg L-1 Cadmium reduction (APHA 2012)

Nitrite (NO2) mg L-1 Diazotization (APHA 2012)

Ammonia (NH3) mg L-1 Phenate method (APHA 2012)

Phosphorus (P) mg L-1 Molybdenum blue (APHA 2012)

Phosphate (PO43-) mg L-1 Molybdenum blue (APHA 2012)

Water pH measurements - Orion Star A121 pH meters

Table 2. Minimum, maximum, average and standard deviation values of environmental variables. Turb – Turbidity (NTU); SS – 
Suspended solids (mg L-1); Rain – Rainfall (mm); Ins – Insolation (hours); Irrad – Irradiation (W m-2); W T – Water Temperature 
(°C); Transp – Water transparency (cm); DO - Dissolved oxygen; NO3 – Nitrate (mg L-1), NO2 – Nitrite (mg L-1); NH3 – Ammonia 
(mg L-1); P – Phosphorus (mg L-1); PO43- - Phosphate (mg L-1); pH – Hydrogen potential.

Turb SS Rain Ins Irrad W T Transp DO NO3 NO2 NH3 P PO4
3- pH

Minimum 19.80 24.77 0.00 3.30 86.60 28.12 12.50 6.60 0.00 0.02 0.00 0.00 0.00 6.00
Maximum 122.00 119.2 584.50 9.79 312.30 30.27 36.50 7.79 0.93 0.07 0.20 0.12 0.38 7.20
Average 49.30 52.85 213.66 7.05 236.82 29.60 26.21 7.16 0.46 0.04 0.06 0.03 0.08 6.57

Standard Deviation 37.23 33.52 221.87 2.33 76.23 0.66 8.75 0.40 0.38 0.02 0.06 0.03 0.11 0.28
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The average water temperature in the Amazon River was 
29.6 ºC (range= 28.12 -30.27 ºC); dissolved oxygen ranged 
from 6.60 mg.L-1 to 7.79 mg L-1; and pH values ranged from 
6.0 (slightly acidic) to 7.2 (neutral) (Tab. 2).

Regarding nutrients, nitrate values ranged from 0.08 
to 0.93 mg.L-1; nitrite from 0.02 to 0.07 mg.L-1; ammonia 
from 0.01 to 0.20 mg.L-1; phosphorus from 0.01 to 0.04 
mg.L-1; and phosphate from 0.02 to 0.38 mg.L-1.

Qualitative analysis of phytoplankton 
Species composition analysis allowed the identification 

of 180 taxa distributed in six divisions: Cyanobacteria, 
Chlorophyta, Bacillariophyta, Euglenophyta, Charophyta, and 
Ochrophyta (Tab. S1 in supplementary material). Charophyta 
was the most expressive group, presenting the highest richness 
values (S = 73). Species richness ranged from 59 to 114 taxa 
over the study period, with April and September 2015 showing 
the highest richness values, 114 and 110, respectively (Fig. 2).

Figure 2. Richness by taxonomic division.

Phytoplankton counting
We identified forty-four taxa in the counting samples, 

belonging to Bacillariophyta, Charophyta, Chlorophyta, 
Cyanobacteria, and Euglenophyta. Diatoms presented 
higher density throughout the study except in July when 
Cyanobacteria were the group with the highest density values.

The months of highest phytoplankton density were July 
(72.6 org. mL-1) and November 2015 (117 org. mL-1), when 
there were peaks of cyanobacteria and diatoms, respectively. 
In July 2015, the Cyanobacteria density was 44.4 org. mL-1 

(61.2 % of total period density), and in November 2015, 
the Bacillariophyta density was 109.6 org.mL-1 (93.7 % of 
total month density) (Fig. 3).

Figure 4 shows a comparison between the total 
phytoplankton density and that of Aulacoseira granulata 
and Limnothrix planctonica. The organisms with the highest 
density values were: A. granulata (Heterokontophyta) and 
L. planctonica (Cyanophyta) (Fig. 5). The high density of 
these two species resulted in the dominance alternation 
of Bacillariophyta and Cyanobacteria. 

Figure 3. Phytoplankton density by taxonomic division in the 
Amazon River from April 2015 to March 2016.

Figure 4. Comparison between the total phytoplankton density 
and that of the most abundant species.

Aulacoseira granulata and Limnothrix planctonica 
were dominant species, while Alkalinema pantanalense, 
Leptolyngbya sp., L. planctonica, Closterium acutum, Ulnaria 
sp., Placoneis sp., A. granulata e Actinocyclus sp. were 
considered abundant (Figs. 5 and 6).

Determination of total and average biovolume
Bacillariophyta species showed the highest biovolume 

values (Tab. 3), suggesting that the phytoplankton in the 
study area is essentially formed by diatoms. Thus, whereas 
the density results indicated significant participation of 
Cyanobacteria, the biovolume determination revealed that 
Bacillariophyta had a greater number of large species than 
the other groups.

The monthly phytoplankton biovolume ranged from 
53075.9 μm³ mL-¹ in June/2015 to 774438.6 μm³ mL-¹ in 
November/2015. This peak was influenced by the species 
Aulacoseira granulata (Bacillariophyta). The pattern of 
phytoplankton density results was different from the 
biovolume. For density, two months were remarkable 
(July/15 and November/15) with emphasis on the densities 
of Limnothrix planctonica and A. granulata; however, regarding 
biovolume, A. granulata stands out for its high dimensions. 
In this sense, diatoms constitute the phytoplankton in the 
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Figure 5. Abundant and dominant species: (A) Aulacoseira granulata, (B) Alkalinema pantanalense, (C) Limnothrix planctonica,  
(D) Leptolyngbya sp., (E) Placoneis sp., (F) Actinocyclus sp., (G) Closterium acutum, and (H) Ulnaria sp.

study area, especially Aulacoseira granulata (Fig. 5A). Figure 
7 shows the significant participation of this species in total 
monthly biovolume.

Influence of environmental factors on phytoplankton 
To perform canonical correspondence analysis (CCA), 

a previous statistical analysis (forward selection) chose 
the environmental variables that had more influence on 
the abundance of phytoplankton from a matrix of 14 
environmental variables (Tab. 2): suspended solids, rainfall, 
ammonia (NH4), and dissolved oxygen. We used these four 
variables to perform the CCA with the most abundant 
and frequent phytoplankton taxa: Limnothrix planctonica, 
Alkalinema pantanalense, Leptolyngbya sp., Closterium 

acutum, Actinocyclus sp., Aulacoseira granulata, Pinullaria sp.,  
Placoneis sp., Ulnaria sp., and Surirella guatimalensis.

The axes 1 and 2 accounted for 96.03 % of the variance 
(axis 1: 81.47 %; axis 2: 14.56 %). We evaluated the 
significance of the ordination axes and the environmental 
indicators using the Monte Carlo permutation test (999 
randomizations).

During the study period, two environmental factors 
greatly influenced the species distribution: suspended solids 
and ammonia. Suspended solids strongly influenced the 
abundance of Leptolyngbya sp. and Aulacoseira granulata, 
with A. granulata being more abundant in November. 
Limnothrix planctonica and Alkalinema pantanalense showed 
ammonia as the determining factor and occurred in greater 
densities in June and July, a time when the suspended 
solids were lower (Fig. 8).
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Discussion
Concerning the physicochemical parameters, the Amazon 

River presents typical whitewater river characteristics: near-
neutral pH, turbid waters rich in dissolved and suspended 
sediments, electrical conductivity between 40-100 μS.cm-1, 
and low transparency (Sioli 1984; Junk et al. 2011).

The qualitative analysis clearly shows the great 
richness of species encountered in the intake point  
(S = 180). This inventory may guide the drinking water 
treatment management in the case of need to identify 
causes (precursors) of taste and odor compounds, since 
the predominant species in the area may not necessarily 
be the main source of the odor (Otten et al. 2016; Chong et 
al. 2018; Watson & Jüttner 2019). Besides, the qualitative 

Table 3. Amazon River phytoplankton average biovolume in the study area CYAN – Cyanobacteria; CHLO – Chlorophyta; CHAR– 
Charophyta; BACI – Bacillariophyta; EUGL – Euglenophyta; GS – Geometric Shape; AB– Average Biovolume (μm3).

Division Taxon GS AB (µm3)
CYAN Limnothrix planctonica Cylinder 219.71
CYAN Alkalinema pantanalense Cylinder 99.06
CYAN Leptolyngbya sp. Cylinder 73.43
CYAN Pseudanabaena sp. Cylinder 240.18
CYAN Anabaena sp. Cylinder 2041.99
CYAN Dolichospermum sp. Cylinder 4662.17
CYAN Geitlerinema_splendidum Cylinder 8661.33
CYAN Cephalothrix sp. Cylinder 10458.16
CYAN Raphidiopsis sp. Cylinder 91.08
CYAN Ciano sp. Cylinder 920.39
CHLO Actinastrum sp. Cylinder + 2 Cones 78.3
CHLO Acutodesmus sp. Cylinder + 2 Cones 375.5
CHLO Ankistrodesmus sp. Cylinder + 2 Cones 398
CHLO Desmodesmus communis Spheroid 246.2
CHLO Lacunastrum sp. Cylinder 1780
CHLO Nephrocytium sp. Ellipsoid 2200
CHLO Volvox sp. Sphere 900
CHLO Eudorina elegans Sphere 932
CHLO Mucidosphaerium pulchellum Sphere 310.9
CHLO Mougeotia sp. Cylinder 2433.46
CHLO Staurastrum quadrinotatum 2 Truncated Cones 764
CHLO Staurastrum leptocladum 2 Truncated Cones 1029.62
CHLO Scenedesmus acuminatus Cylinder + 2 Cones 375
CHAR Closterium acutum 2 Cones 1800
CHAR Closterium gracile 2 Cones 200
CHAR Closterium sp. 2 Cones 4500
CHAR Closterium sp. 2 Cones 3800
CHAR Closterium setaceum 2 Cones 2620
CHAR Desmidium bailey Cylinder 11471.55
BACI Actinocyclus sp. Cylinder 4200
BACI Aulacoseira granulata Cylinder 8452.63
BACI Eunotia flexuosa Sickle-shaped Prism 316.47
BACI Fragillaria sp. Cuboid 397.5
BACI Gyrosigma sp. Parallelepiped 1500
BACI Pinullaria sp. Rectangular prism 7900
BACI Placoneis sp. Elliptic prism 269.53
BACI Ulnaria sp. Cuboid 400
BACI Urosolenia longiseta Cylinder 92.15
BACI Iconella obtusiuscula Elliptic prism 7500
BACI Iconella grunowii Elliptic prism 4000
BACI Iconella guatimalensis Elliptic prism 5500
BACI Iconella linearis Elliptic prism 4800
BACI Tabellaria sp. Cuboid 153.20
EUGL Phacus sp. Elliptic prism 1852

CYAN – Cyanobacteria; CHLO – Chlorophyta; CHAR– Charophyta; BACI – Bacillariophyta; EUGL – Euglenophyta; GS – Geometric 
Shape; AB– Average Biovolume (μm3).



Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com.br

Natalina Borges da Silva, Luis Mauricio Abdon da Silva, Luís Roberto Takiyama,  
Mariano Araújo Bernardino Rocha and Elane Domênica Cunha de Oliveira

618 Acta Botanica Brasilica - 35(4): 612-620. October-December 2021

analysis will improve the knowledge of phytoplankton 
species in the Amazon River.

The quantitative analysis, on the other hand, does 
not consider all the species but detects the abundant and 
dominant species. This information is essential when 
considering problems like cyanotoxin production and 
filter clogging. The quantitative analysis shows that the 
Bacillariophyta and Cyanobacteria present the highest 
densities in the study area. Aulacoseira granulata (diatom) 
and Limnothrix planctonica (cyanobacteria) dominate the 
phytoplankton community in the area due to their body 
shape and physiological aspects greatly adapted to this 
turbulent and turbid environment (Reynolds et al. 1994; 
Nishimura et al. 2015; Oliveira et al. 2019a).

Aulacoseira granulata and Limnothrix planctonica are 
adapted to water column mixing conditions in shallow 
waters or mixed layers of 2-3m in thickness (Reynolds et 
al. 2002; Padisák et al. 2009; Brasil & Huszar 2011). These 
conditions match the Amazon River characteristics, as 
it is turbulent and has no stratification (Sioli 1984). In 
the intake zone, all depths can be considered within the 
vertical mixing zone (approximately 3m) all over the year 
(Junk et al. 2014).

Another common feature that favors the dominance of 
A. granulata and L. planctonica is their filamentous shape, 
which implies that these taxa have a relatively high surface 
area. It makes them good light receptors adapted to grow 
in environments with low light penetration, such as the 
Amazon River (Naselli-Flores & Barone 2007; Brasil & 
Huszar 2011; Nishimura et al. 2015; Oliveira et al. 2019a).

Concerning the water treatment and supply, Aulacoseira 
granulata is one of the producers of fishy, rancid, oily, grassy, 
or cucumber odors (AWWA 2010; Watson & Jüttner 2019). 
A. granulata is also problematic regarding coagulation, 
flocculation, and filtration in the water treatment process 
(Joh et al. 2011). Water treatment processes do not efficiently 
remove this species due to its long cylindrical shape, high 
surface to volume ratio (S.V-1), extensive superficial area, 
and higher surface contact with the surrounding media, 
which are all related to physical buoyancy or difficulties in 
settling (Padisák et al. 2003; Brasil & Huszar 2011; Joh et 
al. 2011). Besides, this species also clogs the sand filters, 
leading to a need for repeated backwashing, thus limiting 
the production of clean water (Joh et al. 2011).

Limnothrix planctonica may produce the microcystin and 
limnothrixin toxins (Furtado et al. 2009; Bernard et al. 2011; 
Humpage et al. 2012; Whan 2015). L. planctonica strains 
were already isolated from the study area, but such strains 
showed no potential for microcystin production (Oliveira 
et al. 2019b). However, another study detected for the first 
time the presence of microcystin-LR in the Amazon River, 
at the same site, being L. planctonica the main suspect to 
have produced the toxin (Oliveira et al. 2019a). 

Although the counting results show that the greatest 
densities belong to the groups Bacillariophyta and 

Figure 6. Abundant and dominant species at Macapá water 
intake point.

Figure 7. Total biovolume per month, and the contribution of 
Bacillariophyta and Aulacoseira granulata.

Figure 8. CCA ordination diagram (axes 1 and 2) applied to the 
matrix of selected biotic and abiotic variables. SS - Suspended 
solids; DO - Dissolved Oxygen; NH4 - Ammonia; RAIN - Rainfall; 
JAN - January; FEB - February; MAR - March; APR - April; MAY 
- May; JUN - June; JUL- July; AUG - August; SEP - September; 
OCT - October; NOV - November; DEC - December; Lepto_sp. 
- Leptolyngbya sp.; Aula_gra - Aulacoseira granulata; Acti_sp. 
- Actinocyclus sp .; Sur_guat - Surirella guatimalensis; Plac_sp. - 
Placoneis sp .; Alka_pant – Alkalinema pantanalense.
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Cyanobacteria, the biovolume analysis reveals that the 
phytoplankton in the study area is primarily composed 
of diatoms, especially by the species Aulacoseira granulata. 
Diatoms constitute a relevant group in terms of algal 
biomass in the Amazon region (Moreira-Filho et al. 1974; 
Paiva et al. 2006; Monteiro et al. 2009; Silva et al. 2018).

The canonical correspondence analysis shows that 
suspended solids affect the composition of the phytoplankton 
community. In this respect, Aulacoseira granulata and 
Leptolyngbya sp. have their abundance associated with 
the months of lower water transparency, while Limnothrix 
planctonica and Alkalinema pantanalense are at the 
opposite end indicating a relationship with greater water 
transparency. These four species are adapted to low light 
environments, such as the Amazon River. However, in the 
trimester June-August, there is an increase in the Amazon 
water transparency reaching 32cm, which is still a dark 
environment although much better for photoautotrophs. 
A study on Limnothrix growth at different light intensities 
(0, 80, 160, 400, 560 µE m2 s-1) showed an increase in cell 
concentrations under all light intensity, even without light, 
with glucose addition. The highest cell growth occurred at an 
intermediate light intensity (160 µE m2s-1) (Daniels 2016). 
In the study area, the L. planctonica population probably 
uses light most efficiently at the strength that it occurred 
from June to August.

As for nutrients, CCA associates L. planctonica and 
Alkalinema pantanalense with ammonia, which is the preferred 
nitrogen source of cyanobacteria (Oliver & Ganf 2000; Grego 
et al. 2004; Bastos et al. 2005; Ceballos et al. 2006).

The present study consists of qualitative and quantitative 
research of the phytoplankton community in the catchment 
area for the water supply of Macapá municipality. The 
quantitative analysis shows that, in the evaluated 
environment, two species stand out in terms of density 
and relative abundance: Aulacoseira granulata and Limnothrix 
planctonica. Nevertheless, the biovolume values show the 
contribution of A. granulata as being the most representative 
in the study area. The paper also shows the environmental 
influence on phytoplankton species. The suspended solids are 
a natural condition that helps to control the phytoplankton 
density. On the other hand, ammonia is a common nutrient 
in domestic sewage that contributes to the phytoplankton 
increase and may be reduced with better investment in 
sanitation. These results demonstrate the biological and 
sanitary aspects of the species with the highest density 
and biomass (A. granulata and L. planctonica), which are 
more likely to influence water treatment in Macapá city.
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