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ABSTRACT
Species distribution modeling (SDM) studies of aquatic macrophytes are still attached to methodological paradigms 
focused on terrestrial plants, such as the use of bioclimatic layers. Our goal was to evaluate the applicability of this 
paradigm based on a SDM study of Egeria densa, Pontederia crassipes, and Salvinia auriculata in the São Francisco river, 
Brazil. We compared performances of optimizations of computed models using AUC and TSS with distribution records 
of these species and bioclimatic layers, or limnological layers generated from the interpolation of data obtained in 
the field. We calculated models using six algorithms. The models calculated using layers of limnological variables 
had higher performances than did those calculated using layers of bioclimatic variables, except when the Maximum 
Entropy Default algorithm was used. We attribute these results to the specificities of the data obtained to develop the 
limnological layers, such as observations obtained in different habitats of the river and during different hydrologic 
periods. We conclude that the use of bioclimatic layers, a methodological paradigm traditionally used for SDM of 
aquatic macrophytes, can be questionable for some situations, such as in investigations at local and regional scales.
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Introduction
Species distribution modeling (SDM), also known as 

ecological niche modeling or habitat suitability modeling, 
is a method that employs mathematical algorithms to 
correlate distribution records of one or more species with 
environmental conditions (e.g., bioclimatic). The approach 
detects patterns in data and can generate predictive 
distribution models for species (Anderson et al. 2002; 
Guisan & Thuiller 2005; Guisan et al. 2013). The use of 
SDM allows researchers to analyze complex non-linear data, 
with interactions and incomplete data, for several ecological 

applications, such as (i) planning biodiversity conservation 
strategies; (ii) predicting the impacts of future climate 
change on species and communities; and (iii) managing 
biological invasions (Miller 2010; Elith & Franklin 2013).

Along with these broad SDM applications, researchers 
have gradually increased their focus on the precision and 
uncertainty of species predictions (Segurado & Araujo 2004; 
Guo et al. 2015; Barbet-Massin et al. 2018). Many of these 
studies have shown that arbitrary choices regarding the 
methods used in SDM can create misleading inferences of 
the potential distribution of species, thus compromising 
model applicability (De Marco Jr. & Siqueira 2009; Kamino 
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et al. 2011; Giannini et al. 2012; Elith & Franklin 2013). 
Studies have also indicated that planning SDM requires 
biological knowledge of the target species, careful selection 
of distribution records and environmental variables, 
choosing an adequate algorithm for the application of the 
model or the number of distribution records (De Marco Jr. 
& Siqueira 2009; Miller 2010; Kamino et al. 2011; Elith & 
Franklin 2013).

The methodology used for SDM generally follows the 
paradigms of the most well-studied biological groups 
(Giannini et al. 2012), despite the lack of evidence of a 
methodological pattern that applies to all species (Segurado 
& Araujo 2004; Luoto et al. 2005; Barbet-Massin et al. 2012). 
For instance, SDM studies with aquatic macrophytes follow 
methodological trends of studies focusing on terrestrial 
plants (Cancian & Camargo 2011; Lopes et al. 2017). The 
use of bioclimatic variables exported from an available 
database, e.g. WordClim (Fick & Hijmans 2017) or Chelsa 
(Karger et al. 2017), is a common methodological practice 
and frequently appropriate for SDM studies of current 
and future distributions of terrestrial species (Kamino 
et al. 2011, Porfirio et al. 2014, Fourcade et al. 2017). 
Another routine methodological practice in SDM studies 
with terrestrial plants is selecting grain size based on data 
availability, without considering the biology/ecology of 
the species and the spatial scale of the study (Manzoor et 
al. 2018).

The use of these  methodological practices in SDM 
studies with aquatic macrophytes may generate biases 
in model predictions since this group of plants generally 
presents particular biological and ecological characteristics 
(Cancian & Camargo 2011). Aquatic macrophytes include 
plant species with different growth patterns of their 
vegetative organs in relation to the water column and the 
substrate, such as emergent, floating, and submerged, for 
example (Thomas & Esteves 2011). Emergent macrophytes 
have their roots within the substrate, while their stems 
and/or leaves are produced above the water. On the other 
hand, floating and submerged macrophytes have aquatic 
roots (which can be buried in the substrate) or completely 
lack them, while their stems and/or leaves float at surface 
or are kept below (submerged) (Pott & Pott 2000). Aquatic 
macrophytes are distinctly distributed according to the water 
depth of the ecosystem, with emergent plants being found 
in shallower water than are floating and submerged plants 
(Pott & Pott 2000). Thus, emergent, floating, and submerged 
macrophytes have unique interactions with the aquatic biota 
and show distinct adaptations to environmental conditions, 
especially with the physicochemical conditions of the water 
and sediment (Thomas & Esteves 2011).

Therefore, traditionally, limnological characteristics (e.g., 
temperature, nutrient availability, pH, electric conductivity) 
or hydrological characteristics (e.g., water level fluctuations) 
are applied in predictive models for the occurrence of aquatic 
macrophyte species in tropical ecosystems (Bini & Thomaz 

2005; Sousa et al. 2009; Moura-Júnior et al. 2016a; 2020; 
Lacet et al. 2019). The association of these variables is widely 
used when the goal is to infer the occurrence or distribution 
of aquatic macrophytes on a local scale (Heegaard et al. 2001; 
Barendregt & Bio 2003; Pulzatto et al. 2019). However, the 
lack of specific freshwater environmental information at 
fine spatial scales interferes with large-scale analyses of 
the biology, biogeography, conservation, and ecology of 
aquatic organisms (Domisch et al. 2015). Therefore, SDM 
studies with aquatic macrophytes have commonly used 
layers of bioclimatic variables, mostly due to these layers 
being available from free access data platforms (Cancian & 
Camargo 2011; Lopes et al. 2017).

Thus, we evaluated the applicability of SDM for aquatic 
macrophytes using different types of environmental layers. 
We chose three aquatic macrophytes with different growth 
forms (Egeria densa, Pontederia crassipes, and Salvinia 
auriculata) to compare two spatial distribution models: (i) 
one calculated using layers of bioclimatic variables from 
the Chelsa 1.2 database (Karger et al. 2017); and (ii) one 
calculated using layers of limnological variables developed 
from the interpolation of data measured in the field.

Materials and methods

Study area and sampling periods
The study took place on the São Francisco river, which 

is subdivided into four sections, established by geopolitical 
criteria (ANA 2020): (i) Upper; (ii) Middle; (iii) Sub-middle; 
and (iv) Lower. The High section of the São Francisco river 
is mostly located in the Central-West and Southeast regions 
of Brazil within the Cerrado domain. The Middle, Sub-
middle, and Lower sections are mostly located within the 
Caatinga domain, which is located in the semiarid region 
of Northeast Brazil (ANA 2020).

Twelve field expeditions were carried out between 
October 2006 and September 2010. Each expedition 
travelled approximately 450 km of the main riverbed of 
the São Francisco river through the Middle, Sub-middle, and 
Low sections (Fig. 1). Six of the expeditions were carried 
out during the flood season and six during the ebb season.

Species ecology
The studied species were Egeria densa Planch. 

(Hydrocharitaceae), Pontederia crassipes  Mart. 
(Pontederiaceae), and Salvinia auriculata Aubl. (Salviniaceae). 
E. densa is a freshwater angiosperm with a rooted-
submergent growth form (Moura-Júnior et al. 2015). 
P. crassipes is also an angiosperm while S. auriculata is a 
monilophyte, both of which occur in still- and slow-moving 
water of freshwater ecosystems and have free-floating and 
rooted-floating growth forms, respectively (Barufi et al. 
2017; Moura-Júnior et al. 2015). These species are native 
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to Brazil and are commonly found in rivers and reservoirs 
(Pott & Pott 2000; Pellegrini et al. 2018; Flora do Brasil 2020 
2020). They are capable of vegetative propagation and have 
a high rate of primary productivity, which is why they are 
classified as weed or invasive species in several regions of 
South America, North America, Europe, Southern Africa, 
East Asia, and Oceania (Pott & Pott 2000; Bini & Thomaz 
2005; Pompêo 2017; Moura-Júnior et al. 2020).

Distribution records
During the field expeditions, the geographic coordinates 

of the distribution records of the three studied species in 
the river were marked using a Global Positioning System 
(GPS) receiver (Garmin, Datum WGS 84). Only records of 
populations with specimens documented during at least 
two expeditions were validated in order to avoid stochastic 
presences caused by propagules dragged by river flow. 
Furthermore, distribution records were also obtained from 
of the Brazilian Herbaria Network, available at SpeciesLink 
(2018). Scientific papers of journals indexed by Scopus, 
Web of Science and Scielo were consulted to expand the 
search for species records. Duplicated records were removed, 
and only those whose geographic coordinates were taken 
at a collection site (Kamino et al. 2011), and that did not 
represent land, were validated. In order to reduce the effects 
of sampling and spatial autocorrelation biases on model 
performance (Boria et al. 2014), we excluded all but one 
distribution record within an area of 10 km2. Information 
on the distribution records of each of the three species can 
be accessed in Table S1 in supplementary material.

Limnological and climatic data
Limnological data and water samples for laboratory 

analysis were collected during the 12 field expeditions 
at 69 sample points across the Middle, Sub-middle, 
and Low sections of the São Francisco river (Fig. 1). 
The evaluated limnological variables were: ammoniacal 
nitrogen, NH4 (mg/L-1); chlorophyll, CHL (µg/L-1); 
conductivity, CON (µS); dissolved oxygen, DO (mg/L-1); 
inorganic phosphorus, PO4 (mg/L-1); nitrate - NO3 (mg/L-

1), nitrite - NO2 (mg/L-1); pH; pheophytin, PHE (µg/L-1); 
temperature, TEM (ºC); total phosphorus, TP (mg/L-1); 
transparency, SEC (m); and turbidity, TUR (NUT). The 
variables CON, DO, pH, TEM, and TUR were measured 
in field using a multiparameter device (YSI, 556 MPS 
model - Multiprobe System), and Sec using a Secchi disc. 
Concentrations of CHL, PHE, NO3, NO2, NH4, PO4, and 
TP were registered using laboratory protocols available 
in the literature (Lorenzen 1967; Golterman et al. 1978; 
Mackereth et al. 1978; Valderrama 1981).

The mean value per sample point was calculated for 
each limnological variable, considering the measurements 
obtained from all field expeditions. The distribution of the 
data was evaluated to identify outliers amongst the sample 
points, which were removed from subsequent analyses. 
Removal of outliers resulted in a total of 61 sample points, 
which were used to create rasters for the limnological 
variables. All limnological variables were spatialized over 
a one-kilometer buffer along the São Francisco river using 
the interpolator algorithm “Inverse Distance Weighting” 
(IDW) of the “gstat” package (Pebesma 2004) of R software  

Figure 1. Localization of São Francisco river region used as a background in our study. Caption: (sample points) - Places where we 
obtained the limnological data.

https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
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(R Development Core Team 2019). The interpolation 
function in the “raster” package (Hijmans & Van-Etten 2020) 
was then used to create rasters with a 1 km² resolution.

Nineteen bioclimatic variables were exported from the 
Chelsa 1.2 database (Karger et al. 2017) and demarcated to 
the same background and resized to the same resolution (i.e., 
1 km²) as the limnological variables. The bioclimatic variables 
summarize mean temperature and mean precipitation values 
from 1979 to 2013.

In order to reduce dimensionality and multicollinearity, 
and to avoid excessive parameterization when performing 
the SDM, a Principal Components Analysis (PCA) was 
performed for each set of environmental variables 
(Peterson et al. 2007; Dormann et al. 2013). Only the 
principal components (PCs) that collectively explained over 
95% of the total variation in the data were selected. Thus, 
the first two PCs were selected for the set of limnological 
variables and the first six PCs for the set of bioclimatic 
variables (Tabs. S2 and S3 in supplementary material). 
The PCA was performed with the “prcomp” function of 
the “stats” package of R software (R Development Core 
Team 2019).

Species distribution models
We chose to use six SDM algorithms, each with different 

assumptions: Domain (DOM); Generalized Linear Model 
(GLM); Generalized Additive Model (GAM); Maximum 
Entropy Default (MXD); Random Forest (RDF); and Support 
Vector Machine (SVM). Overviews of the algorithms and 
their adjustments are detailed in Table S4 in supplementary 
material. Every SDM and performance evaluations were 
done using the “ENMTML” package (Andrade et al. 2020) 
of R software (R Development Core Team 2019).

Ten optimization procedures were calculated for each 
of the SDM algorithms using two different combinations 
of environmental layer types. Each of these procedures 
involved training and testing the models by partitioning 
species distribution records, using the Bootstrap method, 
into two groups: (i) 70 % for training; and (ii) 30 % for 
testing. For SDM algorithms that require absence or pseudo-
absence records (Tab. S4 in supplementary material), the 
statistical package was configured to select 1,000 pseudo-
absences (i.e., ~10 % of the background) in grid cells that 
had lower environmental suitability for the presence of 
the species (Engler et al. 2004; Barbet-Massin et al. 2012). 
The continuous prediction obtained from the optimization 
procedures was then transformed into binary prediction 
using a threshold that maximizes the True Skill Statistic 
(TSS) and reduces excessive prediction from models (Liu 
et al. 2005).

Finally, the performance of optimization procedures 
was evaluated using TSS and Area Under the Curve (AUC) 
evaluation measures, which have been previously used for 
performance evaluations in other SDM studies of aquatic 

macrophytes (Mukherjee et al. 2011; Moura-Júnior et al. 
2016b; Lopes et al. 2017; Nascimento et al. 2020). The TSS 
and AUC indicators quantify a model’s ability to distinguish 
presences from absences, or the presence of samples in 
the background when absences are not available. The TSS 
discriminates a model’s overall precision based on its 
random accuracy, and provides a score between -1 and 
1, with values of approximately 1 indicating models with 
great performance (Allouche et al. 2006). The AUC can be 
interpreted as a mean sensibility value (i.e., the proportion 
of correctly predicted presences) over the specificity value 
(i.e., the proportion of correctly predicted absences) for all 
possible thresholds (Liu et al. 2011). The scores for AUC 
range from 0 to 1, with values of approximately 1 indicating 
models with great performance (Fielding & Bell 1997). 
Modeling performance is considered satisfactory when 
mean AUC or TSS of the optimization procedure is over 
0.75 (Fielding & Bell 1997) or 0.5 (Allouche et al. 2006), 
respectively.

Statistical analysis
To test whether the conventional methodologies 

used for SDM of terrestrial plants were adequate for the 
investigated species of aquatic macrophytes, we compared 
the distribution of the TSS and AUC values obtained from 
the ten optimizations of each combination of environmental 
layers and between species. Comparisons used the Kruskal-
Wallis test followed by the pairwise Wilcox test with 
Bonferroni adjustment, implemented with R software (R 
Development Core Team 2019).

Results
Overall, the performance evaluation measurements for 

the optimization procedures (i.e., AUC and TSS) of models 
calculated for each species provided congruent results when 
considering the same type of environmental layer (Fig. 2). 
In the comparison among species, the models calculated 
using layers of limnological variables presented equal 
performances, with higher values than those calculated using 
layers of bioclimatic variables (Tab. S5 in supplementary 
material). The performance of the species optimization 
procedures only differed when considering the bioclimatic 
variables (Tab. S5 in supplementary material).

Analysis of the models calculated for each algorithm 
revealed that the results for AUC and/or TSS from the 
model optimizations of models calculated for each 
species using MXD diverged from those obtained using 
the other algorithms (Tab. 1). The models calculated for 
each species using layers of limnological variables had 
higher performances than those calculated using layers of 
bioclimatic variables, except for models calculated with the 
MXD algorithm (Tab. 1).

https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
https://minio.scielo.br/documentstore/1677-941X/jtd5vhvstwsNjYKYkbpMftS/0a90f08f2cef83e80facef168d09658461b82e1b.pdf
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Figure 2. Boxplots containing AUC (A-C) and TSS values (D-F) to all tested combinations of species and environmental layers. Each 
boxplot summarizes the TSS and AUC values of the six tested algorithms. Caption: (X2, p) - Indicates the models that differed or were 
equivalent regarding the optimization performances, according to the Kruskal-Wallis analysis.

Table 1. Median (Med), Maximum (Max) and Minimum (Min) for the True Skill Statistic (TSS) and Area Under the Curve (AUC) from the 
computed optimizations using six SDM algorithms with different combinations of environmental layers. Caption: (a, b) indicate which 
models differed or were equivalent with regard to optimizations performance of each SDM algorithm, according to the Kruskal-Wallis test.

Algorithm Metric

Egeria densa Pontederia crassipes Salvinia auriculata

Bioclimatic Limnological Bioclimatic Limnological Bioclimatic Limnological

Med (Max / Min) Med (Max / Min) Med (Max / Min) Med (Max / Min) Med (Max / Min) Med (Max / Min)

DOM AUC 0.66 (0.74 / 0.54) a 0.86 (0.98 / 0.71) b 0.59 (0.75 / 0.35) a 0.91 (1 / 0.66) b 0.55 (0.68 / 0.36) a 0.84 (0.98 / 0.56) b

GAM AUC 0.77 (0.91 / 0.58) a 0.91 (1 / 0.72) b 0.63 (0.75 / 0.55) a 0.92 (1 / 0.57) b 0.58 (0.89 / 0.38) a 0.87 (1 / 0.55) b

GLM AUC 0.74 (0.96 / 0.64) a 0.92 (1 / 0.72) b 0.66 (0.94 / 0.54) a 0.93 (1 / 0.57) b 0.64 (0.88 / 0.46) a 0.87 (1 / 0.56) b

MXD AUC 0.67 (0.75 / 0.55) a 0.29 (0.54 / 0.01) b 0.63 (0.76 / 0.46) a 0.26 (0.54 / 0) b 0.62 (0.79 / 0.39) a 0.54 (0.80 / 0.18) a

RDF AUC 0.76 (0.94 / 0.62) a 0.88 (1 / 0.74) b 0.81 (0.93 / 0.63) a 0.93 (1 / 0.72) b 0.66 (0.96 / 0.49) a 0.90 (1 / 0.69) b

SVM AUC 0.77 (0.92 / 59) a 0.87 (1 / 0.65) b 0.69 (0.91 / 0.42) a 0.88 (1 / 0.53) b 0.60 (0.74 / 0.36) a 0.96 (1 / 0.79) b

DOM TSS 0.40 (0.53 / 0.23) a 0.64 (0.93 / 0.47) b 0.36 (0.54 / 0.10) a 0.74 (0.99 / 0.32) b 0.29 (0.47 / 0.03) a 0.70 (0.89 / 0.33) b

GAM TSS 0.57 (0.73 / 0.30) a 0.85 (0.99 / 0.57) b 0.40 (0.67 / 0.29) a 0.76 (1 / 0.32) b 0.31 (0.72 / 0.04) a 0.75 (1 / 0.33) b

GLM TSS 0.59 (0.83 / 0.38) a 0.85 (0.99 / 0.57) b 0.41 (0.83 / 0.16) a 0.76 (1 / 0.32) b 0.42 (0.72 / 0.03) a 0.75 (1 / 0.33) b

MXD TSS 0.42 (0.64 / 0.24) a 0.05 (0.39 / 0) b 0.37 (0.59 / 0.15) a 0 (0.49 / 0) b 0.36 (0.66 / 0.12) a 0.29 (0.68 / 0.05) a

RDF TSS 0.49 (0.83 / 0.35) a 0.86 (1 / 0.54) b 0.60 (0.81 / 0.28) a 0.83 (1 / 0.33) b 0.33 (0.86 / 0.17) a 0.83 (1 / 0.33) b

SVM TSS 0.57 (0.79 / 0.31) a 0.86 (1 / 0.43) b 0.44 (0.78 / 0.21) a 0.83 (1 / 0.33) b 0.31 (0.53 / 0.09) a 0.83 (1 / 0.57) b
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Discussion
The present study found that the most relevant 

performances of SDM for aquatic macrophytes were 
calculated based on the interpolation of high-resolution 
limnological data collected during field expeditions across 
the Middle, Sub-middle, and Lower sections of the São 
Francisco river. Comparison of the AUC and TSS results for 
the optimizations of the calculated models shows that the 
use of limnological layers is more suitable than bioclimatic 
layers at a resolution with fine-spatial detail level for 
granularity. Studies indicated that the set of environmental 
variables, which better explains the distribution of aquatic 
macrophyte species, depends on the level of spatial 
resolution and the geographical scale of the data and scope 
of the investigation (Barendregt & Bio 2003; Capers et 
al. 2010; Moura-Júnior et al. 2015; Pulzatto et al. 2019). 
Study areas with extensive latitudinal and/or longitudinal 
gradients present heterogeneous bioclimatic systems, which 
significantly influence the geographical distribution of 
aquatic macrophyte species (Oliveira et al. 2019; Murphy 
et al. 2019). This explains the satisfactory performance 
of SDM studies of aquatic macrophytes using layers of 
bioclimatic variables and whose models were applied to a 
very extensive background (Lehtonen 2009; Mukherjee et 
al. 2011; Lopes et al. 2017; Rodriguez-Merino et al. 2018; 
Nascimento et al. 2020), unlike the present study.

Nonetheless, using bioclimatic layers based on 
observations at coarse spatial grains for local and regional 
scales can compromise the SDM of aquatic organisms 
(Domisch et al. 2015). Furthermore, bioclimatic layers 
based on interpolation methods applied to meteorological 
station data can fail to predict bioclimatic patterns, 
mainly in regions with a low density of stations (Soria-
Auza et al. 2010). In these situations, the use of specific 
freshwater environmental layers, based on observations 
of fine spatial grains, is advised (Domisch et al. 2015). 
In general, abiotic characteristics of water are incredibly 
variable at a local geographic scale (Pulzatto et al. 2019), 
particularly in fluvial ecosystems with artificial dams (Wetzel 
2001), such as the São Francisco river. It is common to 
observe the development of lentic, lotic, and semi-lotic 
environments in such ecosystems, each possessing distinct 
limnological and hydrological characteristics. Consequently, 
such characteristics influence the distribution of aquatic 
macrophyte species (Wetzel 2001; Moura-Júnior et al. 
2011; 2020).

Since our study area is located in a latitudinal range 
with little geographic variation in the Caatinga domain 
(Moro et al. 2015), we also consider this area to possess 
limited bioclimatic variation at local and regional scales. In 
accordance, the results show that high-resolution climate 
data still lack the precision to reflect the fine-scale patterns 
needed for improving the accuracy of model predictions 
(Manzoor et al. 2018). Although our study used existing 

high-resolution bioclimatic variables, it can still display 
errors quantified by technical validation (Karger et al. 
2017). For instance, the study validated the results of the 
CHELSA and the different correction steps for bias using 
independent meteorological station data (Karger et al. 
2017). However, it is possible to notice that the validation 
did not use independent data from South America, the 
continent where the present study area took place.

On the other hand, limnological data collected in 
the present study were obtained directly from the field, 
in different habitats of the river, and during distinct 
hydrologic periods, which implies specific observations 
at local and regional scales. Therefore, it is expected that 
species distribution models calculated using bioclimatic 
layers would be less precise at detecting the environmental 
adjustments of species when compared to models calculated 
using layers of limnological variables. This was confirmed 
by the optimization performance of models calculated 
using the algorithms DOM, GLM, GAM, RDF, and SVM. 
The AUC and TSS results for the models using MXD were 
deemed inconclusive since most of the optimizations 
presented unsatisfactory performances. The optimization 
performance of a species distribution model for this 
algorithm is directly related to the number of distribution 
records for that species or the study area occupied by it 
(i.e., prevalence) (Van-Proosdij et al. 2016). Low AUC and 
TSS values for the optimizations utilizing MXD are to be 
expected, considering the high prevalence of the studied 
species, which was confirmed by our data.

A shallow and impulsive interpretation of our findings 
could put into check all previous SDM studies of aquatic 
macrophytes using bioclimatic layers. Nonetheless, our 
results need to be put into the proper context so as not to 
diminish previous studies. We highlight that our SDM was 
calculated into a background area of around 500 km². Thus, 
these parameters only allow interpretation at a fine scale of 
resolution; the SDM for certain aquatic macrophyte species 
performs better using layers of limnological variables than 
layers of bioclimatic variables.

Such a finding is of great relevance once one considers 
the direct influence it might have on the amount of funding 
invested into field expeditions for SDM studies, mainly 
when they focus on a broad geographic extension or have 
a wide scope (De Marco Jr. & Siqueira 2009; Kamino et 
al. 2011; Giannini et al. 2012). Therefore, we suggest that 
methodology for SDM studies of aquatic macrophytes be 
outlined based on the cost-benefit of the project, the unique 
characteristics of the target species, the applied algorithms, 
and the goals of the study. Thus, data obtained in the field can 
be applied to specific SDM studies with aquatic macrophytes, 
such as colonization predictions or the disorderly population 
growth of invasive species or weeds in dammed rivers. In 
these cases, the selection of environmental variables to be 
utilized in a model is fundamental to a study’s success. The 
incorrect or arbitrary choice of environmental variables used 
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in SDM studies is cited as one of the main issues when this 
approach is used as the basis for conservation decisions or 
the control of biological invasions (De Marco Jr. & Siqueira 
2009; Kamino et al. 2011; Giannini et al. 2012).

In summary, we observed that the layers of limnological 
variables were able to detect environmental specificities 
with greater spatial detail than the bioclimatic layers, 
which was also reflected in the performances of models. 
Finally, we conclude that certain methodological paradigms 
conventionally used for SDM of aquatic macrophytes are 
of questionable use under certain situations, such as using 
bioclimatic layers at fine spatial grains. We believe that our 
study represents a turning point for studies that evaluate the 
proper use of different types of environmental layers in SDM 
studies of aquatic macrophytes. Nevertheless, it is imperative 
to highlight that the inconclusive results of the optimizations 
using the MXD algorithm emphasize the need for further 
studies on environmental predictors for aquatic macrophytes 
at different spatial scales and calculated using different 
algorithms. Thus, it is essential to increase investigative 
efforts to encompass as many bioclimatic zones and species 
as possible. After all, aquatic macrophytes represent an 
ecological group of over 1,500 species worldwide, with several 
types of morphophysiological adjustments to different types 
of aquatic environments (Chambers et al. 2008).
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