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Abstract: Currently, algae and algae products are extensively applied in the 
pharmaceutical, cosmetic and food industries. Algae are the main organisms that take 
up and store heavy metals. Therefore, the use of compounds derived from algae by the 
pharmaceutical industry should be closely monitored for possible contamination. The 
pollution generated by heavy metals released by industrial and domestic sources causes 
serious changes in the aquatic ecosystem, resulting in a loss of biological diversity and 
a magnifi cation and bioaccumulation of toxic agents in the food chain. Since algae are 
at the bottom of the aquatic food chain, they are the most important vector for transfer 
of pollution to upper levels of the trophic chain in aquatic environments. Moreover, 
microalgae are also used for the bioremediation of wastewater, a process that does 
not produce secondary pollution, that enables effi cient recycling of nutrients and that 
generates biomass useful for the production of bioactive compounds and biofuel.
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Introduction

 Environmental contamination by heavy metals 
is a growing global problem, which is directly related to 
anthropogenic actions. For this motive, many techniques 
for environmental remediation of heavy metals are being 
studied (Ofer et al., 2003; Bayramoğlu et al., 2006; Rai, 
2008, 2010; Rawat et al., 2011). Among these techniques, 
the application of microorganisms has been widely 
discussed, mainly in view of their capability to remove 
pollutants from aquatic environments with good effi ciency 
and relatively low cost. In this context, macroalgae and 
microalgae have special properties that can be used 
as a powerful technology to reduce environmental 
contamination.
 In particular, intense human activities can 
result in high metal concentrations in the environment, 
leading to numerous problems (Phillips, 1995; 
MacFarlane & Burchett, 2001). Thus, although low 
concentrations of some heavy metals are metabolically 
important to many living organisms, at higher levels 
they can potentially be toxic (Phillips, 1995; Sunda & 
Huntsman, 1998; Pinto et al., 2003a). The pollution 
generated by heavy metals released from industrial and 

domestic sources causes serious changes in the aquatic 
ecosystem, resulting in a loss of biological diversity 
and the magnification and bioaccumulation of toxic 
agents in the food chain (He et al., 1998).
 Aquatic ecosystems such as rivers, ponds 
and lakes are mainly affected by pollutants and heavy 
metals discharged in industrial effluents and represent 
a potential risk to the health of humans and ecosystems 
(Rai, 2010). According to Rai (2008), several new 
technologies have been developed for the removal 
of heavy metals from wastewaters in a feasible way. 
Nonetheless, these techniques are often only partially 
effective and of relatively high cost, which can be 
an obstacle to large-scale investment. Although trace 
metals can be toxic to aquatic organisms and can be 
accumulated by several marine species (Bargagli et al., 
1996), recent research has shown that some bacteria, 
fungi, mussels, fishes and algae have the capability 
to absorb trace metals and thus have the potential to 
serve as economically viable biological materials for 
the reduction of environmental pollution (Lourie et al., 
2010).
 Some metals and their compounds have been 
linked to mechanisms of carcinogenicity and metals 
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such as cadmium and lead have been widely studied 
in view of their potential carcinogenicity to humans 
(Beyersmann & Hartwig, 2008). In addition, oxidative 
stress in living organisms can be related to the toxicity 
of metals, involving an increase in the concentration 
of reactive oxygen species and/or a reduction in the 
cellular antioxidant capacity (Pinto et al., 2003a). 
Oxidative stress can be associated with the inhibition of 
photosynthesis, of chlorophyll production or of growth 
in primary producers. These toxic effects can result 
from exposure to high concentrations of metals or to 
exposure of lower concentrations for longer periods, 
reflecting the fact that the toxicity of heavy metals is 
largely dose-dependent (Baumann et al., 2009). It has 
been shown that the photosynthesis of some species 
of macroalgae can be affected by the accumulation of 
heavy metals (Gledhill et al., 1997; Baumann et al., 
2009). Collen et al. (2003) observed that copper (Cu) and 
cadmium (Cd) induced oxidative stress in Gracilaria 
tenuistipitata Zhang & Xia, a red macroalgae in the 
Gracilariaceae (Rhodophyta) family. Moreover, due to 
the release of heavy metals and other contaminants into 
the environment, the difficulty of cultivating Gracilaria 
has increased (Tonon et al., 2011). Some authors (Pinto 
et al., 2003a; Torres et al., 2008) have pointed out that 
exposure to these elements can be a barrier to the growth 
of many marine organisms, including phytoplankton 
and macroalgae, which could eventually result in a 
decrease in biodiversity. Of particular importance is 
the finding that the lipid composition of algae can be 
altered by the influence of heavy metals (Vavilin et al., 
1998; Rocchetta, et al., 2006). At the same time, it is 
well known that the oxidation of lipids can occur as a 
result of oxidative stress, reflecting the production of 
reactive oxygen/nitrogen species (Pinto et al., 2003b; 
Leitão et al., 2003). In other experiments (Okamoto et 
al., 2001; Collen et al., 2003; Rocchetta et al., 2006), 
it was demonstrated that the levels of polyunsaturated 
fatty acids (PUFA) are more affected, suffering a 
greater decrease in the presence of heavy metals. 
According to Pinto et al. (2011), Cd2+ was more toxic 
than Cu2+ and greatly reduced the PUFA concentration 
in G. tenuistipitata. Here it is important to note that 
Gracilaria is an increasingly important source of 
secondary metabolites with antimicrobial, antioxidant 
and antitumoral activities, principally terpenes, several 
fatty acids and nitrogenous compounds (Cardozo et al., 
2007; Boobathy et al., 2010; Zandi et al., 2010; Falcão 
et al., 2010; Tonon et al., 2011).
	 The biosorption capacity of the green algae 
species Spirogyra spp. and Cladophora spp. To 
accumulate lead (Pb2+) and copper (Cu2+) from aqueous 
solutions was evaluated by Lee & Chang (2011). On the 
basis of continuous adsorption-desorption experiments, 
these authors reported that both algal species were 

excellent biosorbents, with potential for further 
development. The microalgae Spirogya spp. adsorbed 
between 10-40 mg g-1 of Pb2+ and between 45-90 mg 
g-1 of Cu2+ from aqueous solutions containing different 
concentrations of Pb2+ and Cu2+. By comparison, the 
algae Cladophora spp. adsorbed between 5-10 mg g-1 
of Pb2+ and between 30-45 mg g-1 of Cu2+.
	 Several studies have explored the metal binding 
properties of different biosorbents such as fungi, yeasts, 
bacteria and algae (Volesky & Holan, 1995; Kapoor & 
Viraraghavan, 1995). Numerous studies have employed 
macroalgae and microalgae for the biosorption of 
metals and the ability of certain species of macroalgae 
to accumulate and tolerate high levels of metals has 
been demonstrated. Hence, algae represent an effective, 
economically viable and environmentally friendly (Yu 
et al., 1999) alternative for the bioremediation of heavy 
metals, especially cadmium and lead, the two metals that 
are subject of the present review.

Bioremediation

	 Heavy metals discharged into the environment 
tend to persist indefinitely, sometimes accumulating in 
living organism via food chain, and are thus considered 
to represent a potentially serious environmental threat 
(Kuppusamy et al., 2004). The most effective and 
least expensive methods for the remediation of waters 
contaminated by heavy metals have been the focus of 
much research in recent decades, with the objective of 
reducing the risk to public health caused by the presence 
of these wastewater contaminants (Kumar et al., 
2009). Compared to conventional treatment methods, 
biosorption stands out because of the following 
advantages: high efficiency of removal of metals from 
dilute solutions; low cost; and minimization of chemical 
and/or biological sewage. Moreover, it does not require 
addition of nutrients or regeneration of the biosorbent 
and makes it possible to recover the metals (Kratochvil 
& Volesky, 1998). According to Goyal et al. (2003), 
the biosorption of metals can be performed by many 
different microorganisms, including bacteria, yeast, 
fungi and algae. Schiewer & Patil (1997) reported that 
the efficiency of different biosorbents for the removal 
of heavy metals can depend on the pH of the solution.
	 Due to stricter government regulations, there 
has been a growing interest in cost-effective remediation 
technologies (Davis et al., 2003). In this context, 
bioremediation of polluted areas and wastewater can be 
an economically viable alternative, especially when the 
sorbent can be recycled and the heavy metals recovered 
for resale. Remediation of heavy metals encourages 
environmental awareness and ameliorates the effects 
of pollution (Salt et al., 1995). Bioremediation uses 
naturally occurring biomass as the substrate for 
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chelation of the metal ions, either passively or through 
non-metabolically mediated processes (Baumann et al., 
2009). 
	 Given their abundance in various environmental 
systems, their adaptability to different environmental 
conditions (Rajfur et al., 2010) and their ability to 
accumulate large amounts of heavy metals such as 
cadmium, lead, zinc, copper, chromium, and manganese 
(Anastasakis et al., 2011), algae appear to be the most 
appropriate microorganism for monitoring pollution of 
water resources by heavy metals (Wallenstein et al., 2009; 
Rajamani et al., 2007). Indeed, algae have been used for 
over 40 years for the treatment of wastewater, the first 
application being described by Oswald & Gotaas (1957). 
More recently, John (2000; Rawat et al., 2011) introduced 
the term phycoremediation to refer to remediation by 
algae. In this context, it is important to emphasize that 
phycoremediation has several applications in addition to 
the removal of metals. These include the: (i) removal of 
nutrients from municipal wastewater and from effluents rich 
in organic matter; (ii) removal of nutrients and xenobiotic 
compounds with the help of biosorbents based on algae; 
(iii) treatment of acidic wastewater and metals; (iv) 
sequestration of CO2; (v) transformation and degradation 
of xenobiotics; and (vi) detection of toxic compounds with 
algae-based biosensors (Rawat et al., 2011). 
	 Many intrinsic and extrinsic factors can 
influence the accumulation of metals by algae, such 
as cellular activity, exposure time, chelating species, 
and environmental factors such as pH, salinity, organic 
matter, and temperature (Runcie & Riddle, 2004). 
Furthermore, structural differences between species 
influence their absorption capacity (Favero & Frigo, 
2002). For the macroalgae Durvillaea antarctica 
(Chamisso) Hariot, Runcie & Riddle (2004) observed 
a low metal content that could be ascribed to the low 
availability of the metals in the surrounding waters.
	 Recently, macroalgae have been increasingly 
used as a tool for monitoring marine environments 
contaminated by heavy metals (Daka et al., 2003; 
Stengel et al., 2004; Daby, 2006, Baumann et al., 
2009; Kumar et al., 2009; Tonon et al., 2011). Many 
macroalgae are able to accumulate high levels of trace 
metals, which are sometimes larger than those found 
in water samples from the same site (Cardwell et al., 
2002; Salgado et al., 2006). 
	 In order to determine the heavy metals present 
in environmental samples, analytical techniques such 
as atomic absorption spectrometry (AAS) (Carrilho 
et al., 2003; Zhang & O’Connor, 2005) have been 
widely used due to the relatively low cost. However, 
inductively coupled plasma mass spectrometry (ICP-
MS) and inductively coupled plasma optical emission 
spectrometry (ICP OES) have been increasingly used 
for metal determination in view of their much lower 

limits of detection and the capability of multielement 
detection when coupled with suitable sample preparation 
procedures (Mesko et al., 2011; Soares et al., 2012).
	 In the remainder of this review, we shall 
concentrate on two especially toxic heavy metals, 
cadmium and lead, and their biosorption by micro- and 
macroalgae.

Cadmium

	 Cadmium stands out among the heavy metals 
because it is relatively easily removed from waste 
streams, primarily due to its ability to form stable 
complexes with several different ligands (Ofer et al., 
2003). The presence of cadmium in natural waters is 
extremely undesirable since it is both toxic and a non-
essential element for most living organisms (Leborans 
& Novillo, 1996; Farias et al., 2002).
	 In a recent research, Tonon et al. (2011) 
evaluated the absorption of cadmium (Cd) and copper 
(Cu) by three species of Gracilaria: G. tenuistipata 
Zhang & Xia cultivated in the laboratory and exposed 
to the metal and G. birdiae Plastino & Oliveira and 
G. domingensis (Kützing) collected in their natural 
environments. G. tenuistipitata bioaccumulated higher 
concentrations of Cu than Cd, showing that this 
macroalgae is a metal bio-accumulating organism; the 
biological function of the accumulated Cd, if any, is 
currently unknown.
	 Stohs & Bagchi (1995) suggested that Cd 
ions might displace zinc and iron from proteins. This 
could potentially have deleterious consequences for 
seaweed growth because the liberation of iron ions 
might induce the Fenton reaction, producing reactive 
oxygen species (ROS) and total oxidative stress. In 
land plants, Cd competes for divalent ion carriers and 
can be transported with protons and type P ATPases. 
According to Guerinot (2000), the ability to compete 
for essential metal carriers is particularly important for 
cadmium (Cd), mercury (Hg) and lead (Pb). Baumann 
et al. (2009) evaluated the Cd concentration in seven 
algal species and noted that 10 mmol L-1 cadmium ion 
led to the greatest increase in Cd accumulation. The 
macroalgae Palmaria palmata (Linnaeus) Kuntze had 
the highest concentrations of Cd and Ascophyllum 
nodosum (Linnaeus) the lowest. Despite the fact that 
P. palmata accumulated the highest amounts of Cd 
and showed a significant reduction in fluorescence, no 
correlation was found between Cd accumulation and 
its toxicity. Küpper et al. (1996, 1998) demonstrated 
that photosynthesis can be affected by exposure to Cd 
and Zn, which can replace the Mg2+ in the chlorophyll 
molecule, affecting its light-harvesting ability.
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Lead

	 Lead is a more pernicious contaminant in 
aquatic environments and is rapidly accumulated by 
organisms (Ribeiro et al., 2010). Moreover, it is able 
to bind strongly to amino acids, enzymes, DNA and 
RNA and can induce the production of reactive oxygen 
species (ROS) like the superoxide radical and hydrogen 
peroxide that can cause severe oxidative damage 
to plant cells (e.g., by increasing membrane lipid 
peroxidation and permeability) (Apel & Hirt, 2004). 
Lead can inhibit the synthesis of chlorophyll because 
it changes the absorption of essential elements such as 
Mg and Fe (Sunda & Huntsman, 1998).
	 The biological functions of lead in algae 
are unknown (Pawlik-Skowronska, 2000), but lead 
is known to have adverse effects on microalgal 
morphology, growth and photosynthesis when present 
at high concentrations (Pawlik-Skowronska, 2002).
	 Baumann et al. (2009) showed that for brown 
algae there was significant variation in Pb concentrations 
for all seven species of algae examined. Lead proved to 
be less toxic than the other five metals evaluated, but was 
accumulated to a greater extent by all seven algae tested 
than the other metals. Moreover, none of the treatments 
with lead affected the fluorescence yield of either species. 
According to Miles et al. (1972), lead affects light 
absorption by PSI and PSII and the chloroplast coupling 
factor. However, Baumann et al. (2009) demonstrated 
that lead was the only metal out of five tested that did not 
reduce chlorophyll fluorescence in the species evaluated. 
The results indicaated that macroalgae, especially Ulva 
intestinalis Linnaeus, are promising organisms for the 
bioremediation of waters contaminated by lead, because 
of their apparent tolerance to Pb and their ability to 
accumulate lead at high rates. 

Applications of algae in the pharmaceutical industry 
and in environmental remediation

	 The pharmaceutical industry has shown great 
interest in the use of algae as a source of biochemically 
active substances (Burja et al., 2001, Singh et al., 2005, 
Blunt et al., 2005, Guaratini et al, 2005; Cardozo et 
al., 2008; Cardozo et al., 2009; Guaratini et al., 2009). 
The fact that algae may produce chemical prototypes of 
new therapeutic agents has stimulated bioprospecting 
for new algal secondary metabolites and the 
synthetic modification of compounds with potential 
pharmaceutical applications (Cardozo et al., 2007). In 
addition to novel biologically active substances, algae 
also provide compounds essential to human nutrition 
(Burja et al., 2001; Gressler et al., 2010).
	 Cardozo et al. (2006; 2007) described the main 
substances biosynthesized by algae with a potential 

economic impact on nutrition, public health and the 
pharmaceutical industry. The diversity of compounds 
synthesized by marine algae via a variety of metabolic 
pathways is the result of the defense strategies that 
they have developed in order to survive in a highly 
competitive environment. Hence, many of these 
secondary metabolites are chemically distinct from 
those found in terrestrial organisms (Burja et al., 2001; 
Singh et al., 2005; Blunt et al., 2005; Carignan et al., 
2009; Wijesinghe & Jeon, 2011). According to Kamatou 
et al. (2008), the presence of these compounds may 
help explain some of the traditional uses of medicinal 
plants.
	 Algae are ecologically important because 
they occupy the base of the food chain in aquatic 
ecosystems and produce half of the O2 and the majority 
of the dimethylsulfide released into the atmosphere. In 
addition, algae are the main source of food for bivalve 
mollusks in all stages of growth, for zooplankton 
(rotifers, copepods and brine shrimp) and for the larval 
stages of crustaceans and some species of fish (Cardozo 
et al., 2007) .
	 The quality of the food transferred to the 
higher trophic levels of the food chain is determined by 
the chemical composition of algae (such as fatty acids, 
sterols, amino acids, sugars, minerals and vitamins) 
(Brown & Miller, 1992; Di Mascio et al., 1995; 
Guaratini et al., 2007; Dhargalkar & Verlecar, 2009). 
The nutritional value of algal species depends on 
several characteristics such as size, shape, digestibility 
and toxicity (Cardozo et al., 2007). The Chinese, 
Japanese and Korean diet includes the consumption of 
several species of red and brown algae (Dawczynski et 
al., 2007). In addition to this traditional use in the East, 
people in many other parts of the world also consume 
or come into contact with algae-derived products 
used as additives in manufactured food products and 
processed meat and fruit or in everyday materials such 
as toothpaste, paint, solid air fresheners and cosmetics 
(Gressler et al., 2009; 2011). 
	 Algal biomass can be effectively applied in 
bioremediation because the proteins and polysaccharides 
of their cell walls can contain anionic carboxylate, 
sulfate or phosphate groups, which are optimal binding 
sites for metals (Farias et al., 2002). Several studies have 
shown that it is possible to enhance the accumulation of 
metals by algal biomass. Thus, Kumar & Gaur (2011) 
observed that pretreatment with CaCl2 generated new 
sites for metal ion binding by inducing cross-linking 
between the polymer chains of the exopolysaccharides 
present in the biomass. Mehta et al. (2002) and Kalyani 
et al. (2004) found that pre-treatment with HCl increased 
the metal binding capacity of biomass (by 39 or 70%, 
respectively), presumably be removing cationic species 
that were bound to the anionic functional groups, 
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making them available for binding of additional metal 
ions. An improvement in the biosorption capacity for 
metal ions could also be induced by an alkaline pre-
treatment, reflecting increased deprotonation of the 
acidic functional groups of the biomass (Sampedro et 
al.. 1995; Mehta & Gaur, 2001; Nagase et al., 2005; 
Singh et al., 2007, 2008). 
	 The performance of treatment systems using 
algal biomass can be reduced by the presence of 
chelating agents, such as fulvic acid, that can compete 
with the anionic groups of algal biomass for binding of 
metal ions (Pascucci & Kowalak, 1999). In addition, 
there is a decrease in the percentage of metal removed 
at higher metal concentrations (Pujari & Chandra, 
2000) due to the saturation of the available metal 
binding sites (Dönmez & Aksu, 2002). In this case, the 
use of a greater amount of biomass may not enhance the 
overall extent of metal ion binding if the metal ions that 
initially bind to a dense layer of cells create a screening 
effect (Zulkali et al., 2006).

Macroalgae 

	 Seaweeds represent a significant portion of 
global biodiversity. They constitute a large and diverse 
group of organisms that play vital ecological roles in 
marine communities and can be classified into three 
categories according to their pigmentation: brown, red 
and green algae (Wijesinghe & Jeon, 2011). 
	 Seaweeds are a potentially renewable marine 
resource and are known to be extremely rich in 
bioactive compounds (Chandini et al., 2008; Kladi et 
al. 2004) with novel biological activities (Kashman & 
Rudi, 2004; Plaza et al., 2008). The brown seaweeds 
or Phaeophyceae are noted for producing a range 
of active components, including unique secondary 
metabolites such as phlorotannins (Wijesinghe & Jeon, 
2011). In addition, several components of brown algae 
have been explored for their antioxidant, antiallergic, 
antiinflammatory, antiwrinkling and whitening 
properties. 
	 Compared to other types of biomass, brown 
algae showed the highest metal binding capacity, making 
them particularly attractive for the bioremediation of 
toxic heavy metals (Ofer et al., 2003). According to 
Davis et al. (2003), the linear polysaccharides known 
as alginate, which are present in gel form in the stem 
of algae, are responsible for the biosorption of heavy 
metals by these algae. Moreover, they noted that the 
orders Laminariales and Fucales are probably the largest 
seaweeds, and are the most abundant and widespread, 
enhancing their potential for cost-effective application 
in bioremediation. Macroalgae are usually sessile and 
accumulate metals over time, so that differences in the 
metal content of macroalgae depend on whether they 

are located near and far from sources of pollution and 
can be used to infer the source of metal contamination 
(Runcie & Riddle, 2004). However, as pointed out 
by Singh et al. (2007), this application does have its 
limitations because of the confinement of seaweeds 
to coastal areas and the difficulty of collecting them 
during the metal sorption process.
	 In a comparative study reported by Kumar et 
al. (2009), the ability to accumulate cadmium and lead 
was evaluated for five green marine macroalgae by 
employing initial metal concentrations in the range of 
20 to 80 mg L-1 and different contact periods. The Pb 
uptake values for Cladophora fasicularis (Mertens ex 
C. Agardh) Kützing ranged from 5.68 to 33.53 mg g-1, 
while Cd uptake values ranged from 4.08 to 18.78 mg 
g-1. The Cd uptake values for Ulva lactuca varied from 
3.89 to 7.84 mg g-1 and those for Pb uptake from 6.19 
to 25.07 mg g-1. For Chaetomorpha sp, the Pb uptakes 
were between 7.52 and 35.08 mg g-1 and the Cd uptakes 
between 7.98 and 31.55 mg g-1. Caulerpa sertularioides 
(S.G.Gmelin) M.A.Howe showed Cd uptake values in 
the range of 1.19 to 20.51 mg g-1 and Pb values in the 
range of 6.03 to 21.58 mg g-1. Valoniopsis pachynema 
(G. Martens) Borgesen had Cd uptakes in the range of 
7.69 to 17.31 mg g-1 and Pb uptakes from 6.42 to 37.71 
mg g-1. The efficiency of cadmiun absorption varied 
in the order: Chaetomorpha sp. > C. sertularioides 
> C. fasicularis > V. pachynema > U. lactuca; for 
lead, the corresponding order was: V. pachynema > 
Chaetomorpha sp. > C. fasicularis > U. lactuca > C. 
sertularioides. During the experimental exposure of the 
seaweeds to these two heavy metals, the concentration 
of free metal ion decreased significantly, demonstrating 
that seaweeds can be excellent biosorbents.
	 Figueira et al. (2000) used several species of 
the brown seaweeds Durvillaea sp., Laminaria sp., 
Ecklonia sp. and Homosira sp., pre-saturated with Ca, 
Mg and K, and Hashim & Chu (2004) examined seven 
species of brown, green and red seaweeds in order to 
assess their ability to remove cadmium from aqueous 
medium. 
	 Gosavi et al. (2004) demonstrated that four 
genera of macroalgae (Ulva sp., Enteromorpha sp., 
Chaetomorpha sp. and Cladophora sp.) accumulated 
significant amounts of Fe, Al, Zn, Cd, Cu, As and Pb, 
noting that cadmium was absorbed better by Cladophora 
sp. (1.6±0.3 mg g-1), while Chaetomorpha sp. and 
Enteromorpha sp. absorbed lead better. According to 
Thomas et al. (2003), brown algae are the most effective 
and promising substrates for Pb accumulation. Farias 
et al. (2002) evaluated eleven species of macroalgae 
from the Antarctica; the highest levels of trace metals 
were found in Monostroma hariotii Gain and Phaeurus 
antarcticus Skottsberg. However, M. hariotii was not 
able to accumulate As, Cd and Pb, which are relevant 
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because of their potential toxicity to living organisms. 
Table 1 provides an annotated compendium of literature 
reports published in the last decade on the application 
of macroalgae for the biosorption of metals.

Microalgae

	 As an important biological resource with 
multiple applications, microalgae have attracted great 
interest (Sigaud-Kutner et al., 2002; Pinto et al., 
2003b; Rawat et al., 2011). At the same time that they 
bioremediate wastewater, they provide biomass that 
can be used to sequester carbon dioxide (Olguin, 2003; 
Munoz & Guieyesse, 2006; Briens et al., 2008; Singh & 
Gu, 2010 ) and to produce biofuels (methane, ethanol, 
hydrogen, butanol etc.). Particularly advantageous 
features of microalgae as a source of biomass for the 
production of biodiesel include a high growth rate and 
short regeneration time, a high lipid content, the minimal 
requirement of land area, and the use of wastewater as 
the source of nutrients for growth, without the use of 
chemicals such as herbicides and pesticides (Rawat 
et al., 2011). The main disadvantage is the difficulty 
of separation of the microalgae, which are usually 
unicellular, from their suspensions (Moreno-Garrido, 
2008).
	 The growth of microalgae can be indicative of 
water pollution since they typically respond to ions and 
toxins (Rawat et al., 2011). Thus, the remediation of 
wastewater by using microalgae is an environmentally 
friendly process that does not generate secondary 
pollutants and yields biomass that can be reused, 
enabling efficient recycling of nutrients (Munoz & 
Guieyesse, 2006). Besides their use in bioremediation 
and biofuel production, microalgae can also be used 
as additives in animal feed and for the extraction of 
added-value products such as carotenoids and other 
biomolecules (Rawat et al., 2011; Hobuss et al., 2011; 
Soares et al., 2012).
	 The release of municipal and industrial 
wastewater into bodies of water results in serious 
environmental changes (Arora & Saxena, 2005; Bashan 
& Bashan, 2010). Eutrophication, induced by a richness 
of organic matter and of inorganic chemicals such as 
phosphates and nitrate, can be particularly problematic 
(Olguin, 2003; Godos et al., 2009; Bashan & Bashan, 
2010). Eutrophication can be avoided with microalgae 
because they use the wastewater as a food source for 
their growth (Rawat et al., 2011) and the accumulation 
of biomass (Munoz & Guieysse, 2006; Pittman et al., 
2011). A wide range of microalgae, such as Chlorella 
sp., Scenedesmus sp., Phormidium sp., Botryococcus 
sp., Clamydomonas sp. and Spirulina sp. (Olguin, 2003; 
Chinnasamy et al., 2010; Kong et al., 2010; Wang et al., 
2010), can be effectively employed to treat domestic 

wastewater. Using a consortium of 15 isolated native 
algae, Chinnasamy et al. (2010) found > 96% removal 
of nutrients from treated wastewater.
	 The rapid decline in the levels of metals, 
nitrates and phosphates in wastewater upon microalgal 
treatment (Wang et al., 2010), demonstrates the 
efficiency of microalgae for the removal of metals and 
nutrients, while meeting the stringent requirements of 
international standards (Rawat et al., 2011).
	 Microalgae are a source of peptides with the 
special ability to bind heavy metals (Perales-Vela, 
2006). These proteins form organometallic complexes 
that partition into the vacuoles to facilitate control of 
the cytoplasmic concentrations of metal ions, thereby 
preventing or neutralizing their potential toxic effects 
(Cobbett & Goldsbrough, 2002). Prokaryotes use a 
mechanism that is different from that of eukaryotes, 
which use the consumption of ATP to drive the efflux of 
heavy metals or enzymatic changes in metal speciation 
for detoxification (Nies, 1999). These peptides can be 
classified into two categories: (Robinson, 1989; Rauser, 
1990; Steffens, 1990; Thiele, 1992):
	 1. Short-chain polypeptides, synthesized 
enzymatically and called phytochelatins or class III 
metallothioneins, are found in higher plants, algae and 
certain fungi;
	 2. Proteins encoded by genes, which include the 
class II metallothioneins (found in cyanobacteria, algae 
and higher plants) and class I metallothioneins (found in 
most vertebrates, in Neurospora and Agaricus bisporus, 
but with no records so far in algae). 
	 Initially, when the short-chain polysaccharides 
were discovered they were named phytochelatins (PC) 
because they were isolated from higher plants, explaining 
the prefix ‘phyto”, and had the ability to chelate cadmium 
ions (Grill et al., 1985; Steffens, 1990). However, the 
class II metallothioneins proved to be effective in plant 
responses to stress by heavy metals and the name of the 
PC was changed to class III metallothioneins (Mt III) 
(Rauser, 1990). Howe & Merchant (1992) showed that the 
microalgae Chlamydomonas reinhardtii P.A. Dangeard 
could sequester about 70% of the cadmium present in the 
cytosol by the action of Mt III.
	 In a study by Avilés et al. (2003) with the 
flagellated protist Euglena gracilis exposed to cadmium, 
79% of the metal was accumulated in mitochondria and 
there was an increase in the concentration of Cys and 
glutathione in cells treated with cadmium. In addition, 
17% of the total Mt III found in the treated cells was 
concentrated in the mitochondria. According to Mendoza-
Cózatl et al. (2004), the presence of Mt III and Cd2+ in 
chloroplasts and mitochondria of Euglena may be the 
result of the following processes: 
	 (1) the Mt III are synthesized and sequester 
Cd2+ in the cytosol; the Cd-Mt III complexes are then 
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subsequently transported inside the chloroplast and 
mitochondria;
	 (2) the Mt III are synthesized in these two 
organelles and bind Cd2+ transported as free ions, 
forming the HMW complexes;
	 (3) both processes co-exist and the Mt III are 
synthesized in the three cellular compartments.
	 Microalgae are often grown in two commercial 
systems: open raceway ponds and closed photobioreactors 
(Hollnagel et a;, 1996; Chisti, 2007; Munoz & Guieyesse, 
2006; Chinnasamy et al., 2010). The former system is 
inexpensive and allows the removal of nutrients from 
domestic wastewater, while photobioreactors, despite 
increased productivity, and not feasible on a large scale 
for phycoremediation due to economic limitations 
(Chinnasamy et al., 2010). The separation of algal 
biomass can be accomplished by methods such as 
centrifugation, flocculation, sedimentation, microfiltration 
and combinations of these (Grima et al., 2003; Munoz & 
Guieyesse, 2006; Danquah et al., 2009; Mutanda et al., 
2011). Hobuss et al. (2011) reported a preliminary study of 
biodiesel production by the microalgae Chlorella vulgaris 
Beijerinck cultivated in a photobioreactor; the biodiesel 
was obtained in a significantly shorter time and with good 
lipid productivity.
	 The use of high rate algal ponds (HRAP) for 
the treatment of wastewater results in the production of 
large amounts of algal biomass, which can be converted 
into biofuels in many ways, including anaerobic 

digestion to give biogas, transesterification of lipids 
to obtain biodiesel, fermentation of carbohydrates into 
bioethanol and high temperature conversion to bio-crude 
oil (Mesple et al., 1996; Munoz & Guieyesse, 2006; 
Park et al., 2011). Moreover, HRAP are an effective 
system for phytoremediation, replacing conventional 
tertiary treatment nutrient removal, which has a cost 
four times higher than that of conventional primary 
treatment (Mesple et al., 1996; Olguin et al., 2004; 
Moreno-Garrido, 2008; Godos et al., 2009; Garcia et al., 
2009). The main advantages of this treatment are that 
microalgal photosynthesis releases oxygen and there is 
no need for mechanical aeration because the microbial 
degradation of organic matter is heterotrophic.
	 Considering the ability of microalgae to 
degrade organic pollutants, dangerous species of 
Chlorella sp., Ankistrodesmus sp. and Scenedesmus sp. 
have demonstrated success in the treatment of refinery 
wastewater and wastewater from paper mills (Pinto et 
al., 2002). Cerniglia et al. (1979, 1980) evaluated the 
ability of algae to biodegrade the organic pollutants 
present in municipal waste by stimulating cell growth in 
the presence of pollutants; they found that cyanobacteria 
and eukaryotic microalgae biotransformed naphthalene 
into four main non-toxic metabolites (1-naphthol, 
4-hydroxy-4-tetralone, cis-dihydronaphthalene diol 
and trans-dihydronaphthalene diol).
	 Inthorn et al. (2002) showed that green microalgae 
(C. vulgaris, Scenedesmus sp. Chlorococcum sp. and 

Table 1. Applications of seaweeds for the biosorption of metals.
Seaweeds Elements Remarks References

Gracilaria tenuistipata Zhang & Xia, G.birdiae 
Plastino & Oliveira, G.domingensis (Kützing)

Cd and Cu G. tenuistipitata was able to bioaccumulate higher 
concentrations of Cu (0.13±0.03 µg g-1) than Cd 
(<0.01 µg g-1)

Tonon et al., 
2011

Ascophyllum nodosum (Linnaeus) Le Jolis, Fucus 
vesiculosus Linnaeus, Ulva intestinalis Linnaeus, 
Cladophora rupestris (Linnaeus) Kützing, Chondrus 
crispus Stackhouse, Palmaria palmata (Linnaeus) 
Kuntze, Polysiphonia lanosa (Linnaeus) Tandy

Cd and Pb P. palmata had the highest concentrations of Cd 
and A. nodosum the lowest. No correlation was 
found between Cd accumulation and its toxicity. U. 
intestinalis had apparent tolerance to Pb, as well as 
the ability to accumulate it at high rates.

Baumann et al., 
2009

Chaetomorpha sp., Caulerpa sertularioides 
(S.G.Gmelin) M.A.Howe, Cladophora fasicularis 
(Mertens ex C. Agardh) Kützing, Valoniopsis 
pachynema (G. Martens) Borgesen, Ulva lactuca

Cd and Pb Chaetomorpha sp. accumulated more Cd than U. 
lactuca; and V. pachynema amassed more Pb than 
C. sertularioides.

Kumar et al., 
2009

Ulva sp., Enteromorpha sp., Chaetomorpha sp., 
Cladophora sp.

Fe, Al, Zn, Cd, 
Cu, As and Pb

Cd was more absorbed by Cladophora sp. 
(1.6±0.3 mg g-1), while the Chaetomorpha sp. and 
Enteromorpha sp. absorbed more Pb

Gosavi et al. 
(2004)

Ascoseira mirabilis Skottsberg, Palmaria decipiens 
(Reinsch) R.W.Ricker, Desmarestia anceps Montagne, 
Monostroma hariotti Gain, Adenocystis utricularis 
(Bory de Saint-Vincent) Skottsberg, Desmarestia 
antarctica R.L.Moe & P.C. Silva, Himantothallus 
grandifolius (A.Gepp & E.S.Gepp) Zinova, Iridaea 
cordata (Turner) Bory de Saint-Vicent, Phaeurus 
antarcticus Skottsberg, Georgiella confluens (Reinsch) 
Kylin, Myriogramme mangini (Gain) Skottsberg

As, Cd, Co, Cr, 
Cu, Fe, Mn, 

Mo, Ni, Pb, Se, 
Sr, V, and Zn

Highest levels of trace metals were found in M. 
hariotii and P. antarcticus; however, M. hariotii 
was not able to accumulate As, Cd and Pb, which 
are relevant given their toxicity potential for living 
organisms.

Farias et al., 
2002
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Fischerella sp.) and cyanobacteria (Lyngbya spiralis 
Geitler, Tolypothrix tenuis Kützing, Stigonema sp. and 
Phormidium molle (Kützing) Gomont) efficiently removed 
Pb (II), Cd (II) and Hg (II) ions. Recently, there has been 
a growing use of the unicellular microalgae C. reinhardtii 
in bioremediation (Macfie & Welbourn, 2000; Adhiya et 
al., 2002). Bayramoğlu et al. (2006) isolated wild-type 
C. reinhardtii from a polluted part of the Kizilirmak 
river, taking advantage of the fact that species growing 
in polluted areas have a higher resistance and ability to 
accumulate heavy metals. They showed that Ca-alginate 
bead with immobilized biomass of the microalgae were 
biosorbents capable of removing Hg (II), Cd (II) and Pb 
(II) ions from aqueous media.
	 The cyanobacterium Microcystis novacekii 
(Komarek) Compère, present in many tropical countries, 
is found in eutrophic and polluted environments (Singh, 
1998), indicating that this species may be resistant to 
exposure to toxic agents, including heavy metals (Pradhan 
et al., 2007). According to Ribeiro et al. (2010), the 
biomass of M. novacekii had a maximum sorption capacity 
of 70 mg g-1 at 21±2 °C and pH 5.0, higher than that of 
other biosorbents used to remove lead from water. The 
use of active biomass was not feasible for the removal of 
lead due to precipitation of the metal and cell growth was 
inhibited by concentrations of free metal ions in excess 
of 0.5 mg L-1. In contrast, inactive cells showed a high 
capacity for absorbtion of Pb2+ from aqueous solution 

and equilibrium was reached quickly. Some of the most 
important applications of microalgae for the biosorption of 
metals are outlined in Table 2.

Conclusion

	 Based on data obtained in a number of studies, 
there is clear potential for the use of macroalgae and 
microalgae for the bioremediation of metals. In addition, 
there is somewhat of an advantage of microalgae over 
macroalgae due to the ease of collection, preparation 
and testing of the former. However, further studies of 
metal biosorption by algae are needed in order to obtain 
specific relationships correlating the affinities of algae 
for certain metals with ecological, physiological, 
biochemical and molecular parameters.
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